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Figure S1. KRASG12R is the third most prevalent mutation in PDAC.
A, KRAS mutation frequency in PDAC, CRC and LAC. The top row provides the mutational
frequency by amino acid position, and the bottom row provides the prevalence of G12 mutations
in each cancer. B, Apoptosis assays of siRNA-transfected PDAC cells measured by Annexin V-
FITC staining. Data are representative of two independent experiments. C, Cell cycle analyses of
siRNA-transfected PDAC cells determined by staining with propidium iodide. At least 104 cells
were collected for apoptosis and cell cycle assays, and data are representative of at least two
independent experiments. Error bars, mean ± s.e.m.
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Supplementary Fig. S2
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Figure S2. Ectopic expression of KRASG12D and KRASG12V mutants elevate 
macropinocytosis in model systems. 
A, Time-dependent measurement of FITC-dextran labeled macropinosomes in KRAS-
transformed RIE-1 cells. Macropinosomes, green; nuclei, blue, for the indicated time. Assay used
1 ml of 1:20 FITC-dextran/DMEM. B, Quantification of macropinocytosis index. Quantification
performed with at least 50 cells per condition, and data are representative of two independent
experiments. C, Immunoblot analysis of HA epitope-tagged KRAS expression levels in NIH/3T3
cells. D, FITC-dextran labeled macropinosomes in KRAS-transformed NIH/3T3 cells. E,
Quantification of macropinocytotic index. Quantification of macropinocytosis index with at least
50 cells per condition, and data are representative of two independent experiments. F,
Immunoblot analysis of HA epitope-tagged KRAS expression levels in HPNE-DT cells. G, FITC-
dextran labeled macropinosomes in KRAS-transformed HPNE-DT cells. H, Quantification of
macropinocytotic index. Quantification of macropinocytosis index with at least 50 cells per
condition, and data are representative of three independent experiments. I, Brightfield
microscopy images of RIE-1 cells transfected with KRAS mutants. Scale bar, 100 µm. For all
data; ****P<0.0001, ***P<0.0002, **P<0.0021, *P<0.032, p values from Dunnett’s multiple
comparison test after one-way ANOVA, comparing all lanes to G12R at each time point. Scale
bar is 20 μm, unless otherwise noted. Error bars, mean ± s.e.m.
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Figure S3. KRASG12R structure is unique among G12 mutations.
A, Overlay of the ribbon diagrams of KRASG12R (green) and HRASG12V (pink; PDB 3OIW). SI,
light blue; SII, red. Stick models of G12V and G12R are shown. GMPPNP is shown with
phosphates colored orange. B, A ribbon diagram of the HRASG12R crystal structure with selected
side chains represented as sticks. Carbons in Q61 and E62 are colored red, nitrogen is blue and
oxygen light red. T35 carbons colored in light blue. Hydrogen bonds are shown as gray dashed
lines. C, Overlay of the ribbon diagrams of HRASG12R (teal) with KRASG12R (green). All other
coloring is the same as previous. D, Thermal denaturation of KRAS proteins as measured by
mGDP binding.
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Supplementary Fig. S4
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Figure S4. KRASG12R does not interact with p110α/p85 in vitro and in RIE-1 cells.
A, Immunoblot analysis of RIE-1 cells transfected with HA epitope-tagged KRAS effector-specific mutants.
Vinculin was used a total lysate control, and phospho-specific and total AKT and ERK levels were probed. B, A
diagram of the expected signaling preference for the KRAS effector-specific mutants. C, Quantification of
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of two independent experiments. Error bars, mean ± s.e.m. D, Heatmap of the relative RPPA intensity of 162
proteins in RIE-1 cells ectopically expressing KRAS mutants cultured in the absence or presence of serum. E,
KRAS-PI3K effector signaling diagram displaying the expected phosphorylation sites downstream of PI3K
activation in cells. F, Table of KRAS WT and mutant protein binding affinities to select effector RBD/RA domains
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described. All experiments were performed in triplicate or greater, and the results are the average binding affinity.
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Supplementary Fig. S5
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Figure S5. KRASG12R cell lines are distinct from
nonKRASG12R cell lines.
A, Heatmap comparing RPPA protein phosphorylation/expression
in KRASG12D and KRASG12R pancreas cancer cell lines under
basal conditions. RPPA analysis of over 160 proteins cell lines
with a native KRASG12R (6 cell lines, magenta) or non-KRASG12R

(7 cell lines, cyan) mutation. B, 2D colony formation of MYC-
silenced G12R-mutant PDAC. All cells were siRNA transfected
for 48 h and allowed to proliferate for 10 days. Data are an
average of four independent experiments. (***P<0.0002,
**P<0.0021, *P<0.032, p values from Dunnett’s multiple
comparison test after one-way ANOVA, comparing all lanes to
NS for each treatment). Error bars, mean ± s.e.m. C, Images of
FITC-dextran labeled macropinosomes with and without MYC
silencing by siRNA. 70-kDa FITC-dextran, green; nuclei, blue.
Scale bar, 20 μm.
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Figure S6. KRASG12R-mutant PDAC rely on p110γ for macropinocytosis and are sensitive to 
MEK/ERK inhibition.
A, Images of FITC-dextran labeled macropinosomes of PDAC cell lines treated for 24 h with 
DMSO, alpelisib (p110α-selective inhibitor, 100 nM), IPI-549 (p110γ-selective inhibitor, 300 
nM) or pictilisib (pan-p110 inhibitor, 1.5 µM) for 18 hrs. Images are representative from four 
independent experiments. B, Quantification of FITC-dextran labeled macropinosomes in PDAC 
cell lines treated for 18 h with DMSO or AZD8186 alpelisib (p110α/β/δ-selective inhibitor, 1.0 
μM). C, Response to selumetinib (AZD6244) measured by IC50 values (in nM) in a pancreas 
cancer cell line panel. The most sensitive cell line is shown on the left (N≥3 with SEMs; in 
triplicate). D, Response to selumetinib measured by the activity area. Activity area in 52 PDAC 
cell lines derived from 10-concentration dose response curves (N≥3 per cell line; in triplicate). 
Average Activity area (AA), as a measurement of maximum response and potency, aligned with 
KRAS mutation information from COSMIC (if available). AA integrates potency (EC50 or IC50) 
and maximum response (Amax) at the highest drug concentration. E, Genetic mutations in 52 
pancreatic cancer cell lines. The 250 most common cancer genes afflicted by somatic mutations 
were sequenced and genes with mutations found in at least two cell lines are shown



Figure S7. KRASG12R organoids are sensitive to ERK MAPK inhibition.
A, Plot of the area under the curve for KRASG12D- and KRASG12R-mutant pancreas cancer organoids. AUC 
calculated from three independent experiments. The difference was not significant. B, Cell viability curves 
of KRASG12D-mutant organoids treated with ERKi for 10 days. Data are the average of three independent 
experiments. C, Cell viability curves of KRASG12R-mutant organoids treated with ERKi for 10 days. Data 
are the average of three independent experiments.
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Figure S8. KRASG12R PDAC cell lines are fundamentally different from nonKRASG12R cell lines. 
A, 525-drug sensitivity and resistance testing of multiple PDAC cell lines expressing KRASG12R and other 
KRAS mutations. Cell viability was measured using cell titer glo and response to each inhibitor was 
averaged and ranked according to its deviation from the average. Data are an average of three independent 
experiments. B, Cell viability of PDAC organoid cultures co-treated with ERKi (SCH772984) and PI3Kγi 
(IPI-549). Organoids were cultured for 10 days. Data are the average of two independent experiments. C, 
Bright field images from B. Right, hT2 (KRASG12R); left, hM1A (KRASG12D). D, Ectopic expression of 
KRASG12R in RIE-1 cells dos not suppress autophagy. RIE-1 cells were transduced to stably express KRAS 
and mCherry-EGFP-LC3B. Autophagic index indicates the ratio of the areas of mCherry+ punctae to EGFP+

punctae. Mean autophagic index is plotted, with each individual data point representing one field containing 
at least five analyzed cells. Data are representative of three independent experiments. (***P<0.0002, 
**P<0.0021, *P<0.032, p values from Dunnett’s multiple comparison test after one-way ANOVA, 
comparing all lanes to EV). Error bars, mean ± s.e.m.  E, Immunoblot analysis of KRAS-expressing RIE-1 
cells used in A. F, Representative confocal images of EGFP, MCHERRY and merged channels used to 
quantify the autophagic index, used in D. For D-F, EV and G12V were previously reported (1).

1. Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, et al. Combination of ERK and 
autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med 2019;25:628-40.


