Environ Health Perspect

DOI: 10.1289/EHP5034

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Human Health Benefits from Fish Consumption vs. Risks from Inhalation Exposures Associated with Contaminated Sediment Remediation: Dredging of the Hudson River

Jacob Kvasnicka, Katerina S. Stylianou, Vy K. Nguyen, Lei Huang, Weihsueh A. Chiu, G. Allen Burton Jr, Jeremy Semrau, and Olivier Jolliet

Table of Contents

Table S1. Descriptions of primary model parameters for each considered health impact pathway.

Table S2. Input parameterization for estimating the health burden of fatal occupational incidents and associated uncertainty.

Table S3. Uncertainty analysis (Monte Carlo) input data for several time-independent parameters pertaining to oral PCB exposure from fish consumption, dose-response and severity.

Table S4. Uncertainty analysis (Monte Carlo) input data for time-dependent, lognormally distributed fish-tissue PCB concentrations ($\overline{C(t)}_{fish, PCB}$, mg_{PCB}/kg_{fish}).

Table S5. Uncorrected estimates of individual Hudson River fish and crab consumption.

Table S6. Population-level fish and crab consumption (kg/yr) from the Lower Hudson by survey, season, and species.

Table S7. Background data used to estimate population-level fish consumption from the Site.

Table S8. Background data used to correct estimates of population-level fish consumption from the Site.

Table S9. Background data used to estimate non-linear dose-response relationship for oral intake of PCBs.

Table S10. Summary of input parameterization for estimating above-baseline ambient air PCB exposures and risks during dredging.

Table S11. Summary of input parameterization for estimating emissions of primary $PM_{2.5}$ and NO_x from project diesel-powered, nonroad heavy equipment.

Table S12. Summary of input parameterization for estimating emissions of primary $PM_{2.5}$ and NO_x from barge traffic.

Table S13. Route characteristics, intake fractions (iF), and estimated air emissions from rail transport of PCB waste to and from seven hazardous waste landfills across the United States.

Table S14. Summary of project workers and cumulative exposure durations by general labor category.

Figure S1. Species- and river-section weighted annual average, wet-weight fish tissue concentrations of Tri+ PCBs, projected by US EPA's FISHRAND bioaccumulation model for different remedial alternatives. A) Upper Hudson and B) Lower Hudson forecasts. Model forecasts are from the EPA's Record of Decision (Table 11-2) (US EPA 2002) and Responsiveness Summary (Tables 313699-1 and 363176-1) (TAMS Consultants 2002). In the present study, MNA = Source Control (SC), and REM-3/10/Select (6-yr 0.13% resuspension) = Source Control with Environmental Dredging (SC&ED).

Figure S2. Slope of the PCB dose-response relationship corresponding to a 50% decrease in immunoglobulin M. Curved (black) solid line = median. Curved (black) dashed line = arithmetic mean. Surrounding (dark grey) area = 95% confidence interval. Vertical (colored) dashed lines = 95% confidence intervals of average daily doses (mg/kg-d) for three subpopulations: Upper Hudson anglers and their family members consuming fish at frequencies of 1) twice per year, 2) twice per month, and 3) twice per week during the 2004-2009timeframe.

Figure S3. Ambient air total PCB concentrations measured along the dredging corridor during the remediation (2009-2015) by distance from the Site. Results were obtained from a site-specific ambient air PCB monitoring program (Anchor QEA and Environmental Standards 2009; Ecology and Environment 2004, 2017). Solid (black) horizontal lines represent the median, interquartile range (IQR), and $1.5 \times IQR$. Dashed (green) horizontal line = mean background concentration.

Figure S4. Stochastic health benefit-risk comparison for the Hudson River PCBs Superfund Site Environmental Dredging (ED) remediation: Sensitivity analysis including worker impacts. Results were generated via Monte Carlo simulations accounting for parameter variability and uncertainty. A) Induced Health Burden ($IB_{ED,sensitivity}$) = total health burden of ED from increased air emissions of PCBs, primary and secondary PM_{2.5}, and fatal occupational incidents; B) Net Avoided Health Burden (Net health benefit_{ED}) = $AB_{ED} - IB_{ED,sensitivity}$, with AB_{ED} being the Avoided Health Burden of ED as defined in the main text (Figure 4A). Dotted or dashed vertical lines correspond to the fifth, 10th, 25th, 50th, 75th, and 90th percentiles when read from left to right. The solid (red) vertical line through zero denotes a net of 0 avoided DALYs (i.e., benefits = risks). Values to the left of this line represent net risks while values to the right of this line represent net benefits.

References