
Supplementary Material to

Modelling Cancer Progression using Mutual Hazard

Networks

Rudolf Schill1, Stefan Solbrig2, Tilo Wettig2, and Rainer Spang1

1Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg
2Department of Physics, University of Regensburg

Contents

1 Mutual Hazard Networks as stochastic approximations of Conjunctive Bayesian
Networks 2

2 Runtime of MHN in simulation experiments 5

3 Illustration of the Kronecker product in eq. 9 6

4 Comparison of Mutual Hazard Networks to Conjunctive Bayesian Networks 7

1



1 Mutual Hazard Networks as stochastic approximations of Con-
junctive Bayesian Networks

The functional form in eq. 2 of the main manuscript can be seen as a stochastic approximation
of conjunctive dependencies. We would like to illustrate this approximation in an easy example:
Consider the CBN in Fig. S1A which defines the rate of event 4 by the function

fCBN
4 (x) =

{
2.50 if x1 = 1 and x2 = 1 and x3 = 1

0 otherwise

We can approximate this function by the MHN in Fig. S2B. For illustration we set Θ41 = Θ42 =
Θ43 = 3

√
2.5/Θ44, such that the rate of event 4 depends equally on events 1, 2 and 3, and evaluates

again to 2.50 after all of them have occured:

fMHN
4 (x) = Θ44(Θ

x1+x2+x3
41 )

Figure S1C shows that fMHN
4 approximates fCBN

4 in the limit of Θ44 → 0 (although only CBNs
allow strictly zero rates).

In a more complex situation, where the rate of an event does not depend equally strong on its
parent events, we see a similar behaviour. For the CBN most transitions between genotypes are
forbidden, while an approximating MHN assigns the highest rates to the same transitions but also
allows transitions with smaller rates from states where only some parent events have occured (Fig.
S2).
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Figure S1: An example for a CBN (A) which can be approximated by an MHN (B). (C) shows the
rate of event 4 as a function of the number of occured parent events. The purple curve corresponds
to CBN where event 4 can only occur if all three parent events have occured. The other three
curves to MHNs where event 4 can occur spontaneously with different rates Θ44 but becomes more
and more likely the more parent events have occured. With Θ44 becoming smaller, the curves
approximate the CBN.
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Figure S2: A CBN (left) and its approximating MHN (right) defining the Markov processes shown
below them. For illustration we only show transitions that introduce event 1 to the genotype.
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2 Runtime of MHN in simulation experiments

We tested the performance of our implementation in simulation experiments. MHN was written in
R, and its performance-critical parts were implemented in C (using the R package inline) to avoid
unnecessary memory-copy operations. We made explicit calls to BLAS routines and compiled R to
use the Intel MKL library for vectorized and threaded matrix and vector operations. Fig. S3 shows
the runtime of a single gradient step for random and dense Θ on a Dell OptiPlex 9020 workstation
with 8GB RAM and an Intel R© CoreTM i5-4590 CPU. The runtime was about 1 minute for n = 20
and scaled exponentially with n as expected.
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Figure S3: Runtime of a single gradient step for random and dense Θ.
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3 Illustration of the Kronecker product in eq. 9

Figure S4: Illustration of QΘ represented as a sum of Kronecker products for n = 3 in equation 9. The
i-th row corresponds to the i-th term in the sum and contains all transitions that introduce event i to
the genome. A row is read from left to right and shows how the Kronecker product successively describes
all possible transition rates that can arise due to multiplicative interactions with other events. The first
highlighted Kronecker factor describes the two possible states of event i and a transition with base rate Θii.
Each subsequent Kronecker factor that is multiplied from the left or from the right appends the two states
of the corresponding event j to all previously modelled states. This doubles the number of modelled states,
where one half lacks the event j and retains their previous transition rates, while the other half has j present,
which modulates their transition rates by the factor Θij .
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4 Comparison of Mutual Hazard Networks to Conjunctive Bayesian
Networks

The following table that is also part of the main manuscript compares MHNs and CBNs on three
cytogenetic cancer datasets (Baudis and Cleary, 2001) which were previously used by Gerstung
et al. (2009).

Table 1: MHNs compare favourably to CBNs on three datasets in terms of the log-likelihood scores
per tumour, averaged over 5 folds in cross-validation. They also compare favourably in terms of
the AIC which penalizes the number of parameters in a model and is weighted by the sample size.
While MHNs have n2 continuous parameters, CBNs have n continuous parameters and a discrete
graph structure that is hard to quantify in terms of degrees of freedom, hence we ignore the latter
and bound the AIC of CBNs from below.

cross-validated in-sample AIC
dataset MHN CBN MHN CBN MHN

Breast cancer -5.63 -5.73 -5.54 ≥9373 9152
Colorectal cancer -5.64 -5.79 -5.41 ≥6612 6288
Renal cell carcinoma -5.02 -5.13 -4.81 ≥2587 2559

Below are plots showing (A) the raw data, (B) the learned CBNs, and (C) the correspond-
ing MHNs. Note that the MHNs show mutual dependencies as well as inhibiting edges, features
that a CBN does not have. Our observation that MHNs compare favorably in terms of both
cv-log-likelihood and AIC can be interpreted as evidence that such mutual dependencies between
progression events exist in all three types of cancer. The models show striking overlap as well as
marked differences.

Breast cancer: Both models have the edges +8q→ -8p→ -11q in common (green). The tumour
initiating role of +8q may arise from the oncogene MYC on chromosome arm 8q. The two models
also agree in the edge +20q → -13q (blue), where the oncogene AURKA and the tumor suppressor
BRCA2 are located.

However, MHN identifies mutual exclusivity between +17q and -16q (red) which the CBN
cannot. Interestingly, gains at 17q, the locus of the oncogene ERBB2, are associated with a poor
prognosis (Buerger et al., 1999) while losses at 16q are associated with a good prognosis (Roylance
et al., 1999). Moreover, in the CBN the event +1q predisposes cancers to a subsequent 16q loss.
The MHN model agrees that the two events are related but interprets their interplay differently:
Here +17q inhibits both +1q and -16q and their association can be explained away by the absence
of +17q. Hence the MHN does not see a driver event in +1q which facilitates a subsequent 16q
loss and thus a favorable course of progression.

Colorectal cancer: Both models agree that +20p is an initiating event and promotes -18q (red), -
4q (green), +7q (orange), and +13q (purple), likely due to genetic instability caused by the oncogene
AURKA (Bischoff, 1998). They also agree in the edges +20q→ +8q→ -8p. CBN further identifies
a subsequent major event in the loss of 18q which is the locus of the tumour suppressor SMAD4
and appears to trigger -1p, -15q, -17p and -8p. In contrast, MHN identifies -8p as an intermediate
rather than terminal event which promotes both -18q and -15q, thereby explaining away their
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positive association. Compared to the CBN this interpretation avoids assigning the exceptionally
large rate of 18.2 to the event -8p, which would mean that -8p occurs immediately after its parent.

Renal cell carcinoma: Both models identify -3p as an initiating event which is the locus of
VHL, a tumour suppressor which regulates the hypoxia response pathway (Cowey and Rathmell,
2009) and plays a known initiating role in RCC (Gnarra et al., 1994). The models also agree that
-3p promotes -6p. While both models find that -4q is related to -4p, -6q, -13q and +17q, these
edges point away from -4q in the CBN and point towards -4q in the MHN. Similarly, CBN finds
that +17q promotes +17p, while MHN finds that +17p promotes +17q.
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Figure S5: Breast cancer: (A) shows the raw data, where rows are copy number alterations and are
sorted by frequency, while columns are event tumours whose 0/1-patterns are sorted lexicographi-
cally. (B) shows the CBN estimated from this data, where edges denote that all parent alterations
must have occured before the child alteration can. Afterwards this alteration happens with the
rate annotated in the corresponding node. (C) shows the MHN estimated from this data, where
alterations initially happen with rate annotated in the corresponding node. Once an alteration has
occured, it multiplies the rate of other events by the factor annotated on the edges.
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Figure S6: Colorectal cancer: (A) shows the raw data, where rows are copy number alterations
and are sorted by frequency, while columns are event tumours whose 0/1-patterns are sorted lex-
icographically. (B) shows the CBN estimated from this data, where edges denote that all parent
alterations must have occured before the child alteration can. Afterwards this alteration happens
with the rate annotated in the corresponding node. (C) shows the MHN estimated from this
data, where alterations initially happen with rate annotated in the corresponding node. Once an
alteration has occured, it multiplies the rate of other events by the factor annotated on the edges.

10



-3p
1.6

-13q
0.2

-Xp
0.1

+Xp
0.1

-4p
0.1

-4q
0.2

-8p
0.3

-9p
0.3

-18q
0.2

-6q
0.3

+17p
0.2

+17q
0.2

1.2

1.1
1.3

1.8

1.5
1.7

1.5

1.6

3.0

1.2

27.72.1

2.7

1.3

0.6

0.7

0.4
0.5

0.9

0.6

0.6

0.9

0.6

0.6

18.5

A. Renal cell carcinoma dataset

B. Conjunctive Bayesian Network

C. Mutual Hazard Network
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Figure S7: Renal cell carcinoma: (A) shows the raw data, where rows are copy number alterations
and are sorted by frequency, while columns are event tumours whose 0/1-patterns are sorted lex-
icographically. (B) shows the CBN estimated from this data, where edges denote that all parent
alterations must have occured before the child alteration can. Afterwards this alteration happens
with the rate annotated in the corresponding node. (C) shows the MHN estimated from this
data, where alterations initially happen with rate annotated in the corresponding node. Once an
alteration has occured, it multiplies the rate of other events by the factor annotated on the edges.
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