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1. Models and algorithms

This section contains details on the classification methods, the models for continuous, bi-
nary, count and time-series data used to test our approach, as well as the ABC algorithm
employed.

1.1 Classification methods

There are many possible classification methods, ranging from traditional logistic regression
to more recent deep learning and kernel methods. For an introduction, we refer the reader
to the textbooks by Wasserman (2004) and Hastie et al (2009). We used methods provided
by two libraries: For linear and quadratic discriminant analysis (LDA and QDA), mat-
lab’s classify.m was employed. For L1 and L2 regularized polynomial logistic regression
and support vector machine (SVM) classification, we used the liblinear classification
library (Fan et al 2008), version 1.93, via the matlab interface, with a fixed regularization
penalty (we used the default value C = 1). The liblinear library is for linear classifi-
cation. Polynomial classification was implemented via polynomial basis expansion (Hastie
et al 2009, Chapter 5). We rescaled the covariates to the interval [−1, 1] and used the first
nine Chebyshev polynomials of the first kind.

For all methods but LDA, multidimensional xi were projected onto their principal com-
ponents prior to classification and thereafter rescaled to variance one. This operation
amounts to multiplying the xi with a whitening matrix, and the yi were multiplied with
the same matrix.

The max-rule consisted in trying several classification methods and selecting the one
giving the largest classification accuracy. We used L1 and L2 regularized polynomial logistic
regression and SVM classification with the penalties C = 0.1, 1, 10, as well as LDA and QDA.
When LDA was not applicable (as for the moving average model), it was excluded from the
pool of classification methods used for the max-rule.

1.2 Models used for continuous, binary, count, and time series data

We tested the proposed inference method on several well-known distributions. This section
details the models and lists the parameters used to generate the data, as well as the priors
employed for Bayesian inference and the corresponding posterior distributions. The poste-
rior distributions served as reference against which we compared the distributions produced
by classifier ABC.

The sample average of n data points (x1, . . . , xn) will be denoted by x̄, and the sample
variance by s2

n,

x̄ = 1
n

n∑
i=1

xi, s2
n = 1

n

n∑
i=1

(xi − x̄)2. (S1)

1.2.1 CONTINUOUS DATA

We considered inference for a univariate Gaussian with unknown mean and known variance,
and inference of both mean and variance.
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Gaussian with unknown mean. The data were sampled from a univariate Gaussian with
mean µo = 1 and variance vo = 1. Inference was performed on the mean µ. In the Bayesian
setting, the prior distribution of µ was Gaussian,

µ ∼ N (µ0, v0), p(µ|µ0, v0) = 1√
2πv0

exp
(
−(µ− µ0)2

2v0

)
, (S2)

with mean µ0 = 3 and variance v0 = 1. For Gaussian data with known variance vo and
a Gaussian prior on the mean µ, the posterior distribution of µ is Gaussian with mean µn
and variance vn,

µ|X ∼ N (µn, vn), µn =
(
µ0
v0

+ nx̄

vo

)
vn, vn =

( 1
v0

+ n

vo

)−1
, (S3)

see, for example, (Gelman et al 2003, Chapter 2).
Gaussian with unknown mean and variance. The Gaussian data were generated with

mean µo = 3 and variance vo = 4. Both mean µ and variance v were considered unknown.
In the Bayesian setting, the prior distribution was normal-inverse-gamma,

µ|v ∼ N
(
µ0,

v

λ0

)
, v ∼ G−1(α0, β0), p(v|α0, β0) = βα0

0
Γ(α0)v

−α0−1 exp
(
−β0
v

)
, (S4)

where α0 and β0 are the shape and scale parameters, respectively, and Γ(.) is the gamma
function, Γ(t) =

∫∞
0 ut−1 exp(−u)du. The parameter values µ0 = 0, λ0 = 1, α0 = 3, β0 = 0.5

were used. This gives a prior variance with mean and standard deviation 0.25. The posterior
is normal-inverse-gamma with updated parameters µn, λn, αn, βn,

µ|v,X ∼ N
(
µn,

v

λn

)
, µn = λ0µ0 + nx̄

λ0 + n
, λn = λ0 + n, (S5)

v|X ∼ G−1(αn, βn), αn = α0 + n

2 , βn = β0 + n

2 s
2
n + n

2
λ0

λ0 + n
(x̄− µ0)2, (S6)

see, for example, (Gelman et al 2003, Chapter 3).

1.2.2 BINARY DATA

The data were a random sample from a Bernoulli distribution with success probability
(mean) µo = 0.2. The prior on the mean µ was a beta distribution with parameters
α0 = β0 = 2,

µ ∼ Beta(α0, β0), p(µ|α0, β0) = Γ(α0 + β0)
Γ(α0)Γ(β0)µ

α0−1(1− µ)β0−1, (S7)

which has mean 0.5 and standard deviation 0.22. The posterior is beta with parameters
αn, βn,

µ|X ∼ Beta(αn, βn), αn = α0 + nx̄, βn = β0 + n(1− x̄), (S8)

see, for example, (Gelman et al 2003, Chapter 2).
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1.2.3 COUNT DATA

The data were a random sample from a Poisson distribution with mean λo = 10. The prior
on the mean λ was a gamma distribution with shape parameter α0 = 3 and rate parameter
β0 = 1/2,

λ ∼ G(α0, β0), p(λ|α0, β0) = βα0
0

Γ(α0)λ
α0−1 exp (−β0λ) . (S9)

The prior distribution has mean 6, mode 4, and standard deviation 3.46. The posterior
distribution is gamma with parameters αn, βn,

λ|X ∼ G(αn, βn), αn = α0 + nx̄, βn = β0 + n, (S10)

see, for example, (Gelman et al 2003, Chapter 2).

1.2.4 TIME SERIES

We considered a moving average and an ARCH(1) model.
Moving average model. The time series is determined by the update equation

xt = εt + θεt−1, t = 1, . . . , T, (S11)

where the εt, t = 0, . . . , T are independent standard normal random variables, and ε0 is
unobserved. The observed data were generated with θo = 0.3. The xi for classification
consisted of 2 consecutive time points (xt, xt+1).

For the derivation of the posterior distribution, it is helpful to write the update equation
in matrix form. Let x0:T = (x0, . . . , xT ) and ε = (ε0, . . . , εT ) be two column vectors of length
T +1. The update equation does not specify the value of x0. We thus set x0 = ε0. Equation
(S11) can then be written as

x0:T = Bε, B =



1 0
θ 1 0

. . . . . . . . .
. . . . . . 0

θ 1


. (S12)

It follows that x0:T is zero mean Gaussian with covariance matrix BB>. Since x0:T has a
Gaussian distribution, we can analytically integrate out the unobserved x0. The resulting
vector x1:T is zero mean Gaussian with tridiagonal covariance matrix C,

C =



1 + θ2 θ
θ 1 + θ2 θ

. . . . . . . . .
. . . . . . θ

θ 1 + θ2


. (S13)
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We denote the distribution of x1:T by p(x1:T |θ). A uniform prior on (−1, 1) was assumed
for θ. The posterior probability density function of θ given x1:T is thus p(θ|x1:T ),

p(θ|x1:T ) = p(x1:T |θ)∫ 1
−1 p(x1:T |θ)dθ

, θ ∈ (−1, 1). (S14)

The normalizing denominator can be computed using numerical integration. Numerical
integration can also be used to compute the posterior mean and variance. We used matlab’s
integral.m.

ARCH(1) model. The model used was

xt = θ1xt−1 + εt, εt = ξt

√
0.2 + θ2ε2t−1, t = 1, . . . , T, x0 = 0, (S15)

where the ξt and ε0 are independent standard normal random variables. We call θ1 the
mean process coefficient and θ2 the variance process coefficient. The observed data consist
of the xt and we generated them with (θo1, θo2) = (0.3, 0.7). The xi used for classification
consisted of 5 consecutive time points.

For the derivation of the posterior distribution, we introduce the column vectors ε =
(ε1, . . . , εT ) and x1:T = (x1, . . . , xT ) which are related by a linear transformation,

ε = Qx1:T , Q =



1 0
−θ1 1 0

. . . . . . . . .
. . . . . . 0

−θ1 1


. (S16)

Note that the band-diagonal matrix Q depends on θ1. The determinant of Q is one so that

px(x1:T |θ1, θ2) = pε(Qx1:T |θ1, θ2). (S17)

The assumption on the ξt implies that εt|εt−1 is Gaussian with variance 0.2 + θ2ε
2
t−1. We

thus have

pε(ε|θ1, θ2) = p1(ε1|θ1, θ2)
T∏
t=2

1√
2π(0.2 + θ2ε2t−1)

exp
(
− ε2t

2(0.2 + θ2ε2t−1)

)
, (S18)

where p1 is the pdf of ε1. Since ε0 is a latent variable following a standard normal distribu-
tion, p1 is defined via an integral,

p1(ε1|θ1, θ2) =
∫ 1√

2π(0.2 + θ2ε20)
exp

(
− ε21

2(0.2 + θ2ε20)

)
1√
2π

exp
(
−ε

2
0
2

)
dε0. (S19)

We used numerical integration, matlab’s integral.m, to evaluate it. The prior distribu-
tion of (θ1, θ2) was the uniform distribution on the rectangle (−1, 1)× (0, 1). The posterior
pdf p(θ1, θ2|x1:T ) is

p(θ1, θ2|x1:T ) = pε(Qx1:T |θ1, θ2)∫ 1
−1
∫ 1

0 pε(Qx1:T |θ1, θ2)dθ1dθ2
, (θ1, θ2) ∈ (−1, 1)× (0, 1). (S20)

The normalizing denominator, the posterior means and variances were computed with mat-
lab’s integral2.m.

6



1.3 ABC algorithm

There are several algorithms for approximate Bayesian computation (ABC, for an overview,
see, for example, Marin et al 2012). For the results in the paper, we used a population Monte
Carlo sampler, also known as sequential Monte Carlo ABC algorithm, with a Gaussian
kernel (Marin et al 2012, Algorithm 4), (Beaumont et al 2009; Sisson et al 2007; Toni
et al 2009). In brief, the algorithm starts with samples from the prior distribution and
then produces sets (generations) of weighted independent samples where the samples from
any given generation are the starting point to get the samples of the next generation. The
empirical pdfs, scatter plots, and sample moments reported in the paper all take the weights
into account.

In some ABC implementations, the acceptance thresholds are the empirical quantiles of
the discrepancies of the accepted parameters; in others, a schedule is pre-defined. The pre-
defined schedule depends on the scale of the discrepancy measure which is often unknown.
Using quantiles avoids this problem, but if the quantile is set too low, too few samples
will be accepted which results in a slow algorithm. For Jn, the scale is known. We took
advantage of this and used a hybrid approach to choose the thresholds: The threshold for
a generation was the maximum of the value given by a pre-defined schedule and the value
given by the 0.1 quantile of the Jn of the accepted parameters from the previous generation.
With t denoting the ABC generation, the schedule was 0.75/(1 + 0.45 log t), which gives a
value of 0.5 at t = 3.

Unlike a purely quantile-based approach, the hybrid approach avoids sudden jumps to
small thresholds. We can thereby obtain posteriors for intermediate thresholds. These
are faster to obtain but still informative. The final posteriors from both approaches are,
however, very similar, as shown in Supplementary Figure 1.
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Supplementary Figure 1: Assessment of the hybrid approach to choose the acceptance thresholds
in classifier ABC with a sequential Monte Carlo algorithm. The final posterior pdfs for the hybrid
approach (blue, circles) and a purely quantile-based approach (green, squares) are very similar. The
benefit of the hybrid approach is that it yields more quickly useful intermediate solutions. The
results are for L1-regularized polynomial logistic regression.
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2. Measuring discrepancy via classification

In Figure 2 in the main text, chance-level discriminability was attained at a point close to
the parameter θo which was used to generate X. We provide here two more such examples:
Supplementary Figure 2 shows the results for a Gaussian distribution with unknown mean
and variance, and Supplementary Figure 3 the results for the autoregressive conditional
heteroskedasticity (ARCH) time series model in Equation (S15) with unknown mean and
variance process coefficients. Parameter θo is marked with a red cross.
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(b) L1-regularized logistic regression
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(c) L1-regularized SVM
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(d) Max-Rule

Supplementary Figure 2: Gaussian with unknown mean and variance. The contour plots show Jn
as a function of the two parameters for large sample sizes (n = 100,000). The different panels
depict results for different classification methods. All obtain their minimal classification accuracy,
chance-level discriminability 0.5, close to θo.
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(b) L1-regularized logistic regression
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(c) L1-regularized SVM
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(d) Max-Rule

Supplementary Figure 3: ARCH(1) model in Equation (S15) with unknown mean and variance
process coefficients θ1 and θ2. The results are for n = 10,000 and visualized as in Supplementary
Figure 2.
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3. Classical inference via classification

In Figure 3 in the main text, we plotted the mean squared estimation error E[||θ̂n − θo||2]
for the examples in Figure 2 against the sample size n for L1-regularized logistic regression.
Supplementary Figure 4 shows the corresponding results for linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), L1-regularized polynomial support vector
machine (SVM) classification, and the max-rule. As for the results in the main text, the
decay is linear on the log-log scale which suggests convergence in quadratic mean, hence
convergence in probability, and thus consistency of θ̂n.
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(c) L1-regularized SVM
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Supplementary Figure 4: The mean squared estimation error for the examples in Figure 2 in the
main text as a function of the sample size n (solid lines, circles). The mean was computed as an
average over 100 outcomes. The dashed lines depict the mean ± 2 standard errors. For QDA, the
Bernoulli case is not reported because, sometimes, data with degenerate covariance matrices were
generated, which the standard QDA algorithm used was not able to handle. For LDA, the moving
average case was omitted since LDA cannot approximate its Bayes classification rule as discussed
in the main text. The linear trend on the log-log scale suggests convergence in quadratic mean, and
hence consistency of the estimator θ̂n.
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4. Bayesian inference via classification

This section contains further results for classifier ABC on data with known properties,
supplementing Section 4 of the main text.

4.1 The inferred posterior distributions for all classification methods used

We report the posterior distributions for all classification methods used in the paper in
Supplementary Figure 5 to Supplementary Figure 10. The results are organized according
to the modality of the data.

The results are for n = 50 and 10,000 ABC samples with a sequential Monte Carlo
implementation of ABC. For the univariate cases, empirical pdfs of the ABC samples are
shown together with the reference posterior pdf (red solid) and the prior pdf used (red
dashed). For the bivariate cases, the ABC samples are shown as a scatter plot and the
reference posterior is visualized using contour plots (red solid line). The priors are either
shown as contour plots (with red dashed lines) or, if uniform, by hatching their domain.
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(b) Zoom

Supplementary Figure 5: Binary data: Inferred posterior distribution of the success probability of a
Bernoulli random variable.
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(b) Zoom

Supplementary Figure 6: Count data: Inferred posterior distribution of the mean of a Poisson ran-
dom variable.
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(b) Zoom

Supplementary Figure 7: Continuous data: Inferred posterior distribution of the mean of a Gaussian
random variable with known variance.
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Supplementary Figure 8: Continuous data: Inferred posterior distribution of the mean and variance
of a Gaussian random variable.
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(b) Zoom

Supplementary Figure 9: Time series: Inferred posterior distribution of the lag coefficient of a zero
mean moving average model of order one.
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Supplementary Figure 10: Time series: Inferred posterior distribution of the mean and variance
process coefficients of a ARCH(1) model.
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4.2 Movies showing the evolution of the inferred posteriors

The sequential Monte Carlo algorithm which we used together with classifier ABC is itera-
tively morphing a prior distribution into a posterior distribution. Table 1 contains links to
movies which show this process.

Data LDA QDA Logi regr SVM Max-Rule

Binary (Bernoulli) avi mp4 avi mp4 avi mp4 avi mp4

Count (Poisson) avi mp4 avi mp4 avi mp4 avi mp4 avi mp4

Continuous (Gauss, mean) avi mp4 avi mp4 avi mp4 avi mp4 avi mp4

Continuous (Gauss, mean & var) avi mp4 avi mp4 avi mp4 avi mp4

Time series (moving average) avi mp4 avi mp4 avi mp4 avi mp4

Time series (ARCH) avi mp4 avi mp4 avi mp4 avi mp4

Table 1: Links to movies showing the inference process of classifier ABC with a sequential Monte
Carlo algorithm. Online at https://www.cs.helsinki.fi/u/gutmann/material/CLAD/movies/

4.3 Relative errors in posterior means and standard deviations

As a quantitative analysis, we computed the relative error in the mean and the standard
deviation of the inferred posterior distributions. The comparison is based on the mean and
standard deviation of the true posterior if available, or, if not, the posterior obtained by
deterministic numerical integration, see Supplementary material 1.2.

Supplementary Figure 11 shows the relative error for the max-rule as a function of
the iteration in the ABC algorithm. The error stabilizes within 4-5 iterations. For the
examples with independent data points, the errors in the posterior mean are within 5% after
stabilization. A larger error of 15% occurs for the time series data. The histograms and
scatter plots show, however, that the corresponding ABC samples are still very reasonable.

While the relative error for the mean is both positive or negative, for the standard devi-
ation, the error is positive only. This means that the inferred posteriors have a larger spread
than the reference posteriors, that is, the posterior variance is overestimated. Further, the
relative errors are generally larger for the standard deviations than for the means. This may
not be too surprising though: Also in the framework of maximum likelihood estimation, the
variance of the estimate of the variance is twice the variance of the estimate of the mean
for standard normal random variables.
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Supplementary Figure 11: Quantitative analysis of the inferred posterior distributions. The curves
show the relative error in the posterior mean and standard deviation for the Gauss, Bernoulli, Pois-
son, moving average, and ARCH examples. The results are for classification with the max-rule.
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5. Application on real data

This section supplements Section 5 of the main text. Further results and analysis of our
application to infectious disease epidemiology are presented.

5.1 Evolution of inferred posterior distributions on simulated data

We inferred the individual-based epidemic model with a sequential Monte Carlo ABC with
Jn as discrepancy measure (classifier ABC). Supplementary Figure 12 visualizes the evolu-
tion of the inferred posterior distribution over four generations. We show the results for
classifier ABC with random subsets (blue, circles) and without (red, squares). For refer-
ence, the results with the method by Numminen et al (2013), which uses expert knowledge,
are shown in black (point markers). Figure 7 in the main text shows the fourth generation
results in greater detail.

Numminen et al (2013) presented posterior distributions for four generations. In both
the results reported here and the results by Numminen et al (2013), the mean of the
inferred posteriors seems to have stabilized after four generations. The spread of the inferred
posteriors, however, is still slightly shrinking. We thus ran the simulations for an additional
fifth iteration. The results are shown in Supplementary Figure 13. With the fifth iteration,
the posterior pdfs for classifier ABC with random projections became more concentrated
and also more similar to the expert solution than the posteriors of classifier ABC without
random projections. The smaller posterior variance is in line with the tighter Jn-diagrams
in Figure 6 in the main text.

5.2 Evolution of inferred posterior distributions on real data

The evolution of the posterior pdfs during the ABC algorithm is shown in Supplementary
Figure 14. Starting from uniform distributions, posterior distributions with well defined
modes emerged. Figure 8 in the main text shows the fourth generation results in greater
detail. While the posteriors of Λ and θ are qualitatively similar for all three methods, the
posterior of β has a smaller mode for classifier ABC with random subsets (blue, crosses)
than for classifier ABC without random subsets (red, asterisks) or the expert solution (black,
plus markers). This behavior persists in the fifth generation as shown in Supplementary
Figure 15. Compared to the fourth generation results, the posteriors for classifier ABC with
random subsets (blue, crosses) and the expert solution (black, plus markers) became in the
fifth generation more concentrated than the posterior for classifier ABC without random
subsets (red, asterisks).

5.3 Further results on compensating missing expert statistics with classifier ABC

Classifier ABC, or more generally the discrepancy measure Jn, is able to incorporate expert
statistics, by letting them be features (covariates) in the classification. On the one hand, this
allows for expert knowledge to be used in classifier ABC. On the other hand, it allows one to
enhance expert statistics by data-driven choices. The latter is particularly important if only
a insufficient set of summary statistics may be specified. We show here that classifier ABC
can counteract shortcomings caused by a suboptimal choice of expert statistics, thereby
making the inference more robust.
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We selected two (simple) expert statistics used by Numminen et al (2013), namely the
number of different strains circulating and the proportion of individuals who are infected.
We then inferred the posteriors with this reduced set of summary statistics only, using
the method of Numminen et al (2013). Supplementary Figure 16 visualizes the resulting
posterior pdfs (curves in magenta with diamond markers). A comparison with the expert
solution with a full set of summary statistics (black curve, point markers) shows that the
posterior distributions of Λ and θ are affected by the suboptimal choice of expert statistics.
We then included the two selected expert statistics as additional features in classifier ABC.
Consequently, the posteriors of Λ and θ recuperated, both when random features were
present (cyan curve with triangles) or not (red curve with hexagrams).
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Supplementary Figure 12: Simulated data: Evolution of the posterior pdfs (scaled histograms of
the samples). Black, points: ABC solution using expert knowledge, produced with code from Num-
minen et al (2013). Blue, circles: classifier ABC with random subsets. Red, squares: classifier ABC
without random subsets. Green vertical lines: location of the data generating parameter θo. The
results are for 1,000 ABC samples.
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Supplementary Figure 13: Simulated data: Fifth generation results. The posterior pdfs are kernel
density estimates based on 1,000 ABC samples. We used matlab’s ksdensity.m with the default
settings, that is, a Gaussian kernel with an adaptively chosen bandwidth. Classifier ABC with
random projections (blue, circles) yielded results which are more similar to the expert solution
(black, points) than classifier ABC without random projections (red, squares).
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Supplementary Figure 14: Real data: Evolution of the posterior pdfs (scaled histograms of the sam-
ples). Black, plus markers: ABC solution using expert knowledge, produced with code from Num-
minen et al (2013). Blue, crosses: classifier ABC with random subsets. Red, asterisks: classifier
ABC without random subsets. The results are for 1,000 ABC samples.
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Supplementary Figure 15: Real data: Fifth generation results. The posterior pdfs are kernel density
estimates based on 1,000 ABC samples. We used matlab’s ksdensity.m with the default settings, that
is, a Gaussian kernel with an adaptively chosen bandwidth. The posteriors for classifier ABC with
random subsets (blue, crosses) and the expert solution (black, plus markers) are more concentrated
than the posterior for classifier ABC without random subsets (red, asterisks).
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Supplementary Figure 16: Using expert statistics in classifier ABC. The results are for simulated
data and show the fourth generation pdfs. Visualization is as in e.g. Supplementary Figure 15. ABC
with a reduced set of expert statistics affected the posteriors (black curve with points vs magenta
curve with diamonds as markers). Classifier ABC was able to counteract the shortcomings caused by
the suboptimal choice of expert statistics (cyan curve with triangles and red curve with hexagrams).
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