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Behaviour of Scoring Metrics

(a) The mean score for each candidate mutation cluster assignment score (SC2) metric considered with an increasing

proportion of mutations assigned to wrong useful clusters with bars indicating standard error (n=24). (b) The mean score

and standard error for each candidate SC2 metric considered with an increasing proportion of mutations in noise clusters

(n=3). (c) The mean score and standard error for each candidate SC2 metric considered as the number of predicted

clusters increases (n=27). The true number of clusters (four) is marked by the vertical line. Excess clusters retain correct

co-clustering and are subsets of the true clusters. (d) For each potential SC2 scoring metric, the proportion of simulation

runs that satisfied each of the four desirable metric properties for a given simulation parameter setting (n=2 x 105 , 8 x 105,

2.8 x 106, 4.3 x 106 for P1-P4, respectively). Each property is tested by fixing all but one of the simulation parameters and

then looking at the effect of changing the fourth parameter on the metric score.
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Supplementary Figure 2

Simulating BAMs with subclonal structure

(a) Example of the PhaseTools algorithm constructing an extended phase set from four heterozygous sites by leveraging

NGS and parent phasing. ngs_phasing of 5 heterozygous sites in the child and the corresponding NGS-phased sites in the

mother and father, shown with informative NGS fragments. Heterozygote variants boxed together represent phase sets.

There is not enough information to construct a single phase set. (b) parent_base phasing uses parental genotypes to

assign parent of origin to the 5 hets in the child. Hets 2 and 5 remain unresolved while heterozygotes 1, 3, and 4 show at

least one unambiguous parent of origin. (c) parent_ngs phasing extends parent_base phasing with parental NGS

(continued)



fragments from ngs_phasing. The linked NGS fragment in sites 2 and 3 (T, T) of the maternal genotype is not informative

as site 3 is homozygous, however the linked NGS fragment in sites 2 and 3 (T and A) of the paternal genotype is

heterozygous and therefore informative. The phasing proposed by ngs_father of sites 3 and 4 (GG/AC) contradicts parent

of origin information in hets 3 and 4 (A and G). This event is recognised as a pre-meiosis recombination event in the child

and the ngs_father phasing is ignored.(d) ngs+parent_ngs phasing extends ngs_child phasing with parent_ngs, giving

priority to ngs_child phasing. NGS fragments such as hets 2 and 3 (T and T) take precedent over any phasing assigned by

parent_ngs phasing see hets 2 and 3 (C and T) and indicate probable recombination events (shown with diagonal lines).

Two possible sets of recombination events are shown. The proximity between phased heterozygotes determines which

recombination events are most probable. Here, the recombination events shown on the right are selected, as

recombination between sites 1 and 2 is more likely than recombination between sites 3 and 4, as sites 1 and 2 are further

apart. The final phase sets are shown. (e) Schematic of phase-set reconstruction. Priority is given to procedures on the

left. (f) Genome-wide logR and BAF tracks from a simulated BAM using the original “naive” BAMSurgeon. (g) Same as (a)

with the new proposed BAMSurgeon pipeline and additional whole-chromosomal events. (h) Comparison of expected and

observed VAFs for SNVs on chromosome 17 of a tumour simulated with the “naive” BAMSurgeon (top panel) and the new

pipeline (bottom panel) with Pearson correlations (n=317). As naive BAMSurgeon does not simulate allele-specific gains

and losses, copy number alterations in one allele do not produce the expected allele-frequency changes for each phase.

Tumour structure showing a clonal deletion and duplication on the chromosome is specified in the top right panel.

Allele-specific copy number events for phase B (phase A has no copy number alterations) and the subclone where they

occur are shown in the top heatmap. Expected VAFs were calculated by summing CNA-adjusted CCF of the subclones

were the SNV was present, adjusting for the frequency of the SNV in those subclones and standardizing by the total

CNA-adjusted depth in that region. (i) Independent component analysis of the intra-tumour heterogeneity metrics

presented in Sun et al. on n=1,366 3D simulated training tumours (Sun et al. simulator) and 5x3-region BAMs derived from

5 3D test tumours with SNVs simulated with increasing selection s (Sun et al. simulator) using BAMSurgeon. The 5

regions were classified correctly using an SVM predictor (Supplementary Note 2).
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Supplementary Figure 3

Real and Simulated Subclonal Structures

True subclonal structures of the simulated tumours (T2, T3, T4, T5 and T6) that were simulated with their desired and

observed variant allele frequency histograms and logR profiles. In each panel, we show the phylogenetic tree, inspired by

published reconstructed tumours, and the mutations associated with each (sub)clone. The top figures compared expected

cancer cell fractions of the SNVs under a diploid setting, against the inferred cancer cell fractions from the simulated data.

T5, for which the inferred purity is over-estimated due to the limitations of the copy number detection algorithm to identify

subclonal whole genome duplication, shows an observed space that departs from the expected. The bottom figures

compare the observed and expected BAF and logR of the genomic segments identified by the copy number detection

algorithm.
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Supplementary Figure 4

Subclonal Reconstruction Scores

Subclonal reconstruction scores based on the five tumours with each somatic SNV detection algorithm-depth-algorithm

combination and down-sampled CNAs (n=290). All scores are normalised to the score of the best performing algorithm

using perfect calls at the full tumour depth. Scores exceeding this baseline likely represent noise or overfitting and were

capped at 1. (a) Scores for 1A are uniformly high. (b) Scores for SC1B improve with depth and but not continuous as the

metric reflects a true proportion. (c) Clonal fraction is low below 32X but rapidly increases at higher depths, with some

inter-tumour variability. (d,f) Scores for SC2B (d) and SC3B (f) closely mirror those of SC2A and SC3A (e), respectively.
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Covariates of Scoring Accuracy

SC2A score increases with effective depth for all tumours but the effect of the somatic SNV detection algorithm depends on

the tumour. (a) T2 (b) T3 (c) T4 (d) T5 (e) T6 (f) real PD4120. (g) A summary of the differences between DPClust and

PhyloWGS. PhyloWGS incorporates CNAs and phylogenetic structure into the generative model sampled through Markov

chain Monte-Carlo (MCMC). (h-l) Comparison of subclonal reconstruction scores for each sub-challenge using PhyloWGS

(x-axis) and DPClust (y-axis). Somatic SNV detection algorithms are coded by colour and tumours are coded by symbol.

P-values and effect size for a t-test between algorithms on score are shown (n=580 for each sub-challenge).
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Supplementary Figure 6

Supplementary Figure 6

Effects of Noise in CNA Detection on Reconstruction Accuracy

Effect of proportion of CNAs scrambled on a representative tumour (T2) at 128x sequencing coverage. (a) Allele specific

copy number profiles as increasing proportions of CNAs are randomly assigned to a wrong copy number state. (b) Effect of

increasing the proportion of wrongly assigned CNAs on SC2a scores at 128x for different somatic SNV detection

algorithms and SRC algorithms. (c) Deriving an imperfect “truth” from real data and scoring runs against it. We took data

from 538 donors from the PCAWG study41 and executed DPClust on different sets of SNVs: a consensus set of SNVs was

used as “truth” and three individual somatic SNV detection pipelines (MuTect, DKFZ and Sanger on mutations in a

(C>T)pG context). We also executed PhyloWGS on the consensus sets. We then scored SC1C for each run against the

“truth”. (d) We took data from 10 donors from the PCAWG study with at least 5 tumour regions or metastases sequenced

and ran DPClust in 5 dimensions to derive a “truth” from it. We scored each one-dimensional DPClust run on individual

region against the “truth” derived from the multi-dimensional run for SC1C and SC2A and compared them against scores

obtained from randomised 1C and 2A inputs (Online Methods). Upper and lower box limits show the 25th and 75th quartile,

respectively and the line indicates the median. Whiskers extend to 1.5 x the length of the box.



Supplementary Table 2: Genaralized linear models for each subchallenge.

β
Estimate

1A

Std.
Error
1A

P-value
1A

Estimate
1B

Std.
Error
1B

P-value
1B

Estimate
1C

Std.
Error
1C

P-value
1C

Estimate
2A

Std.
Error
2A

P-value
2A

Estimate
2B

Std.
Error
2B

P-value
2B

Estimate
3A

Std.
Error
3A

P-value
3A

Estimate
3B

Std.
Error
3B

P-value
3B

Intercept 4.42 0.15 1.30 × 10−196 1.76 0.13 3.73 × 10−39 1.23 0.05 3.77 × 10−133 0.46 0.08 6.91 × 10−9 0.34 0.07 5.54 × 10−6 1.30 0.08 1.18 × 10−61 1.37 0.08 6.39 × 10−71

Effective Depth 0.25 0.04 3.78 × 10−10 0.34 0.09 1.14 × 10−4 0.25 0.01 6.08 × 10−147 0.56 0.02 4.72 × 10−254 0.58 0.02 1.78 × 10−294 0.31 0.01 1.52 × 10−98 0.31 0.01 2.43 × 10−118

T3 -0.16 0.13 2.14 × 10−1 -0.26 0.13 3.97 × 10−2 -0.02 0.07 8.23 × 10−1 -0.11 0.11 2.90 × 10−1 -0.14 0.10 1.60 × 10−1 -0.00 0.11 9.94 × 10−1 -0.06 0.11 5.50 × 10−1

T4 -0.04 0.13 7.66 × 10−1 -0.42 0.13 9.45 × 10−4 -0.22 0.07 1.45 × 10−3 -0.00 0.11 9.81 × 10−1 0.02 0.10 8.45 × 10−1 0.09 0.11 4.27 × 10−1 -0.02 0.11 8.76 × 10−1

T5 -0.44 0.13 5.15 × 10−4 -0.62 0.12 1.34 × 10−7 -0.01 0.07 9.09 × 10−1 0.37 0.11 6.53 × 10−4 0.45 0.10 1.80 × 10−5 0.41 0.12 6.35 × 10−4 0.34 0.12 3.65 × 10−3

T6 -0.72 0.12 5.26 × 10−9 -0.37 0.13 3.69 × 10−3 0.07 0.07 2.98 × 10−1 0.48 0.11 1.36 × 10−5 0.63 0.11 1.89 × 10−9 0.50 0.12 4.55 × 10−5 0.41 0.12 5.79 × 10−4

PhyloWGS -0.42 0.08 1.47 × 10−7 -0.09 0.08 2.64 × 10−1 0.07 0.02 5.38 × 10−4 0.05 0.03 1.28 × 10−1 0.14 0.03 1.25 × 10−6

Downsampling -0.18 0.08 2.20 × 10−2 0.07 0.08 3.67 × 10−1 -0.02 0.02 3.03 × 10−1 0.00 0.03 9.97 × 10−1 -0.00 0.03 9.49 × 10−1 -0.01 0.03 8.25 × 10−1 -0.02 0.03 4.39 × 10−1

MuTect -0.10 0.13 4.28 × 10−1 -0.33 0.12 8.46 × 10−3 -0.23 0.07 5.87 × 10−4 -0.63 0.11 3.38 × 10−9 -0.66 0.10 4.87 × 10−11 -0.41 0.10 6.77 × 10−5 -0.48 0.10 1.35 × 10−6

SomaticSniper -0.11 0.13 4.03 × 10−1 -0.42 0.15 4.47 × 10−3 -0.22 0.07 1.14 × 10−3 -0.99 0.11 7.96 × 10−20 -1.02 0.10 3.34 × 10−23 -0.67 0.10 1.86 × 10−11 -0.74 0.10 1.78 × 10−14

Strelka -0.25 0.12 4.16 × 10−2 -0.59 0.12 3.52 × 10−7 -0.32 0.07 2.90 × 10−6 -1.02 0.11 5.60 × 10−21 -0.96 0.10 1.34 × 10−20 -0.67 0.10 2.34 × 10−11 -0.69 0.10 9.35 × 10−13

Mutationseq -0.13 0.13 2.86 × 10−1 -0.65 0.12 3.00 × 10−8 -0.30 0.07 1.08 × 10−5 -1.37 0.11 4.20 × 10−35 -1.30 0.11 3.38 × 10−35 -0.88 0.10 5.68 × 10−17 -0.85 0.10 7.52 × 10−19

MuTect:T3 -0.13 0.10 1.82 × 10−1 -0.05 0.15 7.62 × 10−1 -0.08 0.14 5.62 × 10−1 -0.13 0.14 3.58 × 10−1 -0.12 0.14 4.03 × 10−1

MuTect:T4 -0.18 0.10 6.09 × 10−2 -0.12 0.15 4.16 × 10−1 -0.09 0.14 5.20 × 10−1 -0.13 0.15 3.78 × 10−1 -0.13 0.14 3.56 × 10−1

MuTect:T5 -0.21 0.10 2.63 × 10−2 -0.23 0.15 1.37 × 10−1 -0.12 0.14 4.25 × 10−1 -0.20 0.16 2.06 × 10−1 -0.15 0.15 3.16 × 10−1

MuTect:T6 0.02 0.10 8.21 × 10−1 0.17 0.15 2.63 × 10−1 0.09 0.15 5.42 × 10−1 -0.33 0.16 3.61 × 10−2 -0.24 0.15 1.18 × 10−1

SomaticSniper:T3 -0.39 0.10 4.41 × 10−5 -0.18 0.15 2.45 × 10−1 -0.17 0.15 2.56 × 10−1 -0.15 0.14 2.88 × 10−1 -0.13 0.14 3.51 × 10−1

SomaticSniper:T4 -0.04 0.10 6.61 × 10−1 -0.06 0.15 6.84 × 10−1 0.03 0.15 8.62 × 10−1 -0.02 0.15 8.66 × 10−1 -0.03 0.14 8.56 × 10−1

SomaticSniper:T5 -0.55 0.10 8.03 × 10−9 -0.26 0.15 8.70 × 10−2 -0.32 0.15 2.82 × 10−2 -0.30 0.15 5.04 × 10−2 -0.28 0.15 5.47 × 10−2

SomaticSniper:T6 0.02 0.10 8.57 × 10−1 0.20 0.15 1.99 × 10−1 0.09 0.15 5.49 × 10−1 -0.35 0.15 2.13 × 10−2 -0.27 0.15 6.33 × 10−2

Strelka:T3 -0.10 0.10 2.85 × 10−1 -0.05 0.15 7.69 × 10−1 -0.07 0.15 6.10 × 10−1 -0.08 0.14 5.89 × 10−1 -0.09 0.14 5.27 × 10−1

Strelka:T4 -0.08 0.10 3.95 × 10−1 0.20 0.15 1.83 × 10−1 0.16 0.14 2.55 × 10−1 0.02 0.15 9.12 × 10−1 0.04 0.14 7.75 × 10−1

Strelka:T5 -0.37 0.10 8.92 × 10−5 -0.22 0.15 1.49 × 10−1 -0.30 0.15 3.72 × 10−2 -0.32 0.15 3.58 × 10−2 -0.31 0.15 3.21 × 10−2

Strelka:T6 -0.15 0.09 1.14 × 10−1 0.36 0.15 2.13 × 10−2 0.33 0.15 2.44 × 10−2 -0.28 0.15 6.91 × 10−2 -0.22 0.15 1.32 × 10−1

Mutationseq:T3 -0.18 0.10 5.60 × 10−2 -0.09 0.16 5.87 × 10−1 -0.07 0.15 6.17 × 10−1 -0.05 0.14 7.42 × 10−1 -0.09 0.14 5.15 × 10−1

Mutationseq:T4 -0.17 0.10 8.14 × 10−2 -0.09 0.16 5.53 × 10−1 -0.06 0.15 6.75 × 10−1 -0.01 0.15 9.32 × 10−1 -0.04 0.14 7.53 × 10−1

Mutationseq:T5 -0.44 0.10 4.01 × 10−6 -0.45 0.16 4.16 × 10−3 -0.47 0.15 1.58 × 10−3 -0.23 0.15 1.35 × 10−1 -0.28 0.14 5.10 × 10−2

Mutationseq:T6 0.03 0.09 7.72 × 10−1 -0.22 0.16 1.57 × 10−1 -0.50 0.15 8.18 × 10−4 -0.35 0.16 2.27 × 10−2 -0.35 0.15 1.52 × 10−2

phi 22.37 1.76 6.54 × 10−37 33.03 2.18 5.48 × 10−52 14.16 0.89 3.10 × 10−57 16.14 1.02 6.81 × 10−57 42.08 3.79 1.40 × 10−28 46.35 4.14 4.36 × 10−29

Log-likelihood 1506.53 941.02 500.33 542.26 386.54 398.21
Pseudo R-squared 0.35 0.68 0.83 0.85 0.81 0.83

β regressions were used for all subchallenges except 1B where a binomial regression was used. N=500 for subchallenges 1 and 2 and N=250 for subchallenge 3.



Supplementary Table 3: β regressions for subchallenges 1C and 2A for sensitivity (N=500).

β
Estimate

1C

Std.
Error
1C

P-value
1C

Estimate
2A

Std.
Error
2A

P-value
2A

Intercept 0.95 0.06 4.96 × 10−61 0.12 0.09 1.92 × 10−1

Effective Depth 0.09 0.02 2.73 × 10−6 0.37 0.03 2.69 × 10−32

T3 0.00 0.07 9.93 × 10−1 -0.09 0.10 3.80 × 10−1

T4 -0.12 0.07 7.12 × 10−2 0.09 0.10 3.96 × 10−1

T5 0.06 0.07 3.84 × 10−1 0.45 0.10 1.64 × 10−5

T6 0.04 0.07 5.76 × 10−1 0.48 0.10 4.35 × 10−6

PhyloWGS 0.07 0.02 4.74 × 10−5 0.05 0.03 1.13 × 10−1

Downsampling -0.02 0.02 3.09 × 10−1 -0.00 0.03 9.84 × 10−1

MuTect 0.02 0.07 8.29 × 10−1 -0.33 0.11 3.14 × 10−3

SomaticSniper 0.16 0.08 4.14 × 10−2 -0.54 0.12 1.25 × 10−5

Strelka -0.02 0.07 7.50 × 10−1 -0.70 0.12 1.55 × 10−9

Mutationseq 0.08 0.08 3.07 × 10−1 -0.92 0.12 1.17 × 10−13

Sensitivity 0.23 0.02 4.26 × 10−21 0.30 0.04 8.92 × 10−13

MuTect:T3 -0.12 0.09 1.90 × 10−1 -0.04 0.14 7.58 × 10−1

MuTect:T4 -0.24 0.09 8.05 × 10−3 -0.19 0.14 1.88 × 10−1

MuTect:T5 -0.19 0.09 4.14 × 10−2 -0.18 0.15 2.07 × 10−1

MuTect:T6 -0.07 0.09 4.73 × 10−1 0.03 0.15 8.21 × 10−1

SomaticSniper:T3 -0.35 0.09 1.15 × 10−4 -0.12 0.15 4.02 × 10−1

SomaticSniper:T4 -0.17 0.09 7.12 × 10−2 -0.17 0.15 2.52 × 10−1

SomaticSniper:T5 -0.51 0.09 2.56 × 10−8 -0.19 0.15 1.88 × 10−1

SomaticSniper:T6 -0.10 0.09 3.11 × 10−1 0.03 0.15 8.18 × 10−1

Strelka:T3 -0.08 0.09 3.67 × 10−1 -0.02 0.15 8.97 × 10−1

Strelka:T4 -0.20 0.09 3.24 × 10−2 0.13 0.15 3.86 × 10−1

Strelka:T5 -0.28 0.09 2.51 × 10−3 -0.07 0.15 6.46 × 10−1

Strelka:T6 -0.24 0.09 8.63 × 10−3 0.23 0.15 1.19 × 10−1

Mutationseq:T3 -0.15 0.09 9.84 × 10−2 -0.09 0.15 5.56 × 10−1

Mutationseq:T4 -0.19 0.09 3.95 × 10−2 -0.09 0.15 5.51 × 10−1

Mutationseq:T5 -0.38 0.09 3.85 × 10−5 -0.37 0.15 1.38 × 10−2

Mutationseq:T6 0.03 0.09 7.75 × 10−1 -0.25 0.15 9.97 × 10−2

phi 37.83 2.48 1.01 × 10−52 15.97 1.01 8.62 × 10−57

Log-likelihood 980.87 526.52
Pseudo R-squared 0.72 0.85



Supplementary Table 4: Genaralized linear models for each subchallenge with the real tumour BAM for PD4120.

β
Estimate

1A

Std.
Error
1A

P-value
1A

Estimate
1B

Std.
Error
1B

P-value
1B

Estimate
1C

Std.
Error
1C

P-value
1C

Estimate
2A

Std.
Error
2A

P-value
2A

Estimate
2B

Std.
Error
2B

P-value
2B

Estimate
3A

Std.
Error
3A

P-value
3A

Estimate
3B

Std.
Error
3B

P-value
3B

Intercept 1.97 0.09 7.31 × 10−118 0.79 0.16 7.04 × 10−7 0.87 0.05 1.60 × 10−60 0.12 0.09 1.74 × 10−1 0.44 0.10 1.65 × 10−5 1.04 0.02 0.00 × 100 1.03 0.02 0.00 × 100

Effective Depth 0.09 0.03 4.20 × 10−3 0.73 0.07 1.21 × 10−27 0.15 0.02 1.91 × 10−12 0.54 0.04 2.25 × 10−42 0.66 0.04 9.07 × 10−51 0.13 0.01 4.10 × 10−46 0.12 0.01 1.08 × 10−40

PhyloWGS -0.65 0.07 3.02 × 10−23 -0.57 0.13 9.87 × 10−6 -0.10 0.04 1.63 × 10−2 0.29 0.08 1.16 × 10−4 0.13 0.08 1.28 × 10−1

Downsampling -0.00 0.06 9.85 × 10−1 0.02 0.13 8.98 × 10−1 -0.01 0.04 8.77 × 10−1 -0.00 0.08 9.70 × 10−1 0.02 0.08 8.36 × 10−1 0.06 0.02 7.04 × 10−4 0.05 0.02 4.20 × 10−3

SomaticSniper -0.20 0.09 2.44 × 10−2 -0.39 0.18 3.11 × 10−2 -0.00 0.06 9.58 × 10−1 -0.33 0.11 1.99 × 10−3 -0.53 0.12 6.05 × 10−6 -0.12 0.02 2.89 × 10−6 -0.12 0.03 6.45 × 10−6

Strelka -0.04 0.09 6.74 × 10−1 -0.07 0.18 7.16 × 10−1 -0.01 0.06 8.12 × 10−1 0.10 0.11 3.36 × 10−1 0.08 0.12 4.81 × 10−1 0.02 0.03 3.64 × 10−1 0.02 0.03 5.20 × 10−1

Mutationseq -0.03 0.09 7.32 × 10−1 -0.10 0.18 5.85 × 10−1 0.03 0.06 6.66 × 10−1 -0.12 0.11 2.75 × 10−1 -0.13 0.12 2.63 × 10−1 -0.07 0.03 3.51 × 10−3 -0.08 0.03 2.30 × 10−3

phi 32.14 4.92 6.55 × 10−11 33.85 4.93 6.83 × 10−12 11.47 1.61 9.88 × 10−13 9.55 1.36 1.93 × 10−12 523.47 107.02 1.00 × 10−6 481.08 98.35 1.00 × 10−6

Log-likelihood 197.56 157.65 66.03 67.80 152.26 149.27
Pseudo R-squared 0.63 0.33 0.69 0.72 0.84 0.81

β regressions were used for all subchallenges except 1B where a binomial regression was used. N=100 for subchallenges 1 and 2 and N=50 for subchallenge 3.



Supplementary Table 5: Genaralized linear models for each subchallenge with errors in the CNA-profiles.

β
Estimate

1A

Std.
Error
1A

P-value
1A

Estimate
1B

Std.
Error
1B

P-value
1B

Estimate
1C

Std.
Error
1C

P-value
1C

Estimate
2A

Std.
Error
2A

P-value
2A

Estimate
2B

Std.
Error
2B

P-value
2B

Estimate
3A

Std.
Error
3A

P-value
3A

Estimate
3B

Std.
Error
3B

P-value
3B

Intercept 1.07 0.08 3.15 × 10−42 0.70 0.19 1.73 × 10−4 1.22 0.02 0.00 × 100 0.45 0.05 1.18 × 10−18 0.34 0.05 7.35 × 10−12 1.02 0.04 1.91 × 10−164 1.01 0.03 2.47 × 10−282

Effective Depth 0.03 0.01 2.63 × 10−4 0.27 0.01 1.54 × 10−94 0.25 0.01 5.55 × 10−69 0.47 0.01 0.00 × 100 0.49 0.01 0.00 × 100 0.28 0.00 0.00 × 100 0.27 0.00 0.00 × 100

T3 -0.06 0.10 5.43 × 10−1 -0.04 0.06 5.19 × 10−1 -0.09 0.01 7.30 × 10−16 -0.05 0.02 1.94 × 10−3 0.03 0.02 5.49 × 10−2 -0.04 0.05 3.84 × 10−1 -0.06 0.03 2.99 × 10−2

T4 0.01 0.10 8.92 × 10−1 -0.27 0.06 1.10 × 10−5 -0.27 0.01 1.24 × 10−131 0.16 0.02 1.40 × 10−21 0.11 0.02 1.26 × 10−11 -0.03 0.05 5.11 × 10−1 -0.05 0.03 1.13 × 10−1

T5 -0.12 0.10 2.43 × 10−1 -0.45 0.06 6.79 × 10−16 -0.37 0.01 3.56 × 10−261 -0.12 0.02 3.85 × 10−12 -0.14 0.02 7.67 × 10−18 -0.11 0.05 3.27 × 10−2 -0.15 0.03 4.04 × 10−7

T6 -0.24 0.11 2.73 × 10−2 -0.38 0.06 1.03 × 10−10 0.08 0.01 5.11 × 10−14 0.57 0.02 1.55 × 10−262 0.64 0.02 0.00 × 100 0.15 0.05 2.83 × 10−3 0.21 0.03 1.35 × 10−12

PhyloWGS 0.19 0.02 7.80 × 10−28 0.05 0.04 2.25 × 10−1 0.04 0.01 6.06 × 10−10 0.07 0.01 1.85 × 10−10 0.13 0.01 2.00 × 10−35

MuTect -0.01 0.03 8.21 × 10−1 -0.60 0.23 9.92 × 10−3 -0.32 0.01 1.82 × 10−188 -0.71 0.07 6.31 × 10−26 -0.70 0.07 1.56 × 10−26 -0.43 0.01 1.30 × 10−275 -0.43 0.03 1.19 × 10−48

SomaticSniper -0.01 0.03 7.09 × 10−1 -0.15 0.30 6.10 × 10−1 -0.32 0.01 2.60 × 10−190 -1.09 0.07 3.34 × 10−57 -1.09 0.07 8.98 × 10−61 -0.68 0.01 0.00 × 100 -0.70 0.03 4.16 × 10−122

Strelka -0.04 0.03 1.78 × 10−1 -0.33 0.24 1.62 × 10−1 -0.39 0.01 1.69 × 10−276 -1.02 0.07 4.48 × 10−51 -0.92 0.07 4.62 × 10−44 -0.61 0.01 0.00 × 100 -0.64 0.03 2.47 × 10−104

Mutationseq 0.01 0.03 7.82 × 10−1 -0.67 0.23 3.90 × 10−3 -0.40 0.01 1.32 × 10−296 -1.59 0.07 5.03 × 10−114 -1.54 0.07 1.16 × 10−112 -0.83 0.01 0.00 × 100 -0.78 0.03 5.90 × 10−149

ploidy x2 -0.50 0.11 1.26 × 10−5 -0.49 0.24 4.09 × 10−2 -0.20 0.02 1.04 × 10−22 -0.30 0.07 1.12 × 10−5 -0.42 0.07 2.63 × 10−10 0.29 0.05 5.87 × 10−9 0.08 0.02 1.02 × 10−3

scramble -0.30 0.08 3.79 × 10−4 -0.23 0.20 2.42 × 10−1 0.01 0.02 4.17 × 10−1 -0.28 0.05 2.82 × 10−7 -0.24 0.05 5.68 × 10−6 -0.02 0.04 5.84 × 10−1 -0.07 0.02 4.51 × 10−4

scramble gains -0.26 0.08 1.89 × 10−3 -0.19 0.20 3.24 × 10−1 -0.02 0.02 2.72 × 10−1 -0.30 0.05 2.37 × 10−8 -0.29 0.05 5.28 × 10−8 -0.03 0.04 4.63 × 10−1 -0.04 0.02 4.14 × 10−2

scramble loss 0.29 0.08 4.80 × 10−4 0.02 0.20 9.17 × 10−1 0.04 0.02 2.11 × 10−2 -0.11 0.05 3.53 × 10−2 -0.07 0.05 2.00 × 10−1 -0.09 0.04 2.25 × 10−2 -0.10 0.02 5.76 × 10−7

proportion CNAs scrambled -0.15 0.01 1.75 × 10−56 -0.00 0.00 5.19 × 10−1 -0.03 0.00 1.36 × 10−12 -0.03 0.01 5.16 × 10−6 -0.03 0.01 3.60 × 10−6 0.02 0.00 4.49 × 10−6 0.03 0.00 1.34 × 10−11

T3:ploidy x2 0.04 0.16 8.10 × 10−1 -0.31 0.07 9.13 × 10−6

T3:scramble 0.16 0.12 1.81 × 10−1 -0.13 0.05 1.43 × 10−2

T3:scramble gains 0.14 0.12 2.45 × 10−1 0.05 0.05 3.71 × 10−1

T3:scramble loss -0.00 0.11 9.95 × 10−1 -0.04 0.05 4.30 × 10−1

T4:ploidy x2 0.24 0.16 1.34 × 10−1 -0.25 0.07 2.75 × 10−4

T4:scramble 0.04 0.12 7.33 × 10−1 0.04 0.05 5.12 × 10−1

T4:scramble gains 0.08 0.11 4.77 × 10−1 0.04 0.05 5.16 × 10−1

T4:scramble loss 0.03 0.11 7.89 × 10−1 0.07 0.05 2.24 × 10−1

T5:ploidy x2 0.18 0.16 2.62 × 10−1 -0.18 0.07 1.06 × 10−2

T5:scramble 0.52 0.12 8.27 × 10−6 0.03 0.05 5.61 × 10−1

T5:scramble gains 0.42 0.12 2.69 × 10−4 0.07 0.05 1.83 × 10−1

T5:scramble loss 0.04 0.11 7.11 × 10−1 0.10 0.05 6.93 × 10−2

T6:ploidy x2 0.30 0.16 6.40 × 10−2 -0.35 0.07 4.28 × 10−7

T6:scramble 0.52 0.12 1.01 × 10−5 -0.02 0.05 7.24 × 10−1

T6:scramble gains 0.33 0.12 5.19 × 10−3 -0.03 0.05 5.99 × 10−1

T6:scramble loss 0.05 0.12 6.41 × 10−1 0.07 0.05 1.94 × 10−1

MuTect:ploidy x2 0.10 0.31 7.62 × 10−1 0.15 0.09 1.23 × 10−1 0.23 0.09 1.44 × 10−2

MuTect:scramble 0.24 0.25 3.38 × 10−1 0.18 0.07 1.23 × 10−2 0.15 0.07 3.81 × 10−2

MuTect:scramble gains 0.18 0.25 4.87 × 10−1 0.21 0.07 4.35 × 10−3 0.19 0.07 8.26 × 10−3

MuTect:scramble loss 0.02 0.26 9.53 × 10−1 0.12 0.07 1.13 × 10−1 0.08 0.07 2.41 × 10−1

SomaticSniper:ploidy x2 -0.41 0.39 2.87 × 10−1 0.25 0.10 9.48 × 10−3 0.35 0.09 1.61 × 10−4

SomaticSniper:scramble 0.31 0.32 3.33 × 10−1 0.26 0.07 4.91 × 10−4 0.25 0.07 4.97 × 10−4

SomaticSniper:scramble gains 0.14 0.32 6.63 × 10−1 0.30 0.07 6.12 × 10−5 0.30 0.07 2.90 × 10−5

SomaticSniper:scramble loss 0.14 0.32 6.56 × 10−1 0.13 0.07 9.06 × 10−2 0.10 0.07 1.52 × 10−1

Strelka:ploidy x2 0.36 0.32 2.69 × 10−1 0.44 0.09 3.28 × 10−6 0.42 0.09 5.83 × 10−6

Strelka:scramble 0.22 0.26 4.07 × 10−1 0.34 0.07 3.80 × 10−6 0.27 0.07 1.98 × 10−4

Strelka:scramble gains 0.16 0.26 5.49 × 10−1 0.41 0.07 3.90 × 10−8 0.32 0.07 1.00 × 10−5

Strelka:scramble loss -0.08 0.26 7.66 × 10−1 0.19 0.07 1.04 × 10−2 0.11 0.07 1.13 × 10−1

Mutationseq:ploidy x2 -0.02 0.31 9.51 × 10−1 0.45 0.10 4.25 × 10−6 0.51 0.10 6.77 × 10−8

Mutationseq:scramble 0.35 0.25 1.64 × 10−1 0.32 0.08 3.00 × 10−5 0.30 0.07 6.37 × 10−5

Mutationseq:scramble gains 0.27 0.25 2.81 × 10−1 0.37 0.08 1.39 × 10−6 0.36 0.07 1.96 × 10−6

Mutationseq:scramble loss 0.07 0.25 7.84 × 10−1 0.15 0.08 5.71 × 10−2 0.12 0.07 1.18 × 10−1

MuTect:T3 0.00 0.04 9.87 × 10−1

MuTect:T4 -0.08 0.04 5.16 × 10−2

MuTect:T5 -0.09 0.04 2.61 × 10−2

MuTect:T6 -0.04 0.04 3.46 × 10−1

SomaticSniper:T3 -0.09 0.04 3.83 × 10−2

SomaticSniper:T4 0.04 0.04 2.78 × 10−1

SomaticSniper:T5 0.02 0.04 7.15 × 10−1

SomaticSniper:T6 -0.10 0.04 2.08 × 10−2

Strelka:T3 -0.04 0.04 3.92 × 10−1

Strelka:T4 0.08 0.04 6.60 × 10−2

Strelka:T5 -0.04 0.04 3.54 × 10−1

Strelka:T6 -0.01 0.04 7.71 × 10−1

Mutationseq:T3 -0.07 0.04 1.17 × 10−1

Mutationseq:T4 0.01 0.04 8.79 × 10−1

Mutationseq:T5 -0.00 0.04 9.95 × 10−1

Mutationseq:T6 -0.17 0.04 3.51 × 10−5

Effective Depth:ploidy x2 -0.17 0.02 4.06 × 10−17

Effective Depth:scramble -0.01 0.02 3.69 × 10−1

Effective Depth:scramble gains -0.02 0.02 2.16 × 10−1

Effective Depth:scramble loss 0.00 0.02 7.64 × 10−1

phi 2.80 0.07 0.00 × 100 29.78 0.67 0.00 × 100 14.59 0.31 0.00 × 100 15.50 0.34 0.00 × 100 54.84 1.74 2.76 × 10−219 46.82 1.46 1.05 × 10−226

Log-likelihood 7042.39 7081.81 3939.12 4132.92 3380.31 3224.20
Pseudo R-squared 0.31 0.61 0.79 0.80 0.84 0.83

β regressions were used for all subchallenges except 1B where a binomial regression was used. N=4250 for subchallenges 1 and 2 and N=2125 for subchallenge 3.
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Desirable properties for clustering metrics 
In the literature on metrics for evaluating clustering predictions there have 
been multiple desirable properties identified for any measure used to evaluate 
clustering algorithms1. Since the tasks for SC2 and SC3 essentially amount to 
clustering SNVs based on their associated subclonal lineages and their 
phylogenetic relationships, we were interested in using scoring metrics that 
possessed these properties. 

Of the seven desirable properties identified in Rosenberg, 20072 we selected 
four that were applicable to the scoring metrics for SC2 and SC3. We then 
replicated the simulation used in (Rosenberg 2007) to test if a given metric 
possessed the identified desirable properties and ran this simulation on any 
potential scoring metrics for SC2 or SC3. Finally, we used these results to 
eliminate any scoring metric that did not satisfy these desirable properties. 

Definitions. Before listing the metric properties identified in (Rosenberg 2007) 
we must first define the clustering problem used in the simulation, the input 
any scoring metric for the clustering problem will receive, and all parameters 
associated with the clustering problem. The clustering problem is defined as 
follows: given N items that are each assigned to an unknown class from an 
unknown set of classes, C = {ci |i = 1,...,n}, cluster (or group) the items into a 
set of clusters, K = {ki |i = 1,...,m} such that n = m 

if A = {aij} = {# of data points that are members of ci and are assigned to kj} is 
the contingency table representing the clustering solution then: 

∀ i ∈ {1,...,n} ∃ i∗ ∈ {1,...,n} s.t. 

ai,i* ≠ 0 
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aij = 0; ∀ j ∈ {1,...,n}, j ≠ i* 

i∗ 

 = j∗; ∀ j ∈ {1,...,n}, j ≠ i 

i.e. the cluster assignments are as close as possible to the class assignments. 

Any scoring metric for the clustering problem will receive the following inputs: 

● the number of items, N 

● the set of classes, C 

● the set of clusters, K 

● the contingency matrix A = {aij} 

To define the clustering solution parameters we first distinguish between two 
types of clusters: useful clusters and noise clusters. Useful clusters are 
clusters that are assigned mostly items from one class, and thus can be 
’associated’ with that class. Noise clusters are clusters that contain an equal 
amount of items from all classes and thus cannot be associated with any 
class. 

The parameters for any solution to the scoring problem are then as follows: 

● M the score for the given solution 

● nC the number of elements in each class 

● |C| the number of classes 

● |K| the number of clusters 

● |Knoise| the number of ’noise’ clusters; |Knoise| < |K| 

● |Ku| the number of ’useful’ clusters; |Ku| = |K| − |Knoise| 

● ϵ the error probability i.e. the proportion of items that are assigned to 
an incorrect cluster; ϵ = ϵ1 + ϵ2 

● ϵ1 the proportion of items that are assigned to in incorrect useful cluster 
i.e. a useful cluster that is not associated with the class that the item 
belongs to 

● ϵ2 the proportion of items that are assigned to noise clusters 

 

Desirable Clustering Metric Properties  

The four desirable metric properties for and scoring metric for SC2 or SC3 
are: 

1. For |Ku| < |C|, ∆|Ku| ≤ (|C| − |Ku|), ∆𝑀𝑀
∆|K𝑢𝑢| > 0 
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2. For |Ku| > |C|, ∆𝑀𝑀
∆|K𝑢𝑢| < 0 

3. 𝛿𝛿𝑀𝑀
𝛿𝛿𝜀𝜀1

≤ 0, with equality only if |Ku| = 1 

4. 𝛿𝛿𝑀𝑀
𝛿𝛿𝜀𝜀2

≤ 0, with equality only if |Knoise| = 0 

 

Other potential metrics for SC2 and SC3 
In deciding on a scoring metric for SC2 and SC3 we also considered a 
number of other measures of matrix differences as potential candidates for 
our scoring metric, besides PCC and AJSD, which were all considered as 
both SC2 and SC3 scoring metrics. These metrics were considered in place 
of ASJD and the combination of PCC, MCC and were applied to the same 
input matrices as defined above. 

Matthews correlation coefficient. The MCC is only defined between two 
binary matrices, thus we define CCMP*:= round(CCMP) and CCMT* := 
round(CCMT) and calculate the MCC using these matrices. The MCC 
between a matrix of predictions, C, and a truth matrix, K, is defined as: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 

where TP :=∑CijKij is the number of true positives, TN := ∑(1−Cij)(1−Kij) is 

the number of true negatives, FP := ∑Cij(1−Kij) is the number of false 

positives, and FN := ∑(1−Cij)Kij is the number of false negatives. 

Sum of Squared Error (SSE). The sum of the squared difference between 
each entry in the predicted matrix, C, and true matrix, K: 

𝑆𝑆𝑆𝑆𝑆𝑆 = ���𝐶𝐶𝑖𝑖𝑖𝑖 − 𝐾𝐾𝑖𝑖𝑖𝑖�
2

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

Spearman’s rank correlation coefficient (SCC). The normalized difference 
in rank between the entries of the predicted and true matrices: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 1 −
6∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖2𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

𝑛𝑛2(𝑛𝑛4 − 1)  

where dij = xij - yij is the difference between the rank of the ijth entry of the 
predicted matrix, xij, and the rank of the ijth entry of the true matrix, yij. 

Clonal Fraction (CF). The CF of a reconstruction captures the accuracy of 
the predicted fraction of clonal mutations, i.e. mutations assigned to the clonal 
peak, against the true fraction of clonal mutations. This is defined as: 
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𝐶𝐶𝐶𝐶 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,1 −
�𝑐𝑐𝑝𝑝 − 𝑐𝑐𝑡𝑡�

𝑐𝑐𝑡𝑡
) 

where ct is the true CF and cp is the predicted CF (# 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇#𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

). 

Testing scoring metrics: desirable 
properties  
To evaluate the degree to which different scoring metrics satisfied these 
desirable properties we systematically varied |Ku|, |Knoise|, while keeping nC = 
200 fixed. The values we iterate over for each parameter were: 

|C| ∈ {2, ..., 9} 

|K u | ∈ {2, ..., 10} 

|K noise | ∈ {1, 3} 

ϵ1 ∈ {0, 0.05,…, 0.4} 

ϵ2 ∈ {0, 0.05,…, 0.4} 

We then used the scores from each of these parameter settings to calculate 
the proportion of settings under which each of the scoring metrics satisfied 
each of the four desirable properties (Supplementary Figure 1). 

Scoring metric behaviour tests. In addition to testing our SC2 and SC3 
scoring metrics for the desirable clustering metric properties defined above we 
also tested the behaviour of our scoring metrics for all sub-challenges under 
various mistake scenarios. 

Mistake scenario definition. A mistake scenario for a sub-challenge is a 
hypothetical error in solving the sub-challenge problem and this error cannot 
be divided into multiple types of errors (i.e. merging two subclonal lineages 
where one subclonal lineage is directly ancestral to the other for SC3). The 
idea with these mistake scenarios is that each scenario is correct except for 
one mistake so that each type of mistake can be examined individually. It is 
possible, and likely, that some submissions to a sub-challenge will be 
combinations of multiple mistake scenarios. 

SC1C behaviour tests. To analyse the performance of our scoring metric for 
SC1C we tested the behaviour of our metric under several mistake scenarios 
as well as when random error was added to either the predicted cellular 
prevalence of each subclonal lineage, φ, or the predicted number of SNVs 
assigned to a subclonal lineage, α. 
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We decided not to use squared errors in SC1 metrics but rather absolute 
errors in order to penalize small mistakes more severely. For SC1C in 
particular the mistakes are all small in terms of the effect on our metric input 
so the difference between using squared error and absolute error was 
amplified. 

Our goal in testing the SC1C scoring metric was to verify that our metric 
penalized mistakes in φ more than mistakes in α and also penalized certain 
mistake scenarios in a desired way. We chose to emphasize mistakes in φ in 
SC1C since the predicted number of SNVs assigned to each subclonal 
lineage also affects SC2 and SC3 scores but the predicted cellular prevalence 
of each subclonal lineage only affects the SC1C score. 

In order to test our metric we first looked at its behaviour in several mistake 
scenarios. We simulated a tumor with 0.85, 0.5, and 0.3 CP clusters with 200 
mutations in each and scored each of six possible cluster merging and 
splitting solutions (only splitting a single cluster at a time). Unlike for SC2, for 
SC1C we wanted splitting a subclonal lineage to be penalized less than 
merging two subclonal lineages, since there is more error in the cellular 
prevalence when two subclonal lineages are merged than when one 
subclonal lineage is split. Otherwise we wanted SC1C to show the same 
behaviour with these mistake scenarios as SC2. Our scoring metric for SC1C 
using absolute error demonstrated the desired behaviour with respect to the 
mistake scenarios (Wilcox-test P-value for merging vs. splitting: 0.063; mean 
score when merging clusters: 0.877 ± 0.032 s.e., mean score when splitting a 
cluster 0.98 ± 0 s.e). 

We also looked at our metric’s behaviour when a random error was added to 
either φ or α (or both). We simulated a tumor with 0.85, 0.5, and 0.3 CP 
clusters (these are the true φ values) with 200 mutations each (true α). To add 
random noise to φ, for each concentration (c) in (2,5,10,1000), each φ was 
drawn from a random β distribution with a= true φ * c, and b= (1- true φ)*c. 
Similarly, we adjusted the true α vector by multiplying it with a single draw 
from a Dirichlet distribution parameterized by [c c c]. Increasing the 
concentration of correct φ and α reduces the random noise in each of these 
metrics. Our goal in performing this test was to verify that our metric a) 
penalizes error in either α or φ, b) penalizes a submission more when there is 
more error in either φ or α, and c) penalizes error in φ more than error in α. 
Our scoring metric for SC1C satisfied all of these criteria (φ: βcorrect concentration: 
0.00025, P-value: 0.037; α: βcorrect concentration: 0.00023, P-value: 0.040). 

Based on these two tests we were satisfied with the behaviour of our metric 
for SC1C using the absolute error and so chose it as our final scoring metric 
for SC1C. 

SC2 and SC3 behaviour tests. After screening our scoring metrics using the 
results of the Rosenberg simulation we then examined the behaviour of each 
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scoring metric under the different SC2 mistake scenarios. To systematically 
assess errors on a variety of tree architectures, for each possible tree with 1-6 
nodes of equal size we generated every possible unique architecture while 
keeping node ordering consistent (e.g. in a three-node tree 1 would always 
have to be the root and the parent of 2, but it could be the parent or the 
grandparent of 3) and only allowing one node to have at most two children. 
Additionally, we generated three and four node linear trees with three different 
SNV distributions ranging from the majority of SNVs occurring in the clonal 
node, to the majority of SNVs occurring in the most subclonal node for a total 
of 30 tree architectures. For each of these architectures, we then introduced 
eight mistake scenarios that reflect common algorithm errors that cover over-
clustering, under-clustering and incorrect inference of evolutionary 
relationships: 

● Two clonal nodes are merged 
● Two subclonal nodes are merged  
● A spurious subclonal node is present composed of SNVs from adjacent 

nodes 
● Two clonal nodes are merged and a spurious subclonal node is 

present 
● A subclonal node is split into two nodes 
● The grandparent is incorrectly inferred as the parent. If there was no 

grandparent or the grandparent had more than one child, then the 
closest sibling or uncle was inferred as the parent. 

● A linear architecture 
● A monoclonal solution 

We then scored the CCM and ADM reflecting these errors against the truth for 
that tree with the candidate SC2 and SC3 metrics. For SC2B simulations, we 
subtracted/added a β-distributed error centred around a=1, b=10 for true 
positives/true negatives and a=2, b=10 for false positives/false negatives. 
Nine experts then ranked the overall severity of the mistake scenarios for 
each of the 30 architectures. We then assessed correspondence between 
expert rankings and rankings produced by each candidate metric using 
pairwise rank correlations. For SC3, we also considered clonal fraction due to 
its biological relevance. 

We then assessed how well the average of the two and three highest scoring, 
but weakly correlated, metrics for SC2 and SC3 corresponded with the expert 
rankings as well as the average of all metrics. For SC2 we chose the average 
of AUPR and JS, which yielded the highest pairwise rank correlation with the 
expert rankings. For SC3, we chose Pearson, as JS, Pearson, MCC, and 
AUPR all produced non-significantly different rankings but significantly better 
than the clonal fraction. 
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Testing scoring metrics: real data 
Unlike simulated data, where the truth is available by design, in real data, 
there is no available truth and no easy way to derive a perfect truth. Still, we 
identified three ways in which one could derive a gold standard to use as 
imperfect “truth” that should be closer to the truth than other typical setting. 

Higher depth (233.64x) compared to typical lower/medium depth (60-
70X). We took a real tumor sequenced at high depth (mean depth 233.64x) 
and down-sampled the reads to get lower depth BAM files. We called SNVs 
with five different somatic SNV detection approaches (Online Methods), but 
only retained to 10,000 SNVs that also appeared in the consensus variant 
calls derived on the full depth tumor. We then performed reconstructions on 
the down-sampled BAMs and scored them against consensus mutation 
assignments and subclonal reconstructions obtained from the full depth BAM. 
As expected, the scores decreased with depth (Figure 5). 

Truth derived from better set of SNV calls (consensus calls) compared 
to subsets (e.g. restricting to clocklike mutations in a (C>T)pG context) 
or suboptimal sets from individual somatic variant SNV detection 
pipelines. We took data from 538 donors from the PCAWG study3 and 
executed DPClust on different sets of SNVs: a consensus set was used as 
“truth”, and three individual somatic SNV detection pipelines (MuTect, DKFZ 
pipeline and Sanger pipeline run on mutations in a (C>T)pG context). We also 
executed PhyloWGS on the consensus sets (Supplementary Figure 6c). We 
then scored SC1C for each run against the “truth”. This showed that the 
reconstructions from two methods run on the same set of mutations are closer 
than reconstructions with the same somatic SNV detection pipeline on 
different sets of mutations and highlighted the importance of a good set of 
starting mutations. This corroborated the results on simulated data (Figure 5). 
Also, the SC1C scores of two methods should only be compared when run on 
the same set of mutations. 

Truth derived from multi-region sequencing (5 regions) compared to 
single region. We took data from 10 donors with at least 5 tumor regions or 
metastases sequenced and executed DPClust in 5 dimensions to derive a 
“truth”. We scored each one-dimensional DPClust run on individual region 
against the “truth” derived from the multi-dimensional run for SC1C and SC2A 
and compared them against scores obtained from randomized 1C and 2A 
inputs. Interestingly, this showed that most but not all reconstructions based 
on individual tumors had better scores than randomized inputs, highlighting 
the important difference between reconstructions obtained with increased 
number of regions (Supplementary Figure 6d). We note that we did not 
derive an “obtainable” truth and thus, a large part of the information retrieved 
from multi-dimensional reconstructions (up to 30 clusters/clones) cannot 
possibly be retrieved from single-region runs (up to 5 clusters/clones). 
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Phasing pipeline 
In this note, we give the details of each step of the phasing after a brief 
overview of how the steps fit together. 

Phasing Terminology. Before proceeding, we clarify some of the phasing 
terminology we will be using. For each of the samples in the trio, GATK 
produced a set of unphased variants. Each of these variants is diploid, and is 
either homozygous (same allele twice) or heterozygous (2 different alleles). 

● A phase set is simply a set of heterozygous variants (”hets”) that are 
phased together. Thus, if 2 hets A/C and G/T are part of the same 
phase set, and their individual phasings are, say, A|C and T|G, then 
the A and T alleles are part of one haplotype, and the C and G alleles 
are part of the other haplotype. Phase sets are chromosome-specific, 
but they are not required to be contiguous. 

● That is, if 3 hets are consecutive on the reference (with no other 
variants in between them), it is possible for the first and last het to be 
part of the same phase set, and for the middle one to be unphased or 
part of a different phase set. 

● A phasing (of a sample) consists of (1) a set of phase sets and (2) for 
each het that is part of a phase set, an assignment of the 2 alleles at 
that het to the 2 possible phases that are part of that phase set. Every 
single het can either be part of one unique phase set, or it can be part 
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of no phase sets at all. Note that there is no difference between an 
unphased het and a het that is part of a singleton phase set: neither 
case implies anything about the relative phasing of that het with 
respect to any other hets. 

● A parent-based phasing (of a sample) is a special case of a phasing, in 
which one phase set per chromosome is singled out from other phase 
sets, and it is used to represent parent-of-origin information for the 
individual hets that are part of it. We refer to this phase set the parent 
phase set. Thus, if A|C and T|G are 2 hets part of the parent phase set 
in a parent-based phasing, then the A and T alleles are inherited from 
parent 1, and the C and G alleles are inherited from parent 2. 

When we say that a phasing A is extended by a phasing B, then the phase 
sets of B are used to merge phase sets of A. In particular, every phase set in 
A appears as a subset of the resulting extended phasing. 

Phasing Overview First, we used the ngs-phase program individually on the 
PE and MP data of each sample to build an initial phasing directly supported 
by NGS reads, referred to as ngs phasing. Second, we used the add-parent-
phasing program to build an initial parent-based phasing for the child sample, 
referred to as parent_base phasing. Third, we used the extend-phase-set 
program to extend the parent_base phasing in the child with the ngs phasing 
in the two parents, obtaining the parent-based parent_ngs phasing. Fourth, 
we used the extend-phase-set program to extend the ngs phasing in the 
child with the parent_ngs phasing in the child, obtaining the 
ngs+parent_ngs phasing. Fifth, we used the extend-phase-set program to 
extend the ngs+parent_ngs phasing in the child with phasing produced by 
Beagle, obtaining the ngs+parent_ngs+beagle phasing. Finally, we used the 
programs random-flip-phase-set and collapse-phase-sets to randomly 
rotate and collapse each of the remaining phase sets into a single phase set, 
obtaining the final ngs+parent_ngs+beagle+rflip phasing. This phasing was 
used to separate the mappings of PE dataset from the child into individual 
haplotypes (Supplementary Figure 2 e-i). 

The ngs phasing. The ngs phasing of each sample and chromosome gathers 
(sometimes conflicting) phasing information available in PE and MP NGS 
data. To build this phasing, we used the ngs-phase program, which works as 
follows. 

First, each NGS fragment was inspected to determine if it contains evidence 
of any het alleles. More specifically, the mapping of each read in the fragment 
was tested for overlapping het sites. When a mapping overlapped a single 
nucleotide variant (SNV), if a unique read base was mapped to the het site 
and that base was one of the 2 possible alleles, that allele was considered 
supported by that read. When a mapping overlapped a short insertion or 
deletion (indel), a subsequence of the read was aligned using the Smith-
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Waterman algorithm to the 2 possible het alleles augmented with a small 
common flank. If one of the alignment scores was better than the other, the 
allele corresponding to the better-scoring alignment was considered 
supported by that read. If the two reads part of the same fragment were found 
to support different alleles of the same het, that fragment was not used for 
phasing that het. 

Next, all hets were initially placed in singleton phase sets. For every pair of 
phase hets, we computed the number of NGS fragments supporting every 
pair of allele connections between those sets. This produced 4 counts c00, c01, 
c10, and c11, corresponding to connections between alleles 0/0, 0/1, 1/0, and 
1/1, respectively. We defined a measure of discordance for that pair of hets 
as: 

(1 + min(c00+ c11, c01+ c10))/(1 + c00 + c01 + c01 + c11) 

As an exception, when: 

Emin(c00 + c11, c01 + c10) = 0 

The discordance was set to 

min(max_discordance − ϵ ∗ s, 1/(1 + s)) 

where s = c00 + c01 + c10 + c11. 

This allowed the Greedy algorithm used (described below) to always connect 
phase sets with low support when there were no discordant reads. Our 
approach to merging phase sets was Greedy, where we repeatedly: picked 
the pair of phase sets with minimum discordance, merging them, and 
updating the counts and discordance values. When merging the phase set B 
into the phase set A, with relative phasing relAB ∈ {0, 1}, we considered all 
other phase sets C connected to B. The count of fragments connecting phase 
sB ∈ {0, 1} of B with phase sC ∈ {0, 1} of C was added to the count of 
fragments connecting phase (sB + relAB) mod 2 of A to phase sC of C. The 
Greedy merging process was stopped when the minimum possible 
discordance between any 2 phase sets went above max_discordance = .2. 
At that point, the current phase sets and resulting phasing was reported. 

The ngs-phase program had another, somewhat independent functionality, 
which was to categorize each het as being either ”reliable” or ”unreliable” from 
NGS data. A het was labelled as ”unreliable” if the NGS data covering it 
showed evidence that the site might not be diploid. Specifically, this happened 
if the total number of fragments covering a site was less than (1/2)×, or more 
than 2×, the overall coverage; or if either of the 2 alleles was supported by 
less than (1/4)× the number of fragments spanning the site. 

The parent_base phasing. The parent_base phasing of each chromosome 
in the child sample is a parent-based phasing, which collects parent-of-origin 
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information in a special parent phase set. This phasing was constructed using 
the add-parent-phasing program, which considers independently every het 
in the child along with the corresponding parent alleles at that locus. If a child 
allele s ∈ {0, 1} appears only in parent p ∈ {0, 1}, and the child allele 1 − s is 
present in parent 1−p, then the het is added to the parent phase set as ((s + 
p) mod 2) | ((s + p + 1) mod 2). In all other cases, the child het is left 
unphased. These include, for example, de novo mutations (child alleles not 
appearing in either parent), and triple hets (child hets that are also hets with 
the same alleles in both parents). 

The parent_ngs phasing. The parent_ngs phasing of the child sample is an 
extension of the corresponding parent_base phasing of the child with the ngs 
phasing of each parent. This is also a parent-based phasing, and its goal is to 
compute parent-of-origin information for those sites left unphased in the 
parent_base phasing, using NGS data in the parents. For example, consider 
2 nearby child hets with the following alleles in the child and 2 parents: (A1/C1, 
A1/T1, C1/C1) and (C2/G2, C2/G2, C2/G2). The parent_base phasing will phase 
the first het as A1|C1, but the second het will be left unphased. Now assume 
NGS data in the first parent contains evidence that the A1 and G2 alleles 
appear together in a parent haplotype. In this case, the parent_ngs phasing 
will phase the second het as G2|C2. 

To perform the phase set extension, we used the program extend-phase-set, 
which works as follows. The program is given as input a “base” phasing and 
an “extension” phasing. The program considers in turn each phase set B in 
the extension phasing, and looks for pairs of hets that are consecutive in B, 
and are part of different phase sets A1 and A2 in the base phasing. The 
program greedily picks the pair of such hets that are closest together in 
genomic distance, and merges the base phase sets A1 and A2 using the 
orientation in the extension phase set B. 

When the base phasing is a parent-based phasing, as is the case when 
extending parent_base, the program only extends the special parent phase 
set, and only ever rotates (if necessary) the other phase sets that are merged 
in the parent phase set. 

The ngs+parent_ngs phasing. The ngs+parent_ngs phasing of the child 
sample is an extension of the ngs phasing in the child with the corresponding 
parent_ngs phasing. Thus, this phasing prioritises information from NGS 
data, and in its absence, it uses parent-of-origin information to further extend 
phase sets. The phasing is also obtained with the extend-phase-set program 
detailed above. Note that neither ngs nor ngs+parent_ngs are parent-based 
phasings, and in this case extend-phase-set can freely rotate and merge all 
phase sets as needed (because there is no parent-of-origin information to be 
lost by rotating the special parent phase set). 
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Beagle. In order to gather phasing information not available through NGS 
reads, we used Beagle version 4.0 on the set of variants produced by GATK. 
Prior to running Beagle, we merged sites with differing alleles with bcftools 
merge -m alle was run on the resulting trio variants, with appropriate pedigree 
information. 

The ngs+parent_ngs+beagle phasing. The ngs+parent_ngs+beagle 
phasing is an extension of the ngs+parent_ngs phasing with the phasing 
produced by Beagle. This was again obtained by using the extend-phase-set 
program. 

The ngs+parent_ngs+beagle+rflip phasing. Finally, the 
ngs+parent_ngs+beagle+rflip phasing was obtained by randomly rotating all 
remaining independent phase sets, and merging them into a final phase set. 
The programs used for this step were random-flip-phase-set (for random 
rotations) and collapse-phase-sets for merging. 

Splitting. The ngs+parent_ngs+beagle+rflip is a complete phasing of all 
hets in the child sample. We then used the program bam-phase-split, also 
part of PhaseTools, to transform a phasing of all hets into a phasing of all 
fragments and mappings of the high-coverage PE dataset. The program 
works as follows. 

First, the program loads all variations with their phasing, it then iterates 
through the mappings, phases each fragment, and outputs 2 mapping files for 
each autosome, corresponding to the 2 phases. Each NGS fragment is 
processed independently of all others, and a decision is taken to place that 
fragment in 1 of the 2 possible phases. All reads in a fragment are considered 
together when phasing that fragment, with one exception: if 2 reads part of the 
same fragment are mapped to different chromosomes, they will be processed 
independently of each other. 

If none of the reads in a fragment span any hets, the fragment is placed in 
one of the 2 phases at random. If a read spans one or more hets, for each 
such het, we inspect the read for evidence of 1 of the 2 possible alleles at that 
site. This is the exact same process performed by the program ngs-phase, 
described earlier. As is the case with that program, if 2 reads in a fragment 
are found to contain conflicting evidence with respect to one het, that het is 
not used for determining the phase of that fragment. Finally, all hets spanned 
by any of the reads in the fragment for which the fragment contains evidence 
of one allele (thus, of one phase) are integrated into a phasing decision as 
follows. As explained before, the program ngs-phase assigns a label of 
“reliable” or “unreliable” to all hets. To phase a fragment, bam-phase-split 
first computes the phasing majority vote using all reliable hets only. If that 
comes out equal, it also computes the phasing majority vote using all 
unreliable hets. If that one is equal as well, the fragment is placed in one of 
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the 2 phases at random. Otherwise, the vote is used to decide which phase to 
put the fragment in. All reads in the fragment are placed in that same phase. 

Phasing sex chromosomes. In males, the sex chromosomes share 
pseudoautosomal regions (PARs), which are homologous sequences that 
play a role in genetic recombination during sexual reproduction. There are two 
well-known homologous sequences - PAR1 (chrX:60,001-2,699,520 = 
chrY:10,001-2,649,520) and PAR2 (chrX:154,931,044-155,260,560 = 
chrY:59,034,050-59,363,566) - any genes within them have been discovered 
to be inherited just like any autosomal genes. Thus, we can phase the reads 
in these regions just like we would other autosomes. However, since the 
sequences are homologous between chrX and chrY, it is very common (as it 
is in our case) to store the coordinates only in one of the sex chromosomes, in 
this case chrX. To reduce runtime and increase parallelization, for each PAR, 
we extracted the beagle allele frequencies from the trio, germline trio variants 
called by our pipeline, and PAR reads from chrX. The entire PhaseTools 
package workflow was executed on each PAR, and the reads split into phase 
“0” and phase “1” chrX BAMs. The non-PAR reads from the original chrX were 
merged with chrX phase “0” from both PARs to generate the phased chrX. To 
obtain the phased chrY, phase “1” of chrX PARs were reconfigured into their 
homologous locations on chrY using a direct PAR-to-PAR mapping, and then 
merged with the original chrY. 

Mutation distribution and read splitting 
A single configuration file is initially prepared, outlining the clonal and 
subclonal structure for the designed tumor tree at the chromosome level. This 
includes the number of single nucleotide variants (SNVs), insertions/deletions 
(Indels), and structural variants (SVs) to be applied to each paternal and 
maternal phase (phase 0/1 or “a”/”b”) of every chromosome. If there is more 
than one copy of a phase, indices are used to specify which copy the 
mutations are spiked into or which copy has the chromosomal event. 
Mutations are split according to chromosome size to get to obtain the desired 
total number of mutations. Furthermore, they are divided evenly between 
each chromosomal copy where there exists a phase gain, or combined where 
there exists a phase deletion. At each node, all mutations are spiked into the 
tumor portion prior to any copy number aberrations. Cellular prevalences are 
initially specified for each node split at the chromosome level. 

Each phase of every chromosome is considered separately. To begin with, 
the read pools assigned to each leaf node is determined by the cellular 
prevalences of each node. To take into account chromosomal amplifications, 
we first adjust these read pools at each node, and then down-sample the leaf 
nodes in proportion to the max copy number at the chromosome level. 
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Pseudoreads are assigned to each leaf node, initialized by the cellular 
prevalence, and applying any chromosome gains or deletions. The number of 
copies at each node is tracked as well as the total number of pseudoreads 
(the desired number of virtual reads), where each copy is assigned the same 
number of pseudoreads := the number of pseudoreads assigned to the node 
divided by the number of copies at that node. A gain increments the 
pseudoreads equivalent to one copy, while a double gain increments it twice. 
A whole genome duplication doubles the pseudoreads as well as the copies 
for that node. Similarly, a deletion decrements the pseudoreads equivalent to 
one copy. The actual total number of reads assigned to the node is equal to 
pseudoreads assigned to the node divided by the total pseudoreads across all 
the leaf nodes. 

Simulating replication timing 
Replication timing data for the hg19 human reference genome build was 
obtained. Each genomic region was represented by an interval of 100Kbp, 
with DNA replication timing according to the HeLa cell line2, and a noncoding 
mutation frequency per base pair, as averaged across 126 cancer samples 
subjected to WGS1. Gap region positions of GRCh37/hg19 reference genome 
were obtained use the Table Browser Tool at UCSC Genome Bioinformatics. 
Linear regression was used to model mutation rate from replication timing. 
Logs of regional mutation rates were used as they exhibited normal 
distribution across the genome and correlated strongly with replication timing. 
Missing replication timing values were imputed using the MICE (v2.25) 
package in R3. Bedtools (v2.24.0) was first used to obtain non-gap regions of 
reference genome, which were later excluded from the MICE algorithm4. 
Imputed data is taken after 40 iterations. Using the linear regression model 
generated from the original replication time and log mutation rate pairs, new 
log regional mutation rates were predicted for each region according to its 
replication time, imputed or original. 
We then used the regional mutation rates to adjust mutation frequency for 
replication time. We first converted log-regional mutation rates to per base 
mutation rates and scaled them relative to the region with the highest 
mutation rate so each position had a timing factor between zero and one. We 
used these timing factors to moderate how likely a mutation was to occur at a 
given site. A mutation was only retained if a random number drawn from a 
uniform distribution between zero and one was less than or equal to the timing 
factor resulting in mutation enrichment at late replicating sites with timing 
factors close to one. 
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Simulating trinucleotide signatures 
Each mutational signature s𝑖𝑖 5 is defined by the vector 𝑞𝑞𝑖𝑖  giving the 96 
probabilities of a mutation originating from that signature to mutate each of the 
96 trinucleotide contexts. In each tumor simulation, SNVs are generated by a 
spectrum of multiple signatures. We spike N SNVs and associate weights wi 
to each active signature, such that ∑ 𝑤𝑤𝑖𝑖

 
𝑖𝑖 = 1. We then derive the mixture of 

signatures 𝑞𝑞 = ∑ 𝑤𝑤𝑖𝑖
 
𝑖𝑖 𝑞𝑞𝑖𝑖  . We could draw the N SNVs to spike from this 

multinomial distribution q. However, because we also model replication-timing 
biases, which impacts the spectrum of mutable trinucleotide contexts, prior to 
spiking in mutations, we derive the expected counts of mutations in each 
trinucleotide context, given by the vector 𝑁𝑁𝑁𝑁, used as a vector of quota. Thus, 
when spiking in SNVs we only spike a mutation if we have not yet reached the 
quota for that trinucleotide and if the mutation is not reverting a germline 
variant. 

Simulating BAM files with variant allele 
frequencies derived from 3D tumor growth 
models 
As training set, we simulated 1,366 3D tumors and derived allele frequency 
spectra of the variants in 8 virtual resections using a published tool6. These 
were simulated with increasing underlying selective pressure {0%, 1%, 2.5%, 
5%, 10%}, mutation rates {0.1, 0.3, 0.6, 1, 2, 5, 10}, deme sizes {2500, 5000, 
10000}, and 15 replicates per combination leading to a total of 1,575 runs, 
among which 1,366 completed within reasonable timeframe and gave 
properly formatted output. As test set, we simulated an additional 5 tumors 
with {0%, 1%, 2.5%, 5%, 10%} selective pressure. The code was edited to 
return exact variant allele frequencies of all mutations (VAFs) instead of 
frequencies with added (beta-)binomial noise. For 3 regions in each of the 5 
test tumors, the perfect VAFs were then given as input to BAMsurgeon to 
generate BAM files with each of the mutations spiked at the given VAF, 
adding binomial noise within the BAMSurgeon pipeline. Mutations were then 
genotyped in each BAM file and the VAF spectra of the 3 regions used to 
predict whether the tumor was compatible with neutrality or selective 
pressure. 

To this end, we trained an SVM model to predict neutrality on the 1,366 
training tumors as described in Sun et al.6 Although we trained on only three 
regions per tumor, we could correctly predict the (non-)neutrality of the tumors 
for which we simulated BAM files using BAMSurgeon (visualization akin to 
Sun et al.6 in Supplementary Figure 2d). Interestingly, when running only on 
the mutations called by MuTect, the predictions were not as accurate (all 
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tumors, including the neutrally growing tumor were predicted as having 
underlying selection), suggesting that the predictor should ideally be trained 
on realistic calls rather than “perfect” calls. This highlights the benefits of our 
new pipeline from which realistic SNV call sets can be derived, as compared 
to working with perfect simulated SNV sets. 

Large scale SV simulations 
Translocations are a critical type of oncogenic mutation, which was not 
included in the SMC-DNA simulated data challenges7. To do this, address this 
gap, we developed a new approach. For two regions (named A and B), an 
unbalanced translocation is simulated by selecting reads aligned to region A 
and reads aligned to region B and assembling contigs for each set of reads. 
To control for contig mis-assembly, each contig is aligned to the reference 
genome using exonerate8, any unaligned portion at the ends is trimmed, and 
reads corresponding to the trimmed portion(s) of the contigs are de-selected. 
The contig break-ends are then fused either head-to-tail or head-to-head 
depending on user specification. Read coverage is generated over the fused 
contigs using wgsim9. Finally, altered reads are re-aligned to the reference 
genome and used to replace reads in the original BAM file based on read 
name, creating a simulated translocation that accurately reflects the expected 
pattern of discordant read pair mappings and split reads. 

The ability to simulate translocations combined with adjustments to read 
coverage makes the simulation of arbitrarily large deletions, duplications, and 
inversions possible. Large-scale duplications are simulated by adding reads 
from a donor BAM at an appropriate depth, and deletions by removing reads. 
As these SVs can be arbitrarily large (size is only constrained by breakpoint 
insertion feasibility in a given region, it was important to simulate mutations 
accumulating within large SVs. To achieve this, we simulated mutations for 
each leaf BAM in reverse temporal order. So for a given leaf in a two-node 
tree, the large SVs which occur in that node are inserted first, then simple 
somatic mutations (SSMs) and small SVs for that leaf, followed by large SVs 
that occurred in the parent node, and finally SSMs and small SVs from the 
parent node. Using this strategy, SSMs that occur earlier than large 
duplications will be present in all reads covering that region (e.g. in all 
duplicated copies), while those that follow the duplication will only occur on a 
subset of the reads (e.g. on a single copy of the region). All SSMs and small 
SVs will appear as though they occur before the large SVs at that node, but 
simulating arbitrarily complex mutational sequences across a node’s 
evolutionary history is possible. Large deletions are accomplished by creating 
a translocation to represent the breakpoint joining the break ends on either 
side of the specified deletion. Reads corresponding to locations within the 
deleted region are down-sampled according to a user-specified VAF. Large 
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duplications, specifically tandem segmental duplications, are created by 
simulating the breakpoint between the 3' end of the duplicated region and the 
5' end of the duplicated region using the translocation functionality and 
increasing read coverage over the duplicated segment. Additional read 
coverage over the duplication is supplied via a user-specified source BAM file. 
Our pipeline generates donor BAM files by down-sampling a distinct pool of 
reads from the original BAM file at the appropriate depth to reflect copy 
number and cellular prevalence of the node. Large inversions consist of two 
separate inverted translocations, one at each breakpoint, and no adjustment 
of coverage is necessary. 
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Supplementary Note 3 – DPClust and 
PhyloWGS 

A community effort to create standards for 
evaluating tumor subclonal reconstruction 

 

Running PhyloWGS and DPClust 
We used PhyloWGS and DPClust for subclonal reconstruction in our internal 
benchmark. The main differences between those two algorithms are outlined 
in the following table: 

PhyloWGS DPClust 

Assigns CNAs to clusters Does not assign CNAs to clusters 

Estimates multiplicity of mutations 
during MCMC 

Uses most likely multiplicity of each 
mutation during MCMC 

Reconstructs phylogenies during 
MCMC 

Reconstructs phylogenies after 
MCMC 

Estimates purity from SNVs and 
CNAs 

Estimates purity from CNAs 

PhyloWGS and DPClust differ in several ways. The copy number state of a 
region of the genome affects the allele frequency of mutations located within 
that region, as does the number of chromosome copies bearing a mutation, or 
‘multiplicity’. PhyloWGS models the interaction between copy number 
aberrations and SNV allele frequencies within Markov chain Monte-Carlo 
(MCMC), whereas DPClust sets the multiplicity of each mutation to its most 
likely value prior to MCMC. PhyloWGS includes CNAs within its clustering 
model, but DPClust does not. DPClust sets purity to a fixed value based on 
CNA analysis, whereas PhyloWGS estimates purity during clustering of CNAs 
and SNVs. Whereas PhyloWGS estimates phylogenies through MCMC by 
sampling over a distribution of phylogenies, DPClust reconstructs phylogenies 
after MCMC, using a set of rules. 

Overall, PhyloWGS is more flexible in how it treats copy number aberrations 
and their effects on SNV allele frequencies. This gives it superior ability in 
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reconstructing phylogenies, but means that it is more likely to be misled by 
miscalled CNAs and SNVs, resulting in inferior estimates of tumor purity. 
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