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List of supplementary datasets
Dataset S1: Curated dataset of 136 known RiPP clusters linked to 161 small molecules.

Dataset S2: Curated dataset of all known RiPPs, along with the corresponding producing 
organism.

Dataset S3: Accuracy metrics of NLPPrecursor model 1 (DL1) which predicts the probability of 
a given ORF to be RiPP or non-RiPP.

Dataset S4: Accuracy metrics of NLPPrecursor model 2 (DL2) which predicts all possible 
cleavage sites within candidate RiPP precursor peptides.

Dataset S5: All identified RiPPs by NLPPrecursor and RiPP-PRISM among 65,421 publicly 
available prokaryotic genomes.

Dataset S6: Known post-translational modifications of all RiPP classes as recognized by 
GRAPE.

Dataset S7: Details of media and growth conditions used for bacterial fermentation to generate 
the extract database.



Supplementary results

To position our work in the context of these recent developments in genome mining for RiPPs, 
we provide a partial comparison of NLPPrecursor to two recently described algorithms, RODEO 
[1] and RiPPMiner [2], which implement new methods for certain aspects of genome-guided 
RiPP discovery. 

Comparison to RODEO
RODEO has been developed with the primary goal of identifying elusive lasso peptide precursor
peptides[1]. While the scope of DeepRiPP, and even NLPPrecursor, is much broader, we 
sought to compare NLPPrecursor’s ability to differentiate valid lasso peptide precursor ORFs 
from invalid ones using the dataset released by Tietz et al. (2017). This dataset was chosen as 
it is the largest available set of lasso peptides and suitable negative examples with a total of 
9,983 samples (1,315 lasso peptides and 8,668 negative examples). However, because 
RODEO takes the genomic context of a putative lasso peptide precursor as input to generate 
predictions, whereas NLPPrecursor does not, we first dereplicated the dataset to include only 
unique ORF sequences, resulting in 840 lasso peptides and 6,973 negative examples 
respectively. According to the Methods described by Tietz et al. [1], the class labels of the 
peptides in this dataset were amended according to the SVM scores themselves, and 
subsequent analyses, suggesting that the dataset may be biased towards the success of 
RODEO. To analyse this dataset using DeepRiPP, each of the contigs on which putative 
precursors were encoded on the dataset were downloaded, and ORFs were identified via 
Prodigal. If no ORFs were found within 50 bp of the suggested start site, a score of zero was 
assigned. The ORFs were analysed by the class prediction module of NLPPrecursor. If the top 
prediction was not a lasso peptide, a score of zero was assigned, otherwise the class prediction 
probability was used. The results suggest that RODEO does perform better than NLPPrecursor 
in identifying lasso peptide precursors (Fig. S5), although it is important to note the potential for 
bias in this dataset towards the success of RODEO, while NLPPrecursor was trained on a 
dataset with many fewer lasso peptides. 

To provide a more fair comparison, we decided to retrain NLPPrecursor specifically for 
the same task as RODEO using the same dataset and training-test split strategy as identified in 
their original manuscript. Here, while NLPPrecursor does perform better, it performs close to but
slightly below the predictive accuracy of RODEO (AUC 0.987 vs 0.999; p = 0.027, two-sided 
DeLong test; Fig. S5). It is important to note these results suggest that the majority of predictive 
accuracy for discriminating precursor peptides can be identified from purely protein sequence 
alone, without taking into account genomic context information as proposed by Tietz et al. 
These results further demonstrate the utility of a RiPP precursor peptide learning framework that
can be adapted to a variety of classification tasks. 

Comparison to RiPPMiner
RiPPMiner [2] presents three major processes that can be directly compared to DeepRiPP 
using ORF sequence alone. First, RiPPMiner classifies ORFs as either being a RiPP precursor 
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or not; second it classifies RiPP precursor ORFs according to their subclass; and finally, it 
predicts cleavage sites for RiPPs. To provide a fair comparison, our dataset was used, where 
90% of the data was reserved for training and validation while the remaining 10% was used to 
compare RiPPMiner and NLPPrecursor. In the first comparison, RiPPMiner had an accuracy of 
56% (PPV 0.57), while NLPPrecursor had an accuracy of 96% (PPV 0.99) in distinguishing 
RiPP precursor peptides from non-precursor peptide ORFs (Fig. S6A). 

Looking specifically at cases that each classifier correctly identified as RiPPs (n=769 
NLPPrecursor; n=500 RiPPMiner) we sought to compare RiPPMiner to NLPPrecursor according
to its classification across each RiPP subclass within RiPPMiner’s scope (Fig. S6B). Here, 
RiPPMiner had an accuracy of 84.6% compared to NLPPrecursor’s accuracy of 97.9% (MCC 
0.819 and  0.975 respectively).

RiPPMiner predicts cleavage sites for lantipeptides, cyanobactins and lasso peptides. 
For these classes, we chose to compare NLPPrecursor to RiPPMiner using a reserved testing 
dataset NLPPrecursor was not trained upon resulting in 408 examples. Among these, 
RiPPMiner reported a cleavage prediction for 221 (54%) of cases. Although NLPPrecursor is 
able to cleave all of these cases, only these 54% were considered here to facilitate a fair 
comparison. Overall, both RiPPMiner and NLPPrecursor produce accurate results, with a 
median and mode prediction distance from N-terminal cleavage of 0 amino acids (Fig. S6C). 
However, when comparing the distribution of predictions, RiPPMiner had a standard deviation of
6.577, while NLPPrecursor had a standard deviation of 4.754, indicating that NLPPrecursor’s 
prediction are, on average, closer to the true prediction site.

Controlling for ORF size
Because of the short length of RiPP precursor peptides, RiPPs can be distinguished with 
reasonably good accuracy from protein-coding ORFs using ORF length as a trivial predictor 
(Fig. S2, median length of 52 amino acids for RiPP ORFs vs. median length of 185.5 for all 
protein-coding ORFs).Using a ORF size threshold between 20 and 200, we can easily achieve 
an overall accuracy of 87.5%, but a poor specificity of 0.50 (Fig. S5). By accounting for this 
effect in our selection of negative training ORFs, we ensure that a potential source of inherent 
bias in the underlying dataset is removed. Thus, we can be confident that NLPPrecursor has 
increased our predictive accuracy in identifying RiPP precursor peptide ORFs without mistaking 
this for simply the accuracy of selecting smaller ORFs, which is especially important considering
the ratio of non-RiPP small ORFs is highly unbalanced within a whole genome context.



Supplementary methods

Development of a deep learning model to identify precursor peptides
To create a precursor detection engine that was entirely reliant on sequence data, instead of 
genomic context, a sequence-based deep learning model was used. We adapted this 
architecture from the natural language classification model ULMFiT [3] for its reported state-of-
the-art performance on sequence classification tasks in low-data situations. which is achieved 
through a transfer learning process that leverages large unlabeled datasets from the domain of 
interest. Briefly, ULMFiT first performs unsupervised learning through language modeling, and 
then subsequently transfers the encodings learned from the language modeling objective to a 
classification task. Here, protein sequences of open reading frames are used as input, whereas 
the output of the model consists of a classification of each ORF as either a precursor peptide 
(further subclassified according to RiPP family), or a non-precursor peptide. A total of 14 
classes are identified (n_class). Protein sequences were tokenized such that each amino acid 
was considered a unique token, a total of 22 tokens were used (20 amino acids, an ambiguous 
amino acid token for when gene translations are not definitive, and a padding token), which is 
subsequently referred to as the vocabulary size. 

Each sequence is broken into stretches of roughly 70 in length (exactly 70, 95% of the 
time, otherwise the length sampled from a random normal distribution with a mean of 70 and a 
standard deviation of 5), this length is referred to as bptt. 

The core structure of this model is a recurrent neural network (RNN) encoder, where an 
embedding layer first converts each token to a 400-length vector (emb_sz = 400). This vector is 
subsequently fed into a three-layer stacked long short-term memory (LSTM) network, where the
first two layers have a hidden state of size 1140, and the final LSTM layer has a hidden state 
equivalent to the embedding size of 400. Since ORF sequences are passed in chunks of size 
bptt through these layers, the final hidden state for each chunk is passed onto to initialize the 
first hidden state of the next successive chunk.

To train the model in an unsupervised fashion, a language model is first created where the
goal of this model is to predict the amino acid, or token, at position bptt + 1. Thus, this data is 
passed into the RNN encoder as described above, as a vector of length bptt. This is then 
converted to a matrix of shape (bptt, emb_sz) through the embedding layer. After passed 
through the stacked LSTMs, the final hidden state (vector of size emb_sz) is carried forward 
towards a single layer linear decoder with an output of vocabulary size. This output is compared
to the token at bptt + 1 using binary cross entropy as a loss function. The weights of the single 
layer linear decoder are tied to the encoder weights to ensure knowledge is captured within the 
encoder, and not simply the decoder. During training, a number of dropout layers were defined 
within this model to prevent overfitting: specifically, an embedding dropout with p = 0.02, and a 
first dropout of p = 0.25 along the bptt axis. For each of the stacked RNNs, two dropout 
procedures were applied, first along the hidden states at p = 0.15, and for the LSTM weights at 
p = 0.2. A dropout of p = 0.2 was applied to the final output of the stacked RNNs, prior to 
decoding.

The output layer of the trained encoder was then used as input to a classifier to predict 
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whether a given ORF sequence was a RiPP precursor or not. Similar to the language model, 
the sequence is chunked into token vectors of length bptt, and subsequently passed through the
RNN encoder, keeping the hidden states at each position across these chunks. This is 
concatenated to result in a matrix of size (emb_sz, sequence_length). This was further reduced 
to three vectors conveying (i) the final hidden state of the RNN encoder, the (ii) maximum, and 
(iii) mean values across the sequence_length dimension resulting in a concatenated vector of 
size 3 × emb_sz. This vector is subsequently sent towards a neural network of two layers. The 
first layer has ReLU activation, and has an output size of 50. The second layer has a linear 
activation, with an input size of 50, and output size of n_class. These two layers employ batch 
normalization, with the first of these applying a dropout of p = 0.4 and the second p = 0.1. This 
output is compared to the true label using a weighted binary cross entropy to generate a loss 
value for backpropagation.

The data used to train the language model was the entirety of unique precursor peptides 
identified previously by RiPP-PRISM [4], resulting in a total of 3,013 unique ORF sequences. 
For non-precursor peptides, a selection of diverse microbial genomes was gathered and 
determined by RiPP-PRISM to not encode RiPP BGCs. ORF sequences were identified from 
these genomes, and were sampled according to the distribution of ORF sizes seen within RiPP 
precursors, to obtain a total of 3,013 unique non-RiPP ORF sequences (Fig. S5). The total data 
available for training was 6,026 ORF sequences (available at: 
https://github.com/magarveylab/NLPPrecursor/tree/master/training_data/classification). The 
language model was trained on 90% of this data (excluding class labels), and was validated 
against the remaining 10%. The model was trained for a total of fifty epochs, using a cyclic 
learning rate between 10-4 and 10-2 as described [3]. For the classification model, this same 
dataset was used, but split into training, validation and testing sets (81%, 9%, and 10%, 
respectively). The classifier was trained using gradual unfreezing, to ensure the weights learned
from the encoder were not drastically forgotten. Using the same cyclic learning rate described 
above, the classifier was trained for 50 epochs in each of four stages. The first three stages 
involved stepwise unfreezing of a layer from the bottom, while the final stage unfroze the entire 
model’s weights for training. A batch size of 64 was used throughout training. The Adam 
optimizer was used, with betas of 0.9 and 0.999 [5]. All hyperparameters here were selected as 
default as those used within ULMFiT to best capture the transfer learning properties and high 
performance observed in NLP tasks using this architecture. A visualization of training and 
validation loss over the course of NLPPrecursor’s training regime is visualized in Fig. S14A-B.  
A step-by-step tutorial to reproduce our results is found online (https://github.com/magarveylab/
nlpprecursor/) to aid reproducibility.

Development of a deep learning model to predict precursor cleavage sites 
From the sequences identified and predicted to be precursor RiPPs, a second model was 
trained to predict cleavage site(s) within the precursor peptide. This can be framed as an 
annotation problem, where each amino acid within the ORF sequence is labelled as either part 
of the final peptide, or not. In natural language processing, several models have been 
developed for a similar task, labelling parts of speech within a sentence. In particular, this model
takes in a tokenized ORF sequence, and for each position within the sequence, predicts a label 
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such that the input and output sequences are of the same length.
Protein sequences were tokenized such that a start and end tag were added, alongside 

with the twenty proteinogenic amino acids, and an ambiguous amino acid, and a padding token,
resulting in a total vocabulary size of 24. For the output, the following annotations were made: a 
start and end tag (matching the input tokens), before (annotates each amino acid token 
upstream of cleavage site), propeptide (annotates each amino acid of the mature peptide), after 
(annotates each amino acid token downstream of propeptide sequence) and a padding index, 
resulting in a total vocabulary size of 6 for the output. The following transitions were allowed 
within the model: (start-before), (before-before), (before-propeptide), (propeptide-propeptide), 
(propeptide-after), (propeptide-stop), (stop, pad), (after-after), (after-stop), (pad-pad). All 
sequences were padded with pad tokens at the end such that their final length was equivalent to
200.

The model was architected in three main components, starting with embedding, a 
bidirectional LSTM, and a final linear chain conditional random field (CRF)[6]. Specifically, the 
embedding layer transformed each token to a vector of length 100, resulting in each input 
having a shape of (200, 100) or (sequence_length, emb_sz). A dropout layer was applied here 
with p = 0.1. This data was subsequently fed through a single layer bidirectional LSTM with a 
hidden state of size 100 times 2, representing the bidirectionality of the model. All hidden states 
are carried forward to generate a matrix of shape (sequence_length, hidden_size × 2) 
equivalent to (200, 200). This is passed through a single linear layer with an output size of (200, 
6), representing the predictions for each annotation at each sequence position. This data is then
passed through a CRF layer. Using the forward-backward algorithm, the CRF is able to 
generate a negative log likelihood of the given predictions matching the true annotations. This 
value is used as the loss to train the network. During prediction, the Viterbi algorithm is used to 
determine the most probable path of annotations through the sequence length.
The data used to train this model was the entirety of unique precursor peptides identified 
previously by RiPP-PRISM [4], resulting in a total of 3,013 unique ORF sequences (released 
here: https://github.com/magarveylab/NLPPrecursor/tree/master/training_data/annotation). This 
model was trained on 90% of this data and tested against the remaining 10%. A total of 50 
epochs were trained (Fig. S14C), using a batch size of 64, and the Adam optimizer with betas 0f
0.9 and 0.999 [5]. A step-by-step tutorial to recreate these results is found online 
(https://github.com/magarveylab/nlpprecursor/) to aid reproducibility.

Construction of GRAPE 
Previously, we developed a retrobiosynthetic algorithm, GRAPE [7], which decomposes the 
chemical structures of nonribosomal peptide or polyketide natural products, in SMILES format, 
into their corresponding amino acids together with a list of associated biosynthetic tailoring 
reactions. However, the published version of GRAPE was limited to polyketides and 
nonribosomal peptides. To construct BARLEY, we first extended GRAPE with 60 RiPP-specific 
tailoring reactions to process RiPP scaffolds (Dataset S6). Specifically, GRAPE 
retrobiosynthesizes RiPPs according to the same logic as previously described [7] in four major 
steps. First, macrocycle forming bridges are broken. In this step, we have updated GRAPE to 
included RiPP-specific crosslinks such as, but not limited to, the lanthionine linkage, duramycin 
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linkage and thiopeptide pyridine formation. Second, reactions forming heterocyclic rings and 
amino acid modifications are retrobiosynthesized. Examples include oxazol(in)es, thiazol(in)es 
and dehydrated amino acids. In the third steps, amide and thioamide bonds are cleaved to 
reveal the primary amino acid structure of RiPPs. Finally, additional groups are cleaved such as 
sugars and indoles. Through these steps, GRAPE is able to identify the specific tailoring 
reactions that derivatize the precursor peptide identified as well as its resulting primary amino 
acid structure. In certain cases, a definitive amino acid cannot be derived from a chemical 
structure, such as the case of lanthionine linkages, where it cannot be determined which amino 
acid represented serine or cysteine without corresponding genomic information. In these cases, 
an ambiguous amino acid (denoted SerCys in Fig. S13) is generated that can be matched to 
either serine or cysteine in subsequent alignments.

BARLEY chemical distance
A chemical distance metric describes the theoretical distance or similarity between two chemical
structures; a widely used example is the Tanimoto coefficient, as applied to a pair of binary 
chemical fingerprints. BARLEY calculates a chemical distance tailored to the comparison of 
RiPP structures by using GRAPE to deconstruct chemical scaffolds into their corresponding 
amino acids and tailoring reactions. For a comparison between a query chemical scaffold to a 
subject, a Smith-Waterman alignment is calculated using an identity matrix, scoring +1 for exact
matches, and a gap opening and extension penalty of –2. From this alignment, two scores are 
denoted for the local alignment, the total number of amino acids in the query that were exactly 
matched and mismatched to the subject, which are weighted +1 and –1, respectively. From the 
identified tailoring reactions, three metrics are derived with respect to the query: the number of 
tailoring reactions observed in both the query and the subject, the number of tailoring reactions 
observed in either the query or the subject but not in both, and the number of tailoring reactions 
between query and subject that were marked as similar. The following tailoring reactions were 
considered to be similar: lanthionine and methyl-lanthionine, labionin and methyl-labionin, 
oxazole and oxazoline, thiazole and thiazolines, phenyloxazole and phenyloxazoline, 
dehydroalanine and dehydrobutyric acid. These three scores (tailoring reaction match, tailoring 
reaction mismatch and similar tailoring reactions) are weighted +5, –5, and +5, respectively. The
sum of these five weighted scores are used to determine a total score. To generate a relative 
score between zero and one, a self-score is generated between the query and itself. The total 
score is divided by the self-score to determine the relative similarity of two RiPP chemical 
scaffolds. Thus, the relative score represents how close the subject molecule is to the query, in 
a range between zero and one, where one represents the exact same molecule. This relative 
score is asymmetric as it is normalized according to the query molecule.

BARLEY genomic distance
Akin to chemical distances, the genomic distances by BARLEY aim to describe the similarity of 
RiPPs in a scale between zero and one. However, genomic distances are generated by solely 
examining a pair of RiPP biosynthetic gene clusters, without using any structural information. 
BARELY uses the genes identified by RiPP-PRISM to build a model of the cleaved precursor 
peptide core amino acid sequence, and the total tailoring reactions possibly encoded. RiPP-
PRISM can identify up to 112 genes that encode distinct tailoring reactions for RiPPs [4]. For a 
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comparison between a query gene cluster to a subject, all potential tailoring reactions are 
gathered for both query and subject (as described below). The corresponding core amino acid 
sequence for each BGC are then identified using the predictions by RiPP-PRISM. In cases 
where multiple precursor peptides are identified within a RiPP gene cluster, each is considered 
as a unique entity, and all tailoring reactions are generated independently. The query and 
subject are then scored in the same manner as described above for chemical distance.

Integration of known RiPP tailoring reactions within BARLEY
Genomically encoded tailoring reactions act upon a precursor peptide in a stepwise manner 
(using the products of prior reactions as substrate for subsequent reactions) and in an uncertain
manner (able to act upon multiple substrates) to generate a wide array of possible tailoring 
reactions, not all of which are truly detected in nature. To account for this, BARLEY incorporates
a unique algorithm to guarantee that all possible tailoring reactions are predicted for each RiPP. 
Each reaction is encoded into BARLEY with three main parameters: (i) a list of genes required 
to perform the reaction, (ii) a list of precursor chemical moieties and (iii) the resulting 
modification. Using the available precursors, all possible reactions are iteratively applied in a 
fixed order, until the number of possible modifications converges upon a maximum. Precursors 
for a tailoring reaction include both amino acids and other modifications as a result of tailoring 
reactions, and are not consumed during the execution of a reaction, thus allowing for all 
combinatorial possibilities.

An example is the formation of lanthionine linkages by LanB and LanC. A dehydration 
reaction can be encoded as (i) requiring LanB, (ii) requiring 1 of either serine or threonine and 
(iii) resulting in either dehydrated serine (Dha) or dehydrated threonine (Dhab). A lanthionine 
linkage reaction is then encoded as (i) requiring LanC, (ii) requiring 1 free cysteine and 1 of 
either Dha or Dhab and (iii) resulting in a lanthionine or methyl-lanthionine linkage. For a given 
gene cluster containing LanB and LanC, with a precursor peptide that contains Ser, Thr, and 
Cys, applying this algorithm results in a total of four modifications: Dha, Dhab, lanthionine and 
methyl-lanthionine. While not all of these may truly be present in the final product, this ensures 
that all possibilities of tailoring reactions are considered.

BARLEY structural novelty index
To assess the novelty of a genomically encoded RiPP, it is necessary to quantify its similarity to 
the complete set of previously isolated and characterized RiPPs, including both RiPPs with 
known clusters as well as those whose structures alone are known. As described above, both 
genomically and chemically encoded RiPPs can be deconstructed into their core amino acid 
sequence and tailoring reactions, and compared according to five scoring metrics (three 
describing core amino acid alignments, and two representing tailoring reactions match and 
mismatch from both query and subject perspectives). Without weighting, these five metrics are 
used as features to describe a comparison, which is subsequently trained using a random forest
regression model. 

The random forest is structured to input these five parameters, and output a continuous 
value ranging between –1 and +1, where –1 represents two unrelated products, 0 represents 
members of the same RiPP family, and +1 represents an exact match.

The dataset of 138 RiPP gene clusters, matched with 161 chemical scaffolds was used to 



train and validate the performance of this model. First, 75% of these gene clusters, and their 
corresponding chemical scaffolds, were split into a training set, while the remaining 25% was 
used to test performance. Within the training set, a 10-fold cross validation was employed to 
optimize hyperparameters within the random forest, including the number of trees (Fig. S15), 
the maximum number of randomly sampled features (Fig. S16), and the minimum leaf size (Fig. 
S17). Cross-validation indicated that the optimum number of trees was 400, the number of 
randomly sampled features was 5, and the minimum node size to be one. The relative 
importance of each feature, as assessed by the mean decrease in impurity, is visualized in Fig. 
S18.

Metabolomic mass spectral analysis
 To generate a profile of MS1 ions per strain, all detected MS1 ions above a baseline 

intensity of 1,000 from each experimental analysis across multiple media conditions were 
compared. Ions within 5 PPM and a 30 second retention time window were considered the 
same metabolite. Of these overlapping ions across media conditions, a single candidate ion was
chosen based on its relative intensity as a representative for subsequent analysis. All MS1 ions 
in this representative set were then compared to a dataset of 118 blank media extractions to 
remove any compounds not associated to bacterial metabolism using the same PPM and 
retention time tolerance described above. The remaining MS1 ions were then compared to all 
analytical experiments from 463 strains with associated genomic data. BARLEY was used to 
determine strains with identical encoded RiPPs, any MS1 ions from the candidate strain that 
were overlapped with non-RiPP carrying strains were eliminated using the same PPM and 
retention time tolerances described above. The remaining MS1 ions were analysed according to
our RiPP structure prediction and fragmentation module explained below.

RiPP structure prediction and peak matching
The structure prediction engine of RiPP-PRISM was extracted to create a separate 
computational interface accepting cleaved precursor peptide sequences and a list of their 
corresponding RiPP modification enzymes (without any limit on the length of tailoring reactions),
along with a list of structure prediction settings to help manage computational time. By default, 
in all experiments here and the DeepRiPP web platform, we set a maximum scaffold limit (per 
cleavage site) of 50, a maximum run time of 10 minutes with a maximum of 500 plans per 
reaction, and a maximum of 1000 combinatorial plans. With these settings, we were able to 
balance overall computational time, while still providing enough sampling time across the 
breadth of combinatorial possibilities. As described previously [8,9], a library of fragment 
masses were generated in silico from a randomly chosen set of 100 predicted scaffolds. The top
1,000 most frequently observed fragment masses were saved. At the end of this process, each 
RiPP is annotated with a library of predicted scaffolds at each potential cleavage site ± 5 AAs 
from NLPPrecursor’s predicted cleavage site, alongside their in silico fragmentation masses. 
While these settings were evaluated for accuracy and reasonable computational efficiency (Fig. 
S3), the platform itself is available to generate any arbitrarily large structure prediction library 
given appropriate computational time and infrastructure. 

All MS1 ions, after passing several filters described above, were then evaluated for their 
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similarity to each RiPP. For each MS1 ion, a true mass is calculated according to their charge, 
and their potential to exist as one of six adduct types ([M+H]+, [M+Na]+, [M+K]+, [M+2H]2+, 
[M+H+Na]2+, [M+3H]3+), subsetted according to peak charge. An MS1 match is considered when
any of these adduct adjusted masses match the predicted mass for a RiPP with a tolerance of 
20 PPM. For MS2 match scores, the top 1,000 most frequently observed fragment masses were
then compared to the MS2 spectra for each candidate peak using a 20 PPM tolerance, where a 
score was generated representing the fraction of MS2 ions that were matched to an in silico 
prediction.

DeepRiPP web application
The DeepRiPP web application is implemented as two major projects, representing the front-
end and back-end respectively. The front end application is written entirely in Javascript using 
the Vue.js framework and the Material Design system (as implemented in Vuetify). This front 
end application communicates via HTTP requests to the back-end server to manage logins, job 
submissions, tracking and visualizations. The HighCharts library is used specifically to visualize 
CLAMS results. The back-end of this application is built using Python 3.7 to provide three major 
functionalities: the integration of scientific applications presented in this work, a RESTful web 
server and finally a database and job management system. Specifically, each DeepRiPP 
module(NLPPrecursor, BARLEY and CLAMS) is integrated in a modular manner so that jobs 
can interact with these either individually or in the context of a combined genomic and 
metabolomic analysis (the entire DeepRiPP workflow). NLPPrecursor is installed as a Python 
package (publicly available, along with all data used to train the model, from https://github.com/
magarveylab/nlpprecursor) and directly accessed within the Python environment. However, 
BARLEY (Java v8) and CLAMS (R v3.6.0: publicly available at 
https://github.com/magarveylab/clams-release) are installed globally on the webserver and 
accessed via Python’s subprocess module. The backend uses SQLAlchemy, Flask and Redis 
not only to maintain a registration and login system, but also to manage job submission and 
leverage a multitude of workers available asynchronously. All passwords are hashed using 
sha256 with a salt length of eight and stored within an SQLite database (Fig. S19). Support for 
the entire DeepRiPP web application is provided at 
https://github.com/magarveylab/NLPPrecursor/issues. A collection of screenshots are provided 
here guiding users through sample data (Figs. S20-32) with all data corresponding to these 
samples provided in the homepage of NLPPrecursor for users to explore within the context of 
the web application.

Comparisons to existing software
The genomic modules of BARLEY were compared to the structure prediction engine of RiPP-
PRISM [4] and the cluster comparison software BiG-SCAPE [10]. The goal of genomic 
comparisons is to provide a proxy for chemical similarity, and in this case, we compare the 
genomic scores generated by BARLEY, the similarity of predicted chemistry from RiPP-PRISM 
and BiG-SCAPE BGC similarity scores to the chemical distances produced by BARLEY for the 
set of known biosynthetic clusters in Dataset S1. Specifically, Spearman’s rank correlation 
coefficient is used to evaluate the rank-wise similarity between genomic and chemical distance 
measurements (Fig. S9B). To evaluate whether BARLEY (genomic) correlation coefficients 
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were significantly higher than RiPP-PRISM and BiG-SCAPE and further test whether this 
difference could have appeared spuriously due to random chance within the dataset, we tested 
the null hypothesis that the correlation coefficients are identical using the Fisher z 
transformation (Fig S9C) [11,12]:

z=F (ρ )=arctanh ( ρ )=
1
2
ln( 1+ρ1− ρ )

 The standard deviation can be calculated for Spearman’s ρ as follows [13]: 

SD ( ρ1− ρ2 )=√ 2
N −3

where N represents the sample size. With this, using the normal distribution, we can perform a 
one tailed test using this formula:

P (ρ1>ρ2 )=1−CDF NORM (μ=|(F ( ρ1 )− F (ρ2 ) )|, σ=SD (ρ1− ρ2 ))

General Experimental Procedures
For analytical separation and to record high resolution LC-MS/MS spectra, a SciEX 5600+ 
TripleTOF mass spectrometer (ABSciEX) with an electrospray ionization (ESI) source was 
used. The system operates using CID with helium for fragmentation, coupled with an Agilent 
1100 series HPLC system using an luna C18 column (150 mm × 2.1 mm, Phenomenex). For 
preparative separation we used Dionex UltiMate 3000 HPLC system, coupled with a Luna C18 
column (250 mm × 15 mm, Phenomenex). For both analytical and preparative separation, the 
mobile phase consists of gradient mixture of double distilled H2O with 0.1% formic acid and 
acetonitrile. 0.1% formic acid was used as buffer for both solvents.

To record nuclear magnetic resonance (NMR) spectra of deepstreptin we used Bruker 
AVIII 700 MHz. deepstreptin was dissolved in methanol-d3 (Sigma-Aldrich). Recorded spectra 
included, 1D (1H and DEPTq), 2D (1H-1H) COSY, TOCSY, ROESY, and NOESY, and 2D (1H-
13C) HSQC, and HMBC.

Microbial Strains and Culturing
To generate the microbial extract database, 463 microbes have been cultured on 26 different 
media. The majority of the fermentations have been conducted in shaking liquid cultures grown 
for a period of 2-5 days until reaching the optimum OD600. Detailed media and extraction 
conditions for each strain are shown in Dataset S7. 

Streptomyces sp. BTA 0171 was maintained on ISP3 agar, or KE or GGYM broth with 
shaking at 200 RPM, at 28 °C. ISP3 medium consists of 4 g/L yeast extract, 10 g/L malt extract, 
4 g/L dextrose, and 15 g/L agar. KE medium consists of 1 g/L glucose, 10 g/L potato dextrin, 5 
g/L NZ-amine, 5 g/L yeast extract, 3 g/L beef extract, 0.5 g/L CaCO3, 0.05 g/L MgSO4.7H2O, 2 
mL/L filter-sterilized phosphate buffer, added after autoclaving (consists of 91 g/L potassium 
phosphate monobasic and 95 g/L potassium phosphate dibasic at pH 7). GGYM medium 
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consists of 4 g/L glucose, 4 g/L yeast extract, 10 g/L malt extract, and 5 g/L glycine. 
Flavobacterium ginsengiterrae JCM 17337 was obtained from the Japan Collection of 
Microorganisms and maintained on nutrient agar or Caitones –Yeast (CY) broth. CY medium 
consists of 5 g/L casitones and 1 g/L yeast extract. For antimicrobial assay, P. aeruginosa 
PAO1, S. aureus Newman, and C. albicans ATCC 90028 were maintained and cultured on 
cation-adjusted Mueller Hinton, CAMH (4 g/L, DifcoTM, USA), tryptic soy broth, TSB (24 g/L, 
DifcoTM, USA), and potato dextrose broth, PDB (30g/L, Sigma-Aldrich, USA), respectively.

Production and purification of deepstreptin
Streptomyces sp. BTA 0171 was cultured in small 250 mL Erlenmeyer flasks to produce seed 
culture. A 48 h single colony of strain BTA 0171 grown on ISP3 agar was used to inoculate 50 
ml GGYM medium. The seed cultures were incubated for 48 h at 28 °C with continuous shaking 
at 200 rpm. Thereafter, 10 ml of the seed cultures were aseptically transferred to 2.8-L 
Fernbach flask containing one liter KE broth and incubated for 5 days at 28 °C with continuous 
shaking at 200 RPM. A total of 18 liters KE media was used for large scale production of 
deepstreptin. Cells were harvested by centrifugation at 4000 rpm for 20 min at 4 °C then pellets 
were extracted with one liter of methanol for 4 h. Simultaneously, a resin mixture of 1:1 HP20 
and XAD7 were added to the supernatant at ratio of 3:100 W/V, shacked at 100 RPM for 3 h at 
room temperature, filtered under vacuum, washed with water. The resin was then extracted 
three times with methanol (1:4 W/V) followed by a final wash in acetone (1:4 W/V). The 
methanol extract from the mycelial pellets and resin was combined and dried under vacuum 
using a rotary evaporator followed by nitrogen air for complete drying to yield 10 g of crude 
extract. The dried extract was then suspended in water and subjected to liquid-liquid partition 
between 1:1 n-butanol and water. The n-butanol fraction was dried under vacuum using rotary 
evaporator then nitrogen gas to yield 600 mg dry residue. The residue was suspended in 2 ml 
methanol and applied on the top of size exclusion column (Sephadex LH20, 1.6 × 80 cm), 
methanol was used as the mobile phase with flow rate of 1  ml/min. Fractions containing 
deepstreptin were pooled and dried under nitrogen to yield 120 mg dry mass which was 
dissolved in 5 ml methanol and subjected to a semi-preparative reversed-phase HPLC with a 
luna 5 μm C18 column (Phenomenex, 250 mm × 15 mm) using water and acetonitrile with 0.1%m C18 column (Phenomenex, 250 mm × 15 mm) using water and acetonitrile with 0.1%
formic acid as mobile phase employing a linear gradient of 5% to 80% acetonitrile over 30 min 
followed by a wash of 100% acetonitrile for 10 min. Fractions were collected at 5 sec interval 
with deepstreptin being eluted at 18 min. HPLC fractions contain deepstreptin were pooled and 
dried under nitrogen line to yield 10 mg of pure compound which is then dissolved in methanol-
d3 and subjected to NMR analysis. Detailed NMR spectra and assignment of chemical shifts are
detailed in Figs. S33-39.

Production and purification of deepflavo and deepginsen
Flavobacterium ginsengiterrae JCM 17337 was allowed to grow in 250 mL Erlenmeyer flasks to 
produce seed culture.  A 48 h single colony of strain JCM 17337 grown on nutrient agar was 
used to inoculate 50 ml nutrient medium. The seed cultures were incubated for 48 h at 28 °C 
with continuous shaking at 200 rpm. Thereafter, 10 ml of the seed cultures were aseptically 
transferred to 2.8-L Fernbach flask containing one liter CY broth and incubated for 5 days at 28 



°C with continuous shaking at 200 RPM. A total of 18 liters CY media was used for large scale 
production of deepflavo and deepginsen. A resin mixture of 1:1 HP20 and XAD7 were added to 
the fermented broth at ratio of 3:100 W/V, shacked at 100 RPM for 3 h at room temperature, 
filtered under vacuum, washed with water. The resin was then extracted three times with 
methanol (1:4 W/V) followed by a final wash in acetone (1:4 W/V). The mixture of methanol and 
acetone was dried under vacuum to yield 7.9 g of crude extract, which was dissolved in water 
(500 mL) and partitioned with EtOAc (3 × 500 mL) to yield an EtOAc fraction of 4.2 g. The 
EtOAc fraction (4.2 g) was then subjected to a flash column chromatography (Teledyne) with a 
30 g SNAP Ultra C18 column (Biotage) using water and acetonitrile as mobile phase at 35 
ml/min employing a linear gradient of 10% to 100 % acetonitrile over 18 mins followed by 5 mins
of 100% acetonitrile wash. Fractions containing deepflavo and deepginsen were pooled to result
a dry mass of 230 and 160 mg, respectively. Deepflavo containing fraction (230 mg) was then 
subjected to a semi-preparative reverse phase HPLC with a Luna 5 μm C18 column (Phenomenex, 250 mm × 15 mm) using water and acetonitrile with 0.1%m C18 column 
(Phenomenex, 250 mm × 10 mm) using water and acetonitrile with 0.1% formic acid as mobile 
phase employing a linear gradient of 20% to 45% acetonitrile over 12.5 min followed by 5 mins 
isocratic run with 45% acetonitrile then a wash of 100% acetonitrile for 10 min. deepflavo is 
eluted at 17.6 min. HPLC fractions contain deepflavo were pooled and dried under nitrogen to 
yield 1.4 mg of pure compound. Deepginsen containing fraction (160 mg) was subjected to 
reverse phase HPLC using water and acetonitrile with 0.1% formic acid as mobile phase 
employing a linear gradient of 40% to 60% acetonitrile over 17.5 min followed a wash of 100% 
acetonitrile for 10 min. Deepginsen was eluted at 19.9 min with a total of 2.1 mg. Both deepflavo
and deepginsen were then dissolved in DMSO-d6 and subjected to NMR analysis. Detailed 
NMR spectra and assignment of chemical shifts for deepflavo and deepginsen are detailed in 
Figs. S41-55.



Supplementary figures

Fig. S1: Limitation of precursor peptide detection across RiPP classes as identified by 
RiPP-PRISM. Stacked bar chart showing the total number of RiPP biosynthetic gene 
clusters stratified according to the detection methods of their precursor peptides. 
Precursor peptides identified by homology (shown in blue) have predicted leader 
cleavage according to RiPP-PRISM’s library of motifs, and can be subsequently used for
structure prediction and novelty assessment by BARLEY. Peptides identified by heuristic
rules (shown in orange) are typically not cleaved by RiPP-PRISM, and are subsequently 
not used for downstream structure prediction or novelty assessment. Rarely, some RiPP 
biosynthetic gene clusters were not found with any predicted precursor peptide ORFs 
(shown in green).



Fig. S2: ORF size is a confounding variable in predicting RiPP precursor peptides. (A) 
Density plot comparing the lengths of ORFs, in amino acids, encoding RiPPs or 
randomly sampled ORFs from complete bacterial genomes. (B) Confusion matrix 
depicting predictive accuracy of discriminating RiPP precursor peptides solely by ORF 
sizes, using a minimum and maximum size of 20 and 200 amino acids, respectively. A 
dataset consisting of 3,013 predicted RiPP ORF sequences and 1,000 randomly 
sampled ORF sequences from non-RiPP-producing bacterial genomes was used to 
model the predictive power of ORF length.



Fig. S3: Structure prediction complexity and accuracy across RiPP families. (A) Using our 
dataset of known clusters (Dataset S1), we perform structure prediction with an unlimited
number of possible predicted structures as output in order to quantify the average 
number of predicted structures per RiPP family. (B) Using the same dataset, the RiPP 
structure prediction engine was evaluated based on the proportion of biosynthetic gene 
clusters for which at least one structure from the predicted library matches either the 
exact chemical structure of the known product (pink) or its exact mass (blue).



Fig. S4: RiPP-PRISM and NLPPrecursor cleavage prediction accuracy. Boxes represent the
interquartile range (IQR) while whiskers represent 1.5 times the IQR.



Fig. S5: Comparing NLPPrecursor to RODEO for identifying lasso precursor peptides. (A)
Receiver operating characteristic curve of NLPPrecursor’s prediction probabilities, 
trained on the DeepRiPP training set (NLPPrecursor) or the dereplicated, lasso peptide-
specific training set provided with RODEO (NLPPrecursor-lasso), and RODEO linear 
combination scores. (B) Classification metrics of RODEO and DeepRiPP (AUC = Area 
under receiver operating characteristic curve, PPV = Positive predictive value).





Fig. S6: Comparing RiPPMiner and NLPPrecursor. (A) Confusion matrix and summary 
statistics comparing NLPPrecursor and RiPPMiner according to their ability to identify 
RiPP precursor peptides. (B) Confusion matrix comparing NLPPrecursor and RiPPMiner
according to their ability to discriminate between RiPP precursor peptide classes (n = 
500, RiPPMiner, and n = 769, NLPPrecursor). (C) Comparison of cleavage prediction 
accuracy between NLPPrecursor and RiPPMiner (MAD, mean absolute deviance).



Fig. S7: Comparison of methods for assigning chemical similarity to pairs of RiPPs. (A) 
Line chart describing the relationship between increasing chemical divergence (number 
of monomer substitutions) in an artificially combinatorialized [14] dataset of 600 
compounds to chemical similarity scores. BARLEY is highlighted in black, while other 
metrics are coloured as shown and compared via the Spearman rank correlation 
coefficient listed here for BARLEY as 0.92 and topological torsion as 0.78, the top 
scoring metric apart from BARLEY. (ap: atom pair [15], ecfp-n: extended connectivity 
fingerprint of radius n/2 [16], fcfp-n: functional connectivity fingerprint of radius n/2 [16], 
maccs: Molecular ACCess System structural keys [17], rdk-n: daylight-like fingerprints 
with path length n[18], tt: topological torsion [19]) (B) Receiver operating characteristic 
curve comparing BARLEY to the Tanimoto coefficient between ECFP6 fingerprints [16] 
in classifying chemical scaffold pairs belonging to the same or divergent RiPP families. 
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The area under the curve (AUC) is used here as a measure of accuracy.



Fig. S8: Grouping of known RiPP chemical scaffolds according to diversity scores
assigned by BARLEY.  Dendrogram generated through hierarchical clustering using the
Ward linkage method on a distance matrix comprising all pairwise scores generated by 
BARLEY between 638 unique known RiPP scaffolds.





Fig. S9: Evaluating genomic similarities of RiPP genes as predicted by BARLEY. 
(A) Receiver operating characteristic curve comparing BARLEY and BiG-SCAPE 
distance metrics on the task of differentiating RiPPs according to family. Shown in 
thicker lines are results computed across all gene clusters from Dataset S3, while thinner
lines represent only gene cluster comparisons successfully scored by BiG-SCAPE (28% 
of total data). The area under the curve (AUC) is used here as a measure of accuracy. 
(B) Scatter plots showing the relationship between BARLEY chemical distances and 
genomic distances calculated by BARLEY, BIG-SCAPE, and RiPP-PRISM, respectively. 
The comparison was performed on a dataset of 136 known RiPP clusters which encode 
161 small molecules. These genomic distance metrics were compared according to the 
Spearman correlation coefficient, whose value is shown for each genomic distance, 
where a greater value represents a more consistent rank correlation. (C) Schematic 
depiction for the Fisher z transformation used to compare correlation coefficients and 
test for statistical significance [11,12].
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Fig. S10: Accuracy of BARLEY novelty index. 

Fig. S10: Accuracy of BARLEY novelty index. (A) Validation of the BARLEY novelty index 
within a test dataset. A violin plot is shown with BARLEY novelty index (y-axis) and the 
relationship type (exact match, family match, or out of family) between encoded RiPP 
and chemical scaffold (x-axis). Using a cutoff of 0.2 in the BARLEY novelty index, there 
is a 99.7% accuracy in classifying exact matches from other comparison types. (B) Pairs
of RiPP chemical scaffolds and clusters are randomly assigned and labelled according 
to whether they originate from the same biosynthetic family. Among these pairs, the 
BARLEY novelty index generated alongside the chemical similarity scores of RiPP-
PRISM structure predictions (tanimoto coefficient between ECFP6 fingerprints) and the 
paired RiPP chemical scaffold, considering both the median and maximum of RiPP-
PRISM’s library of structure predictions. Using these scores, RiPP-PRISM’s structure 
prediction was compared to the BARLEY novelty index using receiver operating 
characteristic curves, with their area denoted in the legend.



Fig. S11: Chemical diversity and novelty of all RiPPs detected by RiPP-PRISM and 
NLPPrecursor as measured via BARLEY. Expansion of visualization presented in Fig. 
3 across all RiPP families detected by NLPPrecursor.



Fig. S12: Workflow for unknown RiPP discovery from paired genomic and untargeted 
metabolomics data using CLAMS. (A) RiPP-PRISM is used to identify putative RiPP 
biosynthetic gene clusters and predict the chemical structures of their products, while 
GRAPE is used to perform retrobiosynthesis of a large library of known RiPP structures, 
stored in SMILES format. BARLEY performs local alignment between genomic (RiPP-
PRISM) and chemical (GRAPE) information, incorporating both the core peptide 
sequence and any tailoring reactions that decorate the peptide (GRAPE) or whose 
catalytic enzymes are found within the candidate RiPP biosynthetic gene cluster (RiPP-
PRISM). (B) BARLEY can subsequently be used to identify all prokaryotic genomes that 
encode a biosynthetic gene cluster for a specific putative RiPP of interest, as well as the 
numerous strains that naturally lack the capacity to produce that product. CLAMS 
enables the identification of metabolites present uniquely in strains carrying the specific 
encoded RiPP from untargeted metabolomics data. Candidate peaks are selected by 
matching the exact mass of the structures predicted by RiPP-PRISM, or by in silico 
fragmentation of these predicted chemical structures and retention of tandem mass 
spectra with significant overlaps.



Fig. S13: Alignments of deepstreptin, deepflavo, and deepginsen to best matching 
RiPPs, as determined by BARLEY. Each alignment represents a query genomically 
encoded RiPP to a subject known chemical scaffold stored in SMILES format and 



subject to retrobiosynthesis by GRAPE. Matched residues are shown in red, while 
unmatched residues are depicted in grey. Amino acids are represented by their three-
letter codes where possible, but in cases where definitive retrobiosynthesis is not 
possible, a combination is depicted (e.g. SerCys for amino acids linked by lanthionine 
linkages). 





Fig. S14: Monitoring NLPPrecursor validation loss across training iterations. 
NLPPrecursor consists of two modules, a classification (A-B) and annotation (C) module.
The classification module is trained in two stages where first (A) an unsupervised 
language model is trained to predict the next AA given a leading portion of the RiPP 
precursor peptide. In the next stage (B), the same language model is trained in a 
supervised fashion to predict the family of a given ORF using gradual unfreezing where 
the first (1), second (2), third (3) and all layers are unfrozen after training at each stage 
for 50 epochs. In both stages, the binary cross entropy (BCE) loss is tracked within the 
training and validation datasets, while the accuracy is tracked in the validation dataset. 
(C) The cleavage module of NLPPrecursor is trained over the course of 50 epochs, 
where negative log likelihood (NLL) loss is tracked within the training and validation 
datasets while the accuracy is tracked in the validation dataset.

Fig. S15: Hyperparameter optimization of random forest for BARLEY novelty index: 
number of trees. Random forests are ensemble methods which use many less accurate



estimators to generate a final decision. Through iterating through the number of base 
estimators, it was found that median error reaches an approximate minimum around 400
trees.

Fig. S16: Hyperparameter optimization of random forest for BARLEY novelty index: 
number of randomly sampled features. In a random forest, each decision tree can be 
randomly assigned a set of features to predict upon, a method known as feature 
bagging. Of a total of five features, this model performed optimally when each decision 
tree was able to access all five features.



Fig. S17: Hyperparameter optimization of random forest for BARLEY novelty index: 
minimum node size. Minimum node size represents the minimum size of the terminal 
node in a regression tree where smaller sizes develop deeper and more complex trees. 
The most accurate models were built with a minimum node size of 1.



Fig. S18: Relative feature importance for BARLEY genome to chemical comparisons. 
Features based on tailoring reactions are coloured in red while core peptide alignment 
features are coloured in blue. Relative importance is calculated according to mean 
decrease in impurity as implemented in scikit-learn (v3.2.4)[20] such that the sum of 
feature importance values is equal to one.

https://paperpile.com/c/FdhrDS/LzmvJ


Fig. S19: Entity relationship diagram of DeepRiPP SQLite database backend used to 
manage user registration, login and job management. Each table is represented by 
its name, and column names (with data types shown in parentheses). Relationships 
between tables are shown as dotted lines annotated according to their one to many 
(0..N), and one to zero or one (0, 1). This database schema was generated through 
SQLAlchemy (v2.4) with migrations managed via alembic (v1.0.10).



Fig. S20: DeepRiPP Homepage depicting various job tasks, instruction manual and 
example datasets.

Fig. S21: Submitting a protein sequence for NLPPrecursor analysis.



Fig. S22: NLPPrecursor results and analysis.

Fig. S23: Submitting a cleaved ORF sequence, and accompanying tailoring enzymes, for 
BARLEY analysis.



.

Fig. S24: BARLEY results and analysis.

Fig. S25: Visualization of a BARLEY alignment. 



Fig. S26: Submitting a metabolomic dataset for CLAMS analysis.



Fig. S27: CLAMS visualization without accompanying genomic data.



Fig. S28: Overview of DeepRiPP results page.



Fig. S29: Metabolomic view of DeepRiPP results for paired genomic and metabolomic 
data from Streptomyces sp. BTA0171, highlighting peaks to isolate corresponding
to deepstreptin. 



Fig. S30: DeepRiPP identifies cyclothiazomycin A within the genome and metabolome of 
Streptomyces mobaraensis DSM 40847.



Fig. S31: DeepRiPP identifies cyclothiazomycin B within the genome and metabolome of 
Streptomyces corchorusii DSM 40340 and its corresponding extract.



Fig. S32: DeepRiPP identifies thiostrepton within the genome and metabolome of 
Streptomyces sp. BTA-0473. 



Fig. S33: Structure of deepstreptin with assigned chemical shifts. Proton chemical shifts 
are shown in red while carbon chemical shifts are shown in blue.



Fig. S34: 1H-NMR spectrum of deepstreptin in methanol-d3.



Fig. S35: 1H-NMR (water suppression) spectrum of deepstreptin in methanol-d3



Fig. S36: DEPTq spectrum of deepstreptin in methanol-d3.



Fig. S35: 1H-1H COSY spectrum of deepstreptin in methanol-d3.



Fig. S36: 1H-13C HMBC spectrum of deepstreptin in methanol-d3.



Fig. S37: 1H-1H TOCSY spectrum of deepstreptin in methanol-d3.



Fig. S38: 1H-1H ROESY spectrum of deepstreptin in methanol-d3.



Fig. S39: 1H-1H NOESY spectrum of deepstreptin in methanol-d3.



Fig. S40: Structure of deepflavo with assigned chemical shifts. Proton chemical shifts are 
shown in red while carbon chemical shifts are shown in blue.



Fig. S41: 1H-NMR spectrum of deepflavo in DMSO-d6.



Fig. S42: 13C-NMR spectrum of deepflavo in DMSO-d6.



Fig. S43: 1H COSY spectrum of deepflavo in DMSO-d6.



Fig. S44: 1H-13C HSQC spectrum of deepflavo in DMSO-d6.



Fig. S45: 1H-1H NOESY spectrum of deepflavo in DMSO-d6.



Fig. S46: 1H-13C HMBC spectrum of deepflavo in DMSO-d6.



Fig. S47: 1H-1H TOCSY spectrum of deepflavo in DMSO-d6.



Fig. S48: Structure of deepginsen with assigned chemical shifts. Proton chemical shifts are
shown in red while carbon chemical shifts are shown in blue.



Fig. S49: 1H-NMR spectrum of deepginsen in DMSO-d6.



Fig S50: 13C-NMR spectrum of deepginsen in DMSO-d6.



Fig. S51: 1H-1H COSY spectrum of deepginsen in DMSO-d6.



Fig. S52: 1H-13C HSQC spectrum of deepginsen in DMSO-d6.



Fig. S53: 1H-1H NOESY spectrum of deepginsen in DMSO-d6.



Fig. S54: 1H-13C HMBC spectrum of deepginsen in DMSO-d6.



Fig. S55: 1H-1H TOCSY spectrum of deepginsen in DMSO-d6.
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