### Environ Health Perspect

#### DOI: 10.1289/EHP5034

**Note to readers with disabilities:** *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

#### **Supplemental Material**

### Human Health Benefits from Fish Consumption vs. Risks from Inhalation Exposures Associated with Contaminated Sediment Remediation: Dredging of the Hudson River

Jacob Kvasnicka, Katerina S. Stylianou, Vy K. Nguyen, Lei Huang, Weihsueh A. Chiu, G. Allen Burton Jr, Jeremy Semrau, and Olivier Jolliet

#### **Table of Contents**

Table S1. Descriptions of primary model parameters for each considered health impact pathway.

**Table S2.** Input parameterization for estimating the health burden of fatal occupational incidents and associated uncertainty.

**Table S3.** Uncertainty analysis (Monte Carlo) input data for several time-independent parameters pertaining to oral PCB exposure from fish consumption, dose-response and severity.

**Table S4.** Uncertainty analysis (Monte Carlo) input data for time-dependent, lognormally distributed fish-tissue PCB concentrations ( $\overline{C(t)}_{fish, PCB}$ , mg<sub>PCB</sub>/kg<sub>fish</sub>).

Table S5. Uncorrected estimates of individual Hudson River fish and crab consumption.

**Table S6.** Population-level fish and crab consumption (kg/yr) from the Lower Hudson by survey, season, and species.

Table S7. Background data used to estimate population-level fish consumption from the Site.

**Table S8.** Background data used to correct estimates of population-level fish consumption from the Site.

**Table S9.** Background data used to estimate non-linear dose-response relationship for oral intake of PCBs.

**Table S10.** Summary of input parameterization for estimating above-baseline ambient air PCB exposures and risks during dredging.

**Table S11.** Summary of input parameterization for estimating emissions of primary  $PM_{2.5}$  and  $NO_x$  from project diesel-powered, nonroad heavy equipment.

**Table S12.** Summary of input parameterization for estimating emissions of primary  $PM_{2.5}$  and  $NO_x$  from barge traffic.

**Table S13.** Route characteristics, intake fractions (iF), and estimated air emissions from rail transport of PCB waste to and from seven hazardous waste landfills across the United States.

**Table S14.** Summary of project workers and cumulative exposure durations by general labor category.

**Figure S1.** Species- and river-section weighted annual average, wet-weight fish tissue concentrations of Tri+ PCBs, projected by US EPA's FISHRAND bioaccumulation model for different remedial alternatives. A) Upper Hudson and B) Lower Hudson forecasts. Model forecasts are from the EPA's Record of Decision (Table 11-2) (US EPA 2002) and Responsiveness Summary (Tables 313699-1 and 363176-1) (TAMS Consultants 2002). In the present study, MNA = Source Control (SC), and REM-3/10/Select (6-yr 0.13% resuspension) = Source Control with Environmental Dredging (SC&ED).

**Figure S2.** Slope of the PCB dose-response relationship corresponding to a 50% decrease in immunoglobulin M. Curved (black) solid line = median. Curved (black) dashed line = arithmetic mean. Surrounding (dark grey) area = 95% confidence interval. Vertical (colored) dashed lines = 95% confidence intervals of average daily doses (mg/kg-d) for three subpopulations: Upper Hudson anglers and their family members consuming fish at frequencies of 1) twice per year, 2) twice per month, and 3) twice per week during the 2004-2009timeframe.

**Figure S3.** Ambient air total PCB concentrations measured along the dredging corridor during the remediation (2009-2015) by distance from the Site. Results were obtained from a site-specific ambient air PCB monitoring program (Anchor QEA and Environmental Standards 2009; Ecology and Environment 2004, 2017). Solid (black) horizontal lines represent the median, interquartile range (IQR), and  $1.5 \times IQR$ . Dashed (green) horizontal line = mean background concentration.

**Figure S4.** Stochastic health benefit-risk comparison for the Hudson River PCBs Superfund Site Environmental Dredging (ED) remediation: Sensitivity analysis including worker impacts. Results were generated via Monte Carlo simulations accounting for parameter variability and uncertainty. A) Induced Health Burden ( $IB_{ED,sensitivity}$ ) = total health burden of ED from increased air emissions of PCBs, primary and secondary PM<sub>2.5</sub>, and fatal occupational incidents; B) Net Avoided Health Burden (Net health benefit<sub>ED</sub>) =  $AB_{ED} - IB_{ED,sensitivity}$ , with  $AB_{ED}$  being the Avoided Health Burden of ED as defined in the main text (Figure 4A). Dotted or dashed vertical lines correspond to the fifth, 10<sup>th</sup>, 25<sup>th</sup>, 50<sup>th</sup>, 75<sup>th</sup>, and 90<sup>th</sup> percentiles when read from left to right. The solid (red) vertical line through zero denotes a net of 0 avoided DALYs (i.e., benefits = risks). Values to the left of this line represent net risks while values to the right of this line represent net benefits.

## References

| Parameter (unit)                                                             | Description                                  |
|------------------------------------------------------------------------------|----------------------------------------------|
| $\overline{C(t)}_{\text{figh PCP}}$ (kg <sub>PCB</sub> /kg <sub>fish</sub> ) | Time-dependent, species- and                 |
|                                                                              | river-section weighted average,              |
|                                                                              | wet-weight, fish tissue Tri+ PCB             |
|                                                                              | concentration (the sum of                    |
|                                                                              | trichloro through decachloro                 |
|                                                                              | PCB homologs), adjusted for                  |
|                                                                              | cooking losses                               |
| $\overline{IR}_{p}$ (kg <sub>fish</sub> /person-y)                           | Annual average individual fish               |
| F                                                                            | ingestion rate from the Site for             |
|                                                                              | subpopulation (p)                            |
| $DR_{ADD_{n  fish  PCB, e}}$ (cases/kg <sub>PCB_intake</sub> )               | Dose-response factor for oral                |
| pitter_r cb.                                                                 | intake of PCBs for health effect             |
|                                                                              | (e)                                          |
| SF <sub>PCB,e</sub> (DALY/case)                                              | Severity factor for oral intake of           |
|                                                                              | PCBs, converting cases of effect             |
|                                                                              | (e) into DALYs                               |
| N <sub>p</sub> (persons)                                                     | Annual number of fish                        |
|                                                                              | consumers in subpopulation (p)               |
| $C_{air, PCB,s} (kg/m^3)$                                                    | Above-baseline average ambient               |
|                                                                              | air concentration of total PCBs              |
|                                                                              | for dredging season (s)                      |
| $BR_{p} (m^{3}/d)$                                                           | Average individual breathing rate            |
|                                                                              | for subpopulation (p)                        |
| D <sub>p,s</sub> (person-d)                                                  | Cumulative exposure duration                 |
|                                                                              | for subpopulation (p) and for                |
|                                                                              | dredging season (s)                          |
| DR <sub>ADD<sub>p,air PCB</sub>,e</sub> (cases/kg <sub>PCB_intake</sub> )    | Dose-response factor for                     |
| F1000 51 000                                                                 | inhalation of PCBs for health                |
|                                                                              | effect (e)                                   |
| $M_{i,j}$ (kg <sub>i_emitted</sub> )                                         | Total emitted mass of PM <sub>2.5</sub>      |
|                                                                              | precursor (i) for emission source            |
|                                                                              | category (j)                                 |
| $iF_i (kg_{PM2.5_intake}/kg_{i_emitted})$                                    | PM <sub>2.5</sub> intake fraction for        |
|                                                                              | precursor (i)                                |
| $DR_{PM_{2.5}}$ (deaths/kg <sub>PM2.5_intake</sub> )                         | Dose-response factor for                     |
|                                                                              | inhalation of PM <sub>2.5</sub> accounting   |
|                                                                              | for cardiopulmonary and lung-                |
|                                                                              | cancer mortality                             |
| SF <sub>PM<sub>2.5</sub></sub> (DALY/death)                                  | Corresponding severity factor for            |
|                                                                              | inhalation of PM <sub>2.5</sub> , converting |
|                                                                              | cardiopulmonary and lung-cancer              |

**Table S1**. Descriptions of primary model parameters for each considered health impact pathway.

|                                     | deaths into DALYs                         |
|-------------------------------------|-------------------------------------------|
| $C_{PM_{n},p}$ (kg/m <sup>3</sup> ) | Above-background personal                 |
| 21214                               | exposure concentration of diesel          |
|                                     | PM <sub>2.5</sub> during a work-shift for |
|                                     | worker subpopulation (p)                  |
| <b>PF</b> <sub>c</sub> (unitless)   | Probability of a fatal                    |
|                                     | occupational incident for one             |
|                                     | full-time equivalent worker in            |
|                                     | general labor category (c)                |
| N <sub>c,s</sub> (persons)          | Number of full-time equivalent            |
|                                     | workers in general labor category         |
|                                     | (c) for dredging season (s)               |
| $LE_{c}(y)$                         | Average life expectancy for a             |
|                                     | worker in general labor category          |
|                                     | (c)                                       |

|                              |                                 |          | N <sub>c,s</sub> (persons) |      |      |      |      |      |                      |
|------------------------------|---------------------------------|----------|----------------------------|------|------|------|------|------|----------------------|
| General labor category       | SOC category match <sup>a</sup> | $PF_{c}$ | 2009                       | 2011 | 2012 | 2013 | 2014 | 2015 | LE <sub>c</sub> (yr) |
| Sediment processing facility |                                 |          |                            |      |      |      |      |      |                      |
| Management & Admin.          | 43-9061                         | 5.E-06   | 5                          | 11   | 21   | 21   | 22   | 25   | 45                   |
| Sediment Unloading           | 53-7030                         | 3.E-04   | 13                         | 12   | 24   | 12   | 12   | 14   | 44                   |
| Size Separation              | 47-2073, 53-7011                | 1.E-04   | 13                         | 15   | 57   | 37   | 38   | 43   | 44                   |
| Thickening & Dewatering      | 51-8031                         | 8.E-05   | 18                         | 12   | 31   | 22   | 23   | 25   | 39                   |
| Water Treatment              | 51-8031                         | 8.E-05   | 9                          | 3    | 5    | 5    | 5    | 5    | 39                   |
| Staging Area                 | 47-2073                         | 1.E-04   | 4                          | 1    | 5    | 2    | 2    | 3    | 43                   |
| Rail Car Loading             | 53-7121, 53-4031                | 1.E-04   | 11                         | 10   | 14   | 14   | 15   | 16   | 46                   |
| Health and Safety & QC       | 29-9012                         | 6.E-05   | 5                          | 6    | 11   | 11   | 11   | 12   | 45                   |
| Maintenance & Operations     | 49-9043, 37-2011                | 3.E-05   | 3                          | 8    | 18   | 18   | 18   | 20   | 43                   |
| Dredging corridor            |                                 |          |                            |      |      |      |      |      |                      |
| Dredge operator              | 53-7030                         | 3.E-04   | 48                         | 19   | 20   | 19   | 30   | 22   | 44                   |
| Dredge support crew          | 53-1031                         | 7.E-05   | 99                         | 45   | 44   | 43   | 71   | 47   | 43                   |
| Vessel captain               | 53-5020                         | 1.E-04   | 24                         | 27   | 34   | 33   | 52   | 46   | 44                   |
| Vessel deckhand              | 53-5021                         | 3.E-04   | 48                         | 55   | 68   | 66   | 104  | 91   | 44                   |

Table S2. Input parameterization for estimating the health burden of fatal occupational incidents and associated uncertainty.

Note: See **Table S1** for a description of primary input parameters.

<sup>a</sup>Matching was based on work descriptions for project general labor categories in the Remedial Action Work Plans (Parsons and Anchor QEA 2009, 2011, 2012, 2013, 2015) and work descriptions for the Standard Occupational Classification (SOC) system category occupations at www.bls.gov.

| Parameter                                                    | Unit                          | Input distribution | Input parameter                       |
|--------------------------------------------------------------|-------------------------------|--------------------|---------------------------------------|
| Individual fish ingestion rates $(\mathbf{IR}_{p})^{a}$      |                               |                    |                                       |
| Twice per year                                               | kg <sub>fish</sub> /person-yr | Uniform            | Min = 0.227, Max = 0.681              |
| Twice per month                                              | kg <sub>fish</sub> /person-yr | Uniform            | Min = 1.940, Max = 5.821              |
| Twice per week                                               | kg <sub>fish</sub> /person-yr | Uniform            | Min = 8.431, Max = 25.294             |
| Number of fish consumers $(\mathbb{N}_p)^b$                  |                               |                    |                                       |
| Upper Hudson, twice per year                                 | persons/yr                    | Triangular         | Min = 79, Mo = 316, Max = 1,271       |
| Upper Hudson, twice per month                                | persons/yr                    | Triangular         | Min = 23, Mo = 94, Max = 377          |
| Upper Hudson, twice per week                                 | persons/yr                    | Triangular         | Min = 17, Mo = 70, Max = 282          |
| Lower Hudson, twice per year                                 | persons/yr                    | Triangular         | Min = 1,538, Mo = 6,187, Max = 24,883 |
| Lower Hudson, twice per month                                | persons/yr                    | Triangular         | Min = 365, Mo = 1,469, Max = 5,908    |
| Lower Hudson, twice per week                                 | persons/yr                    | Triangular         | Min = 136, Mo = 547, Max = 2,201      |
| Body weight <sup>c</sup>                                     | kg                            | Lognormal          | GM = 70, GSD = 1.5                    |
| PCB non-cancer severity factor $(SF_{PCB,e})^d$              | DALY/case                     | Lognormal          | GM = 2.7, GSD = 3.7                   |
| PCB cancer severity factor $(SF_{PCB})^e$                    | DALY/case                     | Lognormal          | GM = 4.3, GSD = 1.01                  |
| PCB non-cancer dose-response $(DR_{ADD_{p,fish_PCD:e}})^{f}$ | $cases/kg_{PCB_intake}$       | See Figure S2      | See Figure S2                         |
| PCB cancer slope factor <sup>g</sup>                         | $(mg/kg-d)^{-1}$              | Lognormal          | GM = 1.0, GSD = 1.4                   |
| Interspecies conversion factor <sup>h</sup>                  | unitless                      | Lognormal          | GM = 1.0, GSD = 4.5                   |
| Cooking loss <sup>i</sup>                                    | kg/kg                         | Uniform            | Min = 0, Max = 0.4                    |
| Species weights <sup>i</sup>                                 | unitless                      | Lognormal          | GM = 1, GSD = 1.4                     |

**Table S3**. Uncertainty analysis (Monte Carlo) input data for several time-independent parameters pertaining to oral PCB exposure from fish consumption, dose-response and severity.

<sup>*a*</sup>Ordinal classification scheme chosen by the New York State Department of Health survey administrators for convenience. As such, uniform distributions were applied, bounded between one and three meal-per-week equivalents, to account for potentially greater inter-individual variability.

<sup>b</sup>Uncertainty distribution developed to account for an observed factor-of-four discrepancy between surveys (see footnote a in **Table S5**).

<sup>c</sup>Based on Ruffle et al. (2018)<sup>.</sup>

<sup>d</sup>Based on Huijbregts et al. (2005) with considerably greater uncertainty than for cancer arising from use of an average severity factor, in DALY per case, across 49 diverse, non-communicable diseases.

<sup>e</sup>Based on the greatest 95<sup>th</sup> uncertainty interval for the corresponding DALY and incidence data as calculated by the Institute for Health Metrics and Evaluation (IHME 2017). This assumes that the relative fractions of incidence for the three cancer types in these exposed populations are similar to those for the greater United States population (ageand sex-adjusted). Assuming these fractions are unknown would result in a maximum GSD<sup>2</sup> of 1.3 for this parameter. This would have a negligible (1%) effect on the total uncertainty in cancer health risk, since this uncertainty is driven by uncertainty in the interspecies conversion factor.

<sup>f</sup>Total uncertainty is displayed on Figure S2. Separate uncertainty distribution was applied in allometric scaling by body weight, accounting for chemical-specific interspecies differences. Inter-individual variability was addressed by assuming a lognormal distribution for human variation, with an additional uncertainty distribution for the GSD of

human variation. No subchronic uncertainty factor was applied, since the duration of the study by Tryphonas et al. (1991) was 55 months.

<sup>g</sup>Accounts for experimental uncertainty (sample size), based on the ratio of upper bound and central estimate cancer slope factors (U.S. EPA 1996).

<sup>*h*</sup>Accounts for uncertainty in the extrapolation of rodent data to humans as calculated by Huijbregts et al. (2005). <sup>*i*</sup>Uncertainty distribution developed to reflect the wide range in cooking loss estimates reported by TAMS Consultants and Gradient Corporation (2000).

<sup>9</sup>Reflects variability between species, based on the range of FISHRAND forecasts in Figure 2-6 of TAMS Consultants and Gradient Corporation (2000). Data were digitized using Plot Digitizer v.2.6.8 (Joe's Java Programs).

| Evacura timofromo | Remedial scenario      |                        |                        |  |  |  |
|-------------------|------------------------|------------------------|------------------------|--|--|--|
| Exposure umename  | NA SC                  |                        | SC&ED                  |  |  |  |
| Upper Hudson      |                        |                        |                        |  |  |  |
| 2004-2009         | GM = 1.836, GSD = 1.10 | GM = 1.623, GSD = 1.13 | GM = 1.338, GSD = 1.07 |  |  |  |
| 2010-2015         | GM = 1.193 GSD = 1.19  | GM = 0.864, GSD = 1.29 | GM = 0.378, GSD = 1.01 |  |  |  |
| 2016-2021         | GM = 1.002 GSD = 1.23  | GM = 0.579, GSD = 1.44 | GM = 0.257, GSD = 1.01 |  |  |  |
| 2022-2027         | GM = 0.824, GSD = 1.27 | GM = 0.381, GSD = 1.64 | GM = 0.184, GSD = 1.00 |  |  |  |
| 2028-2033         | GM = 0.722, GSD = 1.30 | GM = 0.263, GSD = 1.85 | GM = 0.146, GSD = 1.00 |  |  |  |
| 2034-2039         | GM = 0.605, GSD = 1.35 | GM = 0.193, GSD = 2.05 | GM = 0.131, GSD = 1.00 |  |  |  |
| 2040-2045         | GM = 0.578, GSD = 1.34 | GM = 0.158, GSD = 2.17 | GM = 0.121, GSD = 1.00 |  |  |  |
| 2046-2051         | GM = 0.571, GSD = 1.30 | GM = 0.153, GSD = 2.11 | GM = 0.105, GSD = 1.00 |  |  |  |
| 2052-2057         | GM = 0.571, GSD = 1.29 | GM = 0.132, GSD = 2.20 | GM = 0.100, GSD = 1.00 |  |  |  |
| 2058-2062         | GM = 0.531, GSD = 1.29 | GM = 0.110, GSD = 2.33 | GM = 0.091, GSD = 1.00 |  |  |  |
| 2063-2067         | GM = 0.547, GSD = 1.27 | GM = 0.104, GSD = 2.34 | GM = 0.096, GSD = 1.00 |  |  |  |
| Lower Hudson      |                        |                        |                        |  |  |  |
| 2004-2009         | GM = 0.596, GSD = 1.10 | GM = 0.549, GSD = 1.13 | GM = 0.540, GSD = 1.07 |  |  |  |
| 2010-2015         | GM = 0.511, GSD = 1.19 | GM = 0.346, GSD = 1.29 | GM = 0.265, GSD = 1.01 |  |  |  |
| 2016-2021         | GM = 0.310, GSD = 1.23 | GM = 0.182, GSD = 1.44 | GM = 0.128, GSD = 1.01 |  |  |  |
| 2022-2027         | GM = 0.260, GSD = 1.27 | GM = 0.131, GSD = 1.64 | GM = 0.091, GSD = 1.00 |  |  |  |
| 2028-2033         | GM = 0.248, GSD = 1.30 | GM = 0.103, GSD = 1.85 | GM = 0.076, GSD = 1.00 |  |  |  |
| 2034-2039         | GM = 0.273, GSD = 1.35 | GM = 0.133, GSD = 2.05 | GM = 0.113, GSD = 1.00 |  |  |  |
| 2040-2045         | GM = 0.298, GSD = 1.34 | GM = 0.107, GSD = 2.17 | GM = 0.093, GSD = 1.00 |  |  |  |

**Table S4**. Uncertainty analysis (Monte Carlo) input data for time-dependent, lognormally distributed fish-tissue PCB concentrations ( $\overline{C(t)}_{fish,PCB}$ , mg<sub>PCB</sub>/kg<sub>fish</sub>).

Note: See **Figure S1** for the underlying data and sources. For NA and SC scenarios, assumed-lognormal uncertainty distributions are based on the ratios of Estimated Upper Bound and central estimate forecasts averaged across sixyear periods. Uncertainty distributions for SC&ED were calculated similarly using the "REM (6-yr 2.5% resuspension)" as the equivalent Estimated Upper Bound. In the Monte Carlo simulation, the same seed was used for the random number generator for each timeframe and scenario.

|                                            |          | Value     |          |
|--------------------------------------------|----------|-----------|----------|
| Parameter                                  | Twice/yr | Twice/mo  | Twice/wk |
| Individual ingestion rate (meal/person-yr) | 2        | 17        | 74       |
| Upper Hudson anglers & family              |          |           |          |
| Number of sampled fish consumers, n        | 27       | 8         | 6        |
| Number of fish consumers, N                | 1,300    | 400       | 300      |
| Population ingestion rate (meal/yr)        | 2,500    | 6,400     | 21,000   |
| Proportion of total consumption            | 0.08     | 0.08 0.21 |          |
| Lower Hudson anglers & family              |          |           |          |
| Number of sampled fish consumers, n        | 576      | 137       | 51       |
| Number of fish consumers, N                | 17,200   | 4,700     | 1,600    |
| Number of crab consumers, N                | 7,700    | 1,200     | 600      |
| Population ingestion rate (meal/yr)        | 49,800   | 101,000   | 163,500  |
| Proportion of total meals/yr               | 0.16     | 0.32      | 0.52     |

**Table S5**. Uncorrected<sup>*a*</sup> estimates of individual Hudson River fish and crab consumption.

Note: Data sources are summarized in Table S7.

<sup>*a*</sup>Estimates of the number of fish and crab consumers were eventually corrected such that corresponding estimates of total population-level consumption ( $kg_{fish}/yr$ ) matched those calculated using data from two more comprehensive, site-specific creel surveys (Normandeau Associates 2003, 2007). **Table S6** summarizes these population-level estimates. **Table S3** summarizes the corrected estimates of the number of consumers ( $N_p$ ).

|                              | Spring <sup>a</sup> | Summer-Fall <sup>b</sup> | Winter <sup>c</sup> | All seasons | Grand Total |
|------------------------------|---------------------|--------------------------|---------------------|-------------|-------------|
| 2001-2002 Survey (Day)       |                     |                          |                     |             |             |
| American eel                 | 98                  | 100                      |                     |             | 198         |
| American shad                | 271                 |                          |                     |             | 271         |
| Atlantic menhaden            |                     |                          |                     | 7           | 7           |
| Atlantic tomcod              |                     |                          |                     | 2           | 2           |
| Blue crab                    |                     | 816                      |                     |             | 816         |
| Bluefish                     |                     | 76                       |                     |             | 76          |
| Bullhead catfishes           |                     |                          |                     | 4           | 4           |
| Channel catfish              |                     |                          |                     | 17          | 17          |
| Common carp                  | 4,015               | 21                       |                     |             | 4,036       |
| Largemouth bass              |                     | 2                        |                     |             | 2           |
| Pumpkinseed                  |                     |                          | 1                   |             | 1           |
| Rock bass                    |                     |                          |                     | 0.1         | 0.1         |
| Smallmouth bass              |                     | 0.5                      |                     |             | 0.5         |
| Striped bass                 | 13,310              | 465                      |                     |             | 13,774      |
| Walleye                      |                     |                          | 4                   | 146         | 150         |
| White catfish                | 125                 | 230                      |                     |             | 355         |
| White catfish/brown bullhead |                     |                          | 10                  |             | 10          |
| White perch                  | 97                  | 208                      | 0.3                 |             | 305         |
| White sucker                 |                     |                          | 7                   |             | 7           |
| Yellow perch                 | 25                  |                          | 27                  |             | 52          |
| Yellow/Brown bullhead        |                     |                          |                     | 30          | 30          |
| 2001-2002 Survey (Night)     |                     |                          |                     |             |             |
| American eel                 | 16                  |                          |                     |             | 16          |
| Common carp                  | 34                  |                          |                     |             | 34          |
| 2005 Survey (Day)            |                     |                          |                     |             |             |
| American eel                 | 56                  |                          |                     |             | 56          |
| American shad                | 87                  |                          |                     |             | 87          |
| Atlantic tomcod              | 6                   |                          |                     |             | 6           |
| Blue crab                    | 15                  |                          |                     |             | 15          |

**Table S6**. Population-level fish and crab consumption (kg/yr) from the Lower Hudson by survey, season, and species.

| Bluefish           | 41     | 41     |
|--------------------|--------|--------|
| Brown bullhead     | 8      | 8      |
| Bullhead catfishes | 50     | 50     |
| Channel catfish    | 39     | 39     |
| Common carp        | 1,851  | 1,851  |
| Herrings           | 274    | 274    |
| Striped bass       | 10,467 | 10,467 |
| Sunfishes          | 46     | 46     |
| White catfish      | 468    | 468    |
| White perch        | 76     | 76     |
| Yellow perch       | 17     | 17     |

Note: Data sources are summarized in **Table S8 a**) through c). <sup>*a*</sup>Spring = March 16th - June  $15^{th}$ <sup>*b*</sup>Summer-Fall = June 16th - November  $30^{th}$ <sup>*c*</sup>Winter = December 1st - March  $15^{th}$ 

| Parameter estimated        | Background data sources main assumptions and limitations                          |
|----------------------------|-----------------------------------------------------------------------------------|
| a) Annual number of        | Sources, Questionnoire data from the 2007 New York                                |
| a) Annual number of        | • Sources: Questionnaire data from the 2007 New York                              |
| anglers fishing from the   | Statewide Angler Survey (Connelly and Brown 2009), specific                       |
| Site, Upper and Lower      | to counties adjacent to the Site, provided by the survey                          |
| Hudson                     | administrator, supplemented by personal communication (N.                         |
|                            | Connelly).                                                                        |
|                            | • Limitations: Although administrators corrected results for                      |
|                            | recall bias, adjusted response rates were <50%.                                   |
| b) Proportions of anglers  | • Sources: Two surveys administered by the New York State                         |
| consuming fish from Site   | Department of Health (DOH), specific to counties adjacent to                      |
| (twice/year, twice/month,  | the Site: 1.) Hudson River Fish Survey (2012-2017) and                            |
| and twice/week)            | Saratoga Hudson Fish Survey (2014-2017) (U.S. EPA 2017).                          |
| ,<br>,                     | Data summarized in Table S5.                                                      |
|                            | • Limitations: Convenience samples survey design focused on                       |
|                            | assessing the effectiveness of public outreach techniques and                     |
|                            | small sample sizes for Upper Hudson Notwithstanding the                           |
|                            | percentage of respondents who reported having fished the                          |
|                            | Upper Hudson and etc their setch (10%) compares fewership                         |
|                            | uith the 1001 1002 Greel Surgery recents (220) (Dereley                           |
|                            | with the 1991-1992 Creel Survey results (22%) (Barciay                            |
|                            |                                                                                   |
| c) Number of individuals   | • Sources: Combination of a) and b) above.                                        |
| who consume fish from      | • Assumptions: maximum 37 weeks consumption per year,                             |
| the Site at each ingestion | based on a year-long Hudson River creel survey (Normandeau                        |
| rate                       | Associates 2003) suggesting that 99% of total 2001                                |
|                            | consumption occurred between March 16 <sup>th</sup> and November 30 <sup>th</sup> |
|                            | (Table S6). Consumption of crabs excluded for Upper Hudson                        |
|                            | due to low sample size and since this appears to be minor                         |
|                            | compared to fish (NYSDOH 1999).                                                   |
| d) Serving size            | • Source: 227 g/meal, consistent with prior human health risk                     |
| _                          | assessment for the Site (TAMS Consultants and Gradient                            |
|                            | Corporation 2000).                                                                |
| e) Number of family        | • Sources: Proportion of Hudson River anglers from b) who                         |
| members consuming          | reported sharing fish/crabs with their families (U.S. EPA                         |
|                            | 2017)                                                                             |
|                            | • Assumption: household size of three persons based on the U.S.                   |
|                            | Cansus Burgay Current Dopulation Survey (2005-2017) (U.S.                         |
|                            | Census Bureau Current Population Survey (2005-2017) (U.S.                         |
|                            | Census Bureau 2017).                                                              |

**Table S7**. Background data used to estimate population-level fish consumption from the Site.

**Table S8**. Background data used to correct estimates of population-level fish consumption from the Site.

| Parameter                                                                                                       |   | Background data sources, main assumptions and limitations                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) Species-specific<br>numerical harvest and b)<br>proportion of anglers<br>intending to consume<br>their catch | • | Sources: Two comprehensive, site-specific creel surveys conducted by Normandeau Associates Inc. (2001-2002, and 2005). Results are summarized in Table S6.                                                                                                                                                                                                                                         |
| c) Species-specific<br>edible-yield fractions                                                                   | • | Sources: Data for primary species obtained from literature<br>sources (Crapo et al. 1993; Food and Agricultural Organization<br>of the United Nations Rome 1989; Luzzana et al. 2002; Türeli<br>et al. 2000).<br>Assumption: Mean edible-yield fraction for these species is<br>representative of species with no available data. These<br>comprised <5% of total consumption by mass in Table S6. |

**Table S9**. Background data used to estimate non-linear dose-response relationship for  $\operatorname{oral}^{a}$  intake of PCBs.

| Parameter                                                                                                               | Background data sources, main assumptions and limitations                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-linear, non-cancer<br>dose-response factor for<br>oral intake of PCBs<br>(DR <sub>ADD<sub>p,fish_PCB</sub>,e)</sub> | <ul> <li>Sources: Geometric mean (GM) Immunoglobulin M data from<br/>Table 2 of Tryphonas et al. (1991). This study reported changes<br/>in immunological parameters in rhesus monkeys that had been<br/>administered Aroclor 1254 orally over four years.</li> <li>Assumptions: Data were (natural) log-transformed assuming<br/>ln(GM) is equal to the mean on the log-scale and that log-<br/>transformed standard deviations (ln-sd), fitted to reported p-<br/>values, are constant.</li> </ul> |

<sup>*a*</sup>The same dose-response factor was applied for inhalation exposures, due to a lack of dose-response data for this exposure pathway.

|                                       | Value   |         |         |           |           |           |
|---------------------------------------|---------|---------|---------|-----------|-----------|-----------|
| Parameter                             | 2009    | 2011    | 2012    | 2013      | 2014      | 2015      |
| Dredge corridor                       |         |         |         |           |           |           |
| Operation duration (d)                | 178     | 157     | 195     | 188       | 181       | 153       |
| $C_{air,PCB,s}$ (ng/m <sup>3</sup> )  | 49      | 18      | 27      | 22        | 10        | 11        |
| Worker D <sub>p,s</sub> (person-h)    | 436,000 | 458,000 | 333,000 | 321,000   | 514,000   | 412,000   |
| Community D <sub>p,s</sub> (person-d) | 286,000 | 239,000 | 94,000  | 4,584,000 | 1,444,000 | 1,433,000 |
| N workers (person)                    | 360     | 330     | 400     | 360       | 470       | 450       |
| N community (person)                  | 1,610   | 1,520   | 480     | 24,380    | 7,980     | 9,360     |
| UCB incidence, workers <sup>a</sup>   | 3.E-13  | 1.E-15  | 1.E-13  | 3.E-14    | 2.E-16    | 8.E-16    |
| UCB incidence, community <sup>a</sup> | 3.E-11  | 5.E-13  | 1.E-12  | 5.E-13    | 1.E-14    | 5.E-14    |
| Sediment processing facility          |         |         |         |           |           |           |
| Operation duration (d)                | 178     | 161     | 230     | 230       | 237       | 265       |
| $C_{air,PCB,s}$ (ng/m <sup>3</sup> )  | 25      | 50      | 31      | 26        | 24        | 8         |
| Worker D <sub>p,s</sub> (person-h)    | 163,000 | 154,000 | 370,000 | 284,000   | 293,000   | 327,000   |
| N workers (person)                    | 90      | 110     | 180     | 140       | 140       | 140       |
| UCB incidence, workers <sup>a</sup>   | 2.E-15  | 1.E-13  | 2.E-15  | 1.E-15    | 5.E-16    | 4.E-19    |

**Table S10**. Summary of input parameterization for estimating above-baseline ambient air PCB exposures and risks during dredging.

Note: See **Table S1** for a description of primary input parameters. Values for ambient air concentrations of total PCBs ( $C_{atr,PCB,s}$ ) are based on arithmetic means calculated from the site-specific dataset. More details about the underlying data sources and analyses are provided in the main text ("Exposure assessment" under "Health burden of increased air emissions of PCBs).

<sup>*a*</sup>Upper confidence bound (90<sup>th</sup> percentile) on the non-cancer population incidence, representing the fraction of exposed population exhibiting an effect greater than or equal to a 50% reduction in Immunoglobulin M (Chiu et al. 2018).

|                                       | Excavators      | Cranes          | Dump trucks     | Wheel loaders   | Skid steers    |  |
|---------------------------------------|-----------------|-----------------|-----------------|-----------------|----------------|--|
| Parameter                             | Tier 4 ; Tier 3 | Tier 4; Tier 3 |  |
| Rated power (bhp) <sup><i>a</i></sup> | 418             | 355             | 385             | 357             | 80             |  |
| Load factor <sup>b</sup>              | 0.44            | 0.44            | 0.33            | 0.33            | 0.37           |  |
| Effective power (bhp) <sup>a</sup>    | 185             | 157             | 128             | 119             | 30             |  |
| Displacement $(L)^{a}$                | 15              | 15              | 11              | 15              | 3              |  |
| Effective operation                   |                 |                 |                 |                 |                |  |
| Duration $(h)^c$                      | 81,200          | 32,600          | 37,500          | 37,500          | 32,400         |  |
| $PM_{2.5} (g/bhp-h)^b$                | 0.006; 0.14     | 0.006; 0.14     | 0.001; 0.03     | 0.001; 0.03     | 0.002; 0.04    |  |
| $NO_x (g/bhp-h)^b$                    | 0.43;1.43       | 0.43 ; 1.43     | 0.49; 1.65      | 0.49;1.65       | 0.46 ; 1.53    |  |
| PM <sub>2.5</sub> emissions (kg)      | 86;2,100        | 30;700          | 5;130           | 5;120           | 2;43           |  |
| NO <sub>x</sub> emissions (kg)        | 6,400 ; 21,000  | 2,200 ; 7,300   | 2,400 ; 7,900   | 2,200 ; 7,400   | 440;1,500      |  |
| Idling operation                      |                 |                 |                 |                 |                |  |
| Duration $(h)^c$                      | 56,200          | 21,500          | 24,700          | 24,700          | 21,300         |  |
| $PM_{2.5} (g/h-L)^a$                  | 0.001; 0.17     | 0.001; 0.17     | 0.001; 0.11     | 0.001; 0.11     | 0.001; 0.08    |  |
| $NO_{x} (g/h-L)^{a}$                  | 9.93 ; 15.95    | 9.93 ; 15.95    | 6.95 ; 10.78    | 6.95 ; 10.78    | 4.96 ; 7.69    |  |
| PM <sub>2.5</sub> emissions (kg)      | 1;140           | 0.2;53          | 0.2;30          | 0.4;42          | 0.04;5         |  |
| NO <sub>x</sub> emissions (kg)        | 8,200 ; 13,000  | 3,200 ; 5,100   | 1,900 ; 2,900   | 2,600 ; 4,000   | 320;490        |  |

**Table S11**. Summary of input parameterization for estimating emissions of primary  $PM_{2.5}$  and  $NO_x$  from project diesel-powered, nonroad heavy equipment.

Note: Tiers 3 and 4 standards are detailed in U.S. EPA 1998 and U.S. EPA 2004, respectively.

<sup>a</sup>Equipment specifications are based on data provided by equipment manufacturers and distributors (Sennebogen 2017; Caterpillar 303.5C CR Mini Excavator; Caterpillar 320dl Hydraulic Excavator; Caterpillar 345C L Hydraulic Excavator; Caterpillar 385C L Hydraulic Excavator; Caterpillar 246 Skid Steer Loader; Komatsu WA500-6 Wheel Loader; Terex TA30 Articulated Dump Truck).

<sup>b</sup>Emission factor data are from Cao et al. (2016). Specific equipment models (*e.g.*, Caterpillar 385 excavator) were assigned to an equipment class (Excavators), and emissions were calculated based on class weighted-average parameters using operation durations of equipment models as weights.

<sup>c</sup>Estimates of hours of effective operation and idling are based on data in the Weekly Productivity Summaries (Louis Berger Group 2010; Parsons 2012, 2013, 2014, 2015, 2016).

| Parameter                                      | Value <sup>a</sup> | Data sources                                                    |  |  |  |  |
|------------------------------------------------|--------------------|-----------------------------------------------------------------|--|--|--|--|
| To processing facility                         |                    |                                                                 |  |  |  |  |
| Transported load (tons)                        | 1,010              | (Louis Berger Group 2010; Parsons 2012, 2013, 2014, 2015, 2016) |  |  |  |  |
| Total distance (miles)                         | 46,300             | (Louis Berger Group et al. 2017)                                |  |  |  |  |
| PM <sub>2.5</sub> emission factor (g/ton-mile) | 0.0056 ; 0.0012    | (U.S. EPA 2016)                                                 |  |  |  |  |
| NO <sub>x</sub> emission factor (g/ton-mile)   | 0.34;0.47          | (U.S. EPA 2016)                                                 |  |  |  |  |
| PM <sub>2.5</sub> emissions (kg)               | 260;60             |                                                                 |  |  |  |  |
| NO <sub>x</sub> emissions (kg)                 | 16,000 ; 22,000    |                                                                 |  |  |  |  |
| From processing facility                       |                    |                                                                 |  |  |  |  |
| Weight of tug and barge (tons)                 | 822                | (Sterling Equipment, Inc. SEI-2003; Ironhead – Pushboat)        |  |  |  |  |
| Allocation factor <sup>b</sup>                 | 0.45               |                                                                 |  |  |  |  |
| Total distance (miles)                         | 46,300             | (Louis Berger Group et al. 2017)                                |  |  |  |  |
| PM <sub>2.5</sub> emissions (kg)               | 100 ; 20           |                                                                 |  |  |  |  |
| NO <sub>x</sub> emissions (kg)                 | 6,000 ; 8,000      |                                                                 |  |  |  |  |

Table S12. Summary of input parameterization for estimating emissions of primary  $PM_{2.5}$  and  $NO_x$  from barge traffic.

<sup>*a*</sup>Lower emission factor scenario ; higher emission factor scenario, representing the range of reported emission factors between 2013-2014 from the EPA SmartWay Carrier Performance database (U.S. EPA 2016).

<sup>b</sup>Multiplicative factor to account for unloaded barge returns, calculated as the ratio of equipment weights (unloaded / loaded).

|                            |                                       |         |                                         | $iF_i$ (kg <sub>PM2.5_intake</sub> /kg <sub>i_emitted</sub> ) |                 | Mean emissions per trip<br>(kg) |                 |
|----------------------------|---------------------------------------|---------|-----------------------------------------|---------------------------------------------------------------|-----------------|---------------------------------|-----------------|
| Landfill (state)           | One-way distance (miles) <sup>a</sup> | N trips | Mass of transported load $(ton/trip)^b$ | Primary PM <sub>2.5</sub>                                     | NO <sub>x</sub> | Primary PM <sub>2.5</sub>       | NO <sub>x</sub> |
| Clean Harbors (UT)         | 2,330                                 | 10      | 8,477                                   | 7.2E-07                                                       | 1.4E-07         | 300                             | 10,800          |
| Clean Harbors (OK)         | 1,573                                 | 174     | 9,732                                   | 6.1E-07                                                       | 1.6E-07         | 230                             | 8,300           |
| CWM Chemical Services (NY) | 334                                   | 2       | 25                                      | 7.2E-07                                                       | 1.2E-07         | 0.2                             | 7               |
| Tunnel Hill Partners (OH)  | 649                                   | 56      | 9,710                                   | 5.8E-07                                                       | 1.3E-07         | 100                             | 3,400           |
| U.S. Ecology (ID)          | 2,532                                 | 45      | 9,465                                   | 6.0E-07                                                       | 1.3E-07         | 370                             | 13,000          |
| Wayne Disposal Inc. (MI)   | 653                                   | 44      | 6,580                                   | 7.3E-07                                                       | 1.4E-07         | 70                              | 2,400           |
| WCS (TX)                   | 2,124                                 | 16      | 8,034                                   | 7.1E-07                                                       | 1.6E-07         | 260                             | 9,400           |

**Table S13**. Route characteristics, intake fractions (iF), and estimated air emissions from rail transport of PCB waste to and from seven hazardous waste landfills across the United States.

Note: See **Table S1** for a description of primary input parameters. Project manifest data provided detailed records of each shipment, including the destination, number of railcars, and weights of project railcars and transported sediments (Louis Berger Group 2010; Parsons 2012, 2013, 2014, 2015, 2016).

<sup>*a*</sup>Assumes project trains used the shortest path to and from each landfill facility.

<sup>b</sup>Arithmetic mean across all trips

|                                           | N workers |      |     | D <sub>p,s</sub> (person-h) |        |         |         |
|-------------------------------------------|-----------|------|-----|-----------------------------|--------|---------|---------|
| General labor category                    |           | Mean | Max |                             | Min    | Mean    | Max     |
| Sediment processing facility <sup>a</sup> |           |      |     |                             |        |         |         |
| Management & Administration               | 9         | 23   | 27  |                             | 11,000 | 35,200  | 49,100  |
| Sediment Unloading                        | 10        | 13   | 20  |                             | 23,200 | 28,600  | 47,300  |
| Size Separation                           | 14        | 29   | 48  |                             | 25,600 | 67,500  | 113,600 |
| Thickening and Dewatering                 | 14        | 20   | 26  |                             | 23,200 | 43,600  | 61,500  |
| Water Treatment                           | 4         | 5    | 10  |                             | 6,600  | 10,800  | 18,300  |
| Staging Area                              | 1         | 3    | 4   |                             | 1,700  | 5,600   | 9,500   |
| Rail Car Loading                          | 12        | 12   | 12  |                             | 19,900 | 26,800  | 32,700  |
| Health and Safety & QC                    | 6         | 8    | 9   |                             | 11,000 | 18,600  | 24,500  |
| Maintenance & Site Operations             | 5         | 22   | 28  |                             | 5,100  | 28,400  | 40,900  |
| Dredging corridor <sup>b</sup>            |           |      |     |                             |        |         |         |
| Dredge operator                           | 20        | 29   | 52  |                             | 38,700 | 62,100  | 95,200  |
| Dredge support crew                       | 44        | 65   | 108 |                             | 85,100 | 134,100 | 197,700 |
| Vessel captain                            | 26        | 40   | 58  |                             | 47,600 | 72,000  | 104,300 |
| Vessel deckhand                           | 52        | 81   | 116 |                             | 95,200 | 144,000 | 208,500 |

**Table S14**. Summary of project workers and cumulative exposure durations by general labor category.

Note: See **Table S1** for a description of primary input parameters. Presented statistics are based on variability across all dredging seasons (2009-2015).

<sup>a</sup>Number (N) of workers are based on projections in the Remedial Action Work Plans (Parsons and Anchor QEA 2009, 2011, 2012, 2013, 2015). Hours at work are based on facility operation dates reported in the Weekly Productivity Summaries (Louis Berger Group 2010; Parsons 2012, 2013, 2014, 2015, 2016).

<sup>b</sup>Number (N) of workers are based on an estimated project inventory of primary diesel-powered, nonroad heavy equipment provided by M. Cheplowitz (personal communication.



**Figure S1.** Species- and river-section weighted annual average, wet-weight fish tissue concentrations of Tri+ PCBs, projected by U.S. EPA's FISHRAND bioaccumulation model for different remedial alternatives. A) Upper Hudson and B) Lower Hudson forecasts. Model forecasts are from the EPA's Record of Decision (Table 11-2) (U.S. EPA 2002) and Responsiveness Summary (Tables 313699-1 and 363176-1) (TAMS Consultants 2002). In the present study, MNA = Source Control (SC), and REM-3/10/Select (6-yr 0.13% resuspension) = Source Control with Environmental Dredging (SC&ED).



**Figure S2.** Slope of the PCB dose-response relationship corresponding to a 50% decrease in immunoglobulin M. Curved (black) solid line = median. Curved (black) dashed line = arithmetic mean. Surrounding (dark grey) area = 95% confidence interval. Vertical (colored) dashed lines = 95% confidence intervals of average daily doses (mg/kg-d) for three subpopulations: Upper Hudson anglers and their family members consuming fish at frequencies of 1) twice per year, 2) twice per month, and 3) twice per week during the 2004-2009 timeframe.



**Figure S3.** Ambient air total PCB concentrations measured along the dredging corridor during the remediation (2009-2015) by distance from the Site. Results were obtained from a site-specific ambient air PCB monitoring program (Anchor QEA and Environmental Standards 2009; Ecology and Environment 2004, 2017). Solid (black) horizontal lines represent the median, interquartile range (IQR), and  $1.5 \times IQR$ . Dashed (green) horizontal line = mean background concentration.



**Figure S4.** Stochastic health benefit-risk comparison for the Hudson River PCBs Superfund Site Environmental Dredging (ED) remediation: Sensitivity analysis including worker impacts. Results were generated via Monte Carlo simulations accounting for parameter variability and uncertainty. A) Induced Health Burden ( $IB_{ED,sensitivity}$ ) = total health burden of ED from increased air emissions of PCBs, primary and secondary PM<sub>2.5</sub>, and fatal occupational incidents; B) Net Avoided Health Burden (Net health benefit<sub>ED</sub>) =  $AB_{ED} - IB_{ED,sensitivity}$ , with  $AB_{ED}$  being the Avoided Health Burden of ED as defined in the main text (Figure 4A). Dotted or dashed vertical lines correspond to the fifth, 10<sup>th</sup>, 25<sup>th</sup>, 50<sup>th</sup>, 75<sup>th</sup>, and 90<sup>th</sup> percentiles when read from left to right. The solid (red) vertical line through zero denotes a net of 0 avoided DALYs (i.e., benefits = risks). Values to the left of this line represent net risks while values to the right of this line represent net benefits.

# References

- Anchor QEA, Environmental Standards. 2009. Hudson River PCBs Site Phase 1 Remedial Action Monitoring Program quality assurance project plan. https://www3.epa.gov/hudson/pdf/RAM%20QAPP\_final\_05122009\_text\_only.pdf [accessed 3 July 2017].
- Barclay B. 1993. Hudson River angler survey; A report on the adherence to fish consumption health advisories among Hudson River anglers. https://semspub.epa.gov/work/02/68650.pdf [accessed 3 August 2017].
- Cao T, Durbin TD, Russell RL, Cocker DR, Scora G, Maldonado H, et al. 2016. Evaluations of in-use emission factors from off-road construction equipment. Atmos Environ 147:234– 245; doi:10.1016/j.atmosenv.2016.09.042.
- Caterpillar 246 Skid Steer Loader.

http://www.ritchiespecs.com/specification?type=con&category=Skid+Steer+Loader&ma ke=Caterpillar&model=246&modelid=92212 [accessed 28 March 2018].

Caterpillar 303.5C CR Mini Excavator.

http://www.ritchiespecs.com/specification?type=con&category=Mini+Excavator&make=Caterpillar&model=303.5C+CR&modelid=92307 [accessed 28 March 2018].

Caterpillar 320dl Hydraulic Excavator.

http://www.ritchiespecs.com/specification?category=Hydraulic%20Excavator&make=C ATERPILLAR&model=320dl&modelid=92293 [accessed 28 March 2018].

Caterpillar 345C L Hydraulic Excavator.

http://www.ritchiespecs.com/specification?type=Co&category=Hydraulic+Excavator&m ake=Caterpillar&model=345C+L&modelid=92300 [accessed 28 March 2018].

Caterpillar 385C L Hydraulic Excavator.

http://www.ritchiespecs.com/specification?type=Co&category=Hydraulic+Excavator&m ake=Caterpillar&model=385C+L&modelid=104245 [accessed 28 March 2018].

- Chiu WA, Axelrad DA, Dalaijamts C, Dockins C, Shao K, Shapiro AJ, et al. 2018. Beyond the RfD: Broad Application of a Probabilistic Approach to Improve Chemical Dose– Response Assessments for Noncancer Effects. Environ Health Perspect 126:067009; PMid:29968566; doi:10.1289/EHP3368.
- Connelly NA, Brown TL. 2009. New York Statewide Angler Survey, 2007. https://www.dec.ny.gov/docs/fish\_marine\_pdf/nyswarpt1.pdf [accessed 3 August 2017].
- Crapo C, Paust BC, Babbitt J. 1993. Recoveries & yields from Pacific fish and shellfish. http://alaskacollection.library.uaf.edu/monos/MAB-37PDF-Recoveries%20and%20Yields%20fro.pdf [accessed 13 September 2017].
- Ecology and Environment. 2004. Hudson River PCBs Superfund Site Quality of Life Performance Standards.

https://www3.epa.gov/hudson/quality\_of\_life\_06\_04/full\_report.pdf [accessed 3 July 2017].

- Ecology and Environment. 2017. Proposed second five year review report; Hudson River PCBs Superfund Site; Appendix 6: evaluation of PCB ambient air concentration estimates and monitoring.
- Food and Agricultural Organization of the United Nations Rome. 1989. FAO fisheries technical paper 309; yield and nutritional value of the commercially more important fish species. http://www.fao.org/3/T0219E/T0219E00.htm [accessed 26 June 2017].
- Gronlund CJ, Humbert S, Shaked S, O'Neill MS, Jolliet O. 2015. Characterizing the burden of disease of particulate matter for life cycle impact assessment. Air Qual Atmosphere Health 8:29–46; PMid:25972992; doi:10.1007/s11869-014-0283-6.
- Huijbregts MA, Rombouts LJ, Ragas AM, van de Meent D. 2005. Human-toxicological effect and damage factors of carcinogenic and noncarcinogenic chemicals for life cycle impact assessment. Integr Environ Assess Manag 1:181–244; PMid:16639884; doi:10.1897/2004-007R.1.
- IHME. 2017. Institute for Health Metrics and Evaluation (IHME) Global Burden of Disease Study 2015 (GBD 2015) data resources. http://ghdx.healthdata.org/gbd-2015#results [accessed 24 August 2017].
- Komatsu WA500-6 Wheel Loader. http://www.ritchiespecs.com/specification?type=Construc&category=Wheel+Loader&m ake=Komatsu&model=WA500-6&modelid=91063 [accessed 28 March 2018].
- Lewné M, Plato N, Gustavsson P. 2007. Exposure to particles, elemental carbon and nitrogen dioxide in workers exposed to motor exhaust. Ann Occup Hyg 51: 693–701; PMid:17921238.
- Louis Berger Group. 2010. Hudson River PCBs Site EPA Phase 1 evaluation report; Appendix III-B; weekly productivity summary report (as received by GE).
- Louis Berger Group, LimnoTech, NEK Associates. 2017. Proposed second five year review report; Hudson River PCBs Superfund Site; Appendix 8: differences between anticipated and implemented dredging operations based on the feasibility study and 2002 record of decision assumptions and forecasts.
- Luzzana U, Scolari M, Campo Dall'Orto B, Vaini FA, Nargaye N, Valfrè F. 2002. Fillet yield and chemical composition of farm-raised sunshine bass (Morone chrysops♀x Morone saxatilis ♂) fed high-energy diets. J Appl Ichthyol 18:65–69; doi:10.1046/j.1439-0426.2002.00319.x.
- MacLeod M, Fraser AJ, Mackay D. 2002. Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models. Environ Toxicol Chem PMid11951941 21:700–709; PMid:11951941; doi:10.1002/etc.5620210403.

- Normandeau Associates. 2003. Assessment of Hudson River recreational fisheries. ftp://ftp.dec.state.ny.us/dfwmr/marine/Hudson%20River%20Reports/creel01.pdf [accessed 14 March 2017].
- Normandeau Associates. 2007. Assessment of spring 2005 Hudson River recreational fisheries. ftp://ftp.dec.state.ny.us/dfwmr/marine/Hudson%20River%20Reports/creel05.pdf [accessed 14 March 2017].
- NYSDOH (New York State Department of Health). 1999. Health consultation: 1996 survey of Hudson River anglers; Hudson Falls to Tappan Zee Bridge at Tarrytown, New York. https://semspub.epa.gov/work/02/68658.pdf [accessed 3 August 2017].
- Parsons. 2012. Phase 2 year 1 annual progress report; Hudson River PCBs Superfund Site.
- Parsons. 2013. Phase 2 year 2 annual progress report; Hudson River PCBs Superfund Site.
- Parsons. 2014. Phase 2 year 3 annual progress report; Hudson River PCBs Superfund Site.
- Parsons. 2015. Phase 2 year 4 annual progress report; Hudson River PCBs Superfund Site.
- Parsons. 2016. Phase 2 year 5 annual progress report; Hudson River PCBs Superfund Site.
- Parsons, Anchor QEA. 2009. Remedial action work plan for Phase 1 dredging and facility operations; Hudson River PCBs Superfund Site; revision 1.
- Parsons, Anchor QEA. 2011. Remedial action work plan for Phase 2 dredging and facility operations in 2011; Hudson River PCBs Superfund Site; revision 1. https://www3.epa.gov/hudson/pdf/Final\_2011-05-06RAWP.pdf [accessed 27 June 2017].
- Parsons, Anchor QEA. 2012. Remedial action work plan for Phase 2 dredging and facility operations in 2012; Hudson River PCBs Superfund Site. https://www3.epa.gov/hudson/pdf/2012-04-02-RAWP.pdf [accessed 27 June 2017].
- Parsons, Anchor QEA. 2013. Remedial action work plan for Phase 2 dredging and facility operations in 2013; Hudson River PCBs Superfund Site; revised. https://www3.epa.gov/hudson/pdf/2013-06-18\_RAWP\_Addendum1\_RAWP\_.pdf [accessed 27 June 2017].
- Parsons, Anchor QEA. 2015. Remedial action work plan for Phase 2 dredging and facility operations in 2015; Hudson River PCBs Superfund Site; revised public release version.
- Ruffle B, Henderson J, Murphy-Hagan C, Kirkwood G, Wolf F, Edwards DA. 2018. Application of probabilistic risk assessment: Evaluating remedial alternatives at the Portland Harbor Superfund Site, Portland, Oregon, USA. Integr Environ Assess Manag 14:63–78; PMiD: 29105341; doi:10.1002/ieam.1999.
- Sennebogen. 2017. 870E material handler. http://sennebogen-na.com/wpcontent/uploads/dlm\_uploads/2017/03/870-E-Series.pdf [accessed 28 March 2018].

- TAMS Consultants. 2002. Responsiveness summary Hudson River PCBs Site record of decision; book 3 of 3; figures; tables & appendices. https://www3.epa.gov/hudson/Resp\_Summ\_Files/rsbk3\_03.pdf [accessed 20 June 2017].
- TAMS Consultants and Gradient Corporation. 2000. Phase 2 report further site characterization and analysis volume 2F - revised human health risk assessment Hudson River PCBs reassessment RI/FS. https://www3.epa.gov/hudson/revisedhhra-text.pdf [accessed 10 February 2017].
- Terex TA30 Articulated Dump Truck. http://www.ritchiespecs.com/fr/specification?type=&category=Articulated+Dump+Truck &make=Terex&model=TA30&modelid=91889 [accessed 28 March 2018].
- Tryphonas H, Luster MI, Schiffman G, Dawson L-L, Hodgen M, Germolec D, et al. 1991. Effect of chronic exposure of PCB (Aroclor 1254) on specific and nonspecific immune parameters in the rhesus (Macaca mulatta) monkey. Toxicol Sci 16:773–786; doi:10.1093/toxsci/16.4.773.
- Türeli C, Çelik M, Erdem Ü. 2000. Comparison of meat composition and yield of blue crab (Callinectes sapidus RATHBUN, 1896) and sand crab (Portunus pelagicus LINNE, 1758) caught in İskenderun Bay, North-East Mediterranean. Turk J Vet Anim Sci 24: 195–204.
- U.S. Census Bureau. 2017. Current Population Survey March and annual social and economic supplements; average population per household and family: 1940 to present. https://www.census.gov/data/tables/time-series/demo/families/households.html [accessed 20 November 2017].
- U.S. EPA (United States Environmental Protection Agency). 1998. 40 C.F.R. parts 9, 86, and 89. Control of emissions of air pollution from nonroad diesel engines; final rule. https://www.govinfo.gov/content/pkg/FR-1998-10-23/pdf/98-24836.pdf [8 November 2019].
- U.S. EPA. 2004. 40 C.F.R. parts 9, 69, et al. control of emissions of air pollution from nonroad diesel engines and fuel; final rule. https://www.govinfo.gov/content/pkg/FR-2004-06-29/pdf/04-11293.pdf [5 July 2017].
- U.S. EPA. 2002. Hudson River PCBs Site, record of decision tables. https://www3.epa.gov/hudson/ROD-tables.pdf [accessed 22 June 2017].
- U.S. EPA. 1996. Integrated Risk Information System (IRIS) chemical assessment summary for polychlorinated biphenyls (PCBs); CASRN 1336-36-3. https://cfpub.epa.gov/ncea/iris/iris\_documents/documents/subst/0294\_summary.pdf [accessed 9 March 2017].
- U.S. EPA. 2017. Proposed second five-year review report for Hudson River PCBs Superfund Site. https://www.epa.gov/sites/production/files/2017-06/documents/hudson\_second\_five-year\_review\_report.pdf [accessed 2 June 2017].

U.S. EPA. 2016. SmartWay Carrier Performance Ranking. US EPA. https://www.epa.gov/smartway/smartway-carrier-performance-ranking [accessed 12 March 2018].