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Figure 1. Bias (left) and RMSE (right) for case 1 with 50% censoring: N = 250 (first row),
N = 500 (second row), and N = 1000 (third row). Each simulated data set was analyzed
with both BART competing risks models, Cox proportional cause specific hazards models,
Fine and Gray proportional subdistribution hazards model, and the Aalen-Johansen
nonparametric estimator. For brevity, we only consider cause 1 which is generally the cause
of interest. For each scenario, we examined the prediction performance in terms of bias and
Root Mean Square Error (RMSE), at the following quantiles of the cdf: 10%, 30%, 50%,
70% and 90%. Results are plotted as points against quantile for each case and sample
combination; note that there are 16 points (8 shown here and 8 in the article) for each case
and sample combination: 2 groups as targets for prediction, x = 0, 1; 4 parameter
configurations, a = 1, 2, 3, 4 (shown in Table 2 of the article); and 2 censoring rates, 20%
(shown in the article) and 50% (shown here), b = 0.2, 0.5. The bias and RMSE metrics
were assessed at the five chosen quantiles, Q, e.g.,

biasNxab = H−1∑
h

[
F̂1,abh(tQ, x)− F1,ab(tQ, x)

]
where tQ is such that

Q = F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and h = 1, . . . , H are the
simulated data sets.
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Figure 2. Bias (left) and RMSE (right) for case 2 with 50% censoring: N = 250 (first row),
N = 500 (second row), and N = 1000 (third row). Each simulated data set was analyzed
with both BART competing risks models, Cox proportional cause specific hazards models,
Fine and Gray proportional subdistribution hazards model, and the Aalen-Johansen
nonparametric estimator. For brevity, we only consider cause 1 which is generally the cause
of interest. For each scenario, we examined the prediction performance in terms of bias and
Root Mean Square Error (RMSE), at the following quantiles of the cdf: 10%, 30%, 50%,
70% and 90%. Results are plotted as points against quantile for each case and sample
combination; note that there are 16 points (8 shown here and 8 in the article) for each case
and sample combination: 2 groups as targets for prediction, x = 0, 1; 4 parameter
configurations, a = 1, 2, 3, 4 (shown in Table 2 of the article); and 2 censoring rates, 20%
(shown in the article) and 50% (shown here), b = 0.2, 0.5. The bias and RMSE metrics
were assessed at the five chosen quantiles, Q, e.g.,

biasNxab = H−1∑
h

[
F̂1,abh(tQ, x)− F1,ab(tQ, x)

]
where tQ is such that

Q = F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and h = 1, . . . , H are the
simulated data sets.
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Figure 3. Bias (left) and RMSE (right) for case 3 with 50% censoring: N = 250 (first row),
N = 500 (second row), and N = 1000 (third row). Each simulated data set was analyzed
with both BART competing risks models, Cox proportional cause specific hazards models,
Fine and Gray proportional subdistribution hazards model, and the Aalen-Johansen
nonparametric estimator. For brevity, we only consider cause 1 which is generally the cause
of interest. For each scenario, we examined the prediction performance in terms of bias and
Root Mean Square Error (RMSE), at the following quantiles of the cdf: 10%, 30%, 50%,
70% and 90%. Results are plotted as points against quantile for each case and sample
combination; note that there are 16 points (8 shown here and 8 in the article) for each case
and sample combination: 2 groups as targets for prediction, x = 0, 1; 4 parameter
configurations, a = 1, 2, 3, 4 (shown in Table 2 of the article); and 2 censoring rates, 20%
(shown in the article) and 50% (shown here), b = 0.2, 0.5. The bias and RMSE metrics
were assessed at the five chosen quantiles, Q, e.g.,

biasNxab = H−1∑
h

[
F̂1,abh(tQ, x)− F1,ab(tQ, x)

]
where tQ is such that

Q = F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and h = 1, . . . , H are the
simulated data sets.
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Figure 4. Coverage (left) and width (right) of 95% posterior intervals for case 1 with 50%
censoring: N = 250 (first row), N = 500 (second row), and N = 1000 (third row). Each
simulated data set was analyzed with both BART competing risks models. For brevity, we
only consider cause 1 which is generally the cause of interest. For each scenario, we
compare the 95% interval coverage probability and 95% interval length for the two BART
methods. Results are plotted as points against quantile for each case and sample
combination; note that there are 16 points (8 shown here and 8 in the article) for each case
and sample combination: 2 groups as targets for prediction, x = 0, 1; 4 parameter
configurations, a = 1, 2, 3, 4 (shown in Table 2 of the article); and 2 censoring rates, 20%
(shown in the article) and 50% (shown here), b = 0.2, 0.5. The 95% interval coverage and
length was assessed at the five chosen quantiles, e.g.,

coverageNxab = H−1∑
h I
(
F̂1,abh,0.025(tQ, x) ≤ F1,ab(tQ, x) ≤ F̂1,abh,0.975(tQ, x)

)
where tQ is such that Q = F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and
h = 1, . . . , H are the simulated data sets.
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Figure 5. Coverage (left) and width (right) of 95% posterior intervals for case 2 with 50%
censoring: N = 250 (first row), N = 500 (second row), and N = 1000 (third row). Each
simulated data set was analyzed with both BART competing risks models. For brevity, we
only consider cause 1 which is generally the cause of interest. For each scenario, we
compare the 95% interval coverage probability and 95% interval length for the two BART
methods. Results are plotted as points against quantile for each case and sample
combination; note that there are 16 points (8 shown here and 8 in the article) for each case
and sample combination: 2 groups as targets for prediction, x = 0, 1; 4 parameter
configurations, a = 1, 2, 3, 4 (shown in Table 2 of the article); and 2 censoring rates, 20%
(shown in the article) and 50% (shown here), b = 0.2, 0.5. The 95% interval coverage and
length was assessed at the five chosen quantiles, e.g.,

coverageNxab = H−1∑
h I
(
F̂1,abh,0.025(tQ, x) ≤ F1,ab(tQ, x) ≤ F̂1,abh,0.975(tQ, x)

)
where tQ is such that Q = F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and
h = 1, . . . , H are the simulated data sets.
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Figure 6. Coverage (left) and width (right) of 95% posterior intervals for case 3 with 50%
censoring: N = 250 (first row), N = 500 (second row), and N = 1000 (third row). Each
simulated data set was analyzed with both BART competing risks models. For brevity, we
only consider cause 1 which is generally the cause of interest. For each scenario, we
compare the 95% interval coverage probability and 95% interval length for the two BART
methods. Results are plotted as points against quantile for each case and sample
combination; note that there are 16 points (8 shown here and 8 in the article) for each case
and sample combination: 2 groups as targets for prediction, x = 0, 1; 4 parameter
configurations, a = 1, 2, 3, 4 (shown in Table 2 of the article); and 2 censoring rates, 20%
(shown in the article) and 50% (shown here), b = 0.2, 0.5. The 95% interval coverage and
length was assessed at the five chosen quantiles, e.g.,

coverageNxab = H−1∑
h I
(
F̂1,abh,0.025(tQ, x) ≤ F1,ab(tQ, x) ≤ F̂1,abh,0.975(tQ, x)

)
where tQ is such that Q = F1,ab(tQ, x) + F2,ab(tQ, x); N is the sample size; and
h = 1, . . . , H are the simulated data sets.

Prepared using sagej.cls


	bartcmprskSMMRv2
	Introduction
	BART methodology
	Competing risks and BART
	Method 1
	Method 2
	Data construction

	Performance of proposed methods
	Two sample setting
	Complex regression setting

	Application to hematopoietic stem cell transplantation example
	Conclusion
	Acknowledgments

	bartcmprskSMMRv2S
	Supplement


