Supplementary Material A coarse-grained approach for investigating the structure and dynamics of large nucleic acid species Sweta Vangnaveti¹, Rebecca J. D'Esposito², Jennifer L. Lippens³, Daniele Fabris^{2,4}*, Srivathsan Ranganathan¹* - 1) The RNA Institute, University at Albany, 2016A Life Sciences Research Building, Albany, NY - 2) Department of Chemistry, University at Albany, NY - 3) Discovery Analytical Sciences, Amgen, Thousand Oaks, CA - 4) Department of Biological Sciences, University at Albany, NY - * Corresponding authors: Daniele Fabris: fabris@albany.edu Srivathsan Ranganathan: svranganathan@albany.edu ## **TABLES** Table 1S. Sequences of the oligonucleotides employed in the study. Species marked with * are single stranded (ss), whereas those marked with * were combined with the respective complementary strand (not listed) to form a duplex construct of corresponding length. | Figure No. | Length | Sequence | Remarks | |------------|--|--|--| | 2,2\$ | 3mer [♦] * | CCU | | | 2,2\$ | 5mer [♦] * | CCUAC | | | 2,2S | 10mer [◆] * | CCUACUCGUU | Used for Parameterization & Refinement | | 2,2S | 16mer [◆] * | CCUACUCGUUACCUUC | (Structures are generated using Nucleic Acid Builder | | 2,2S | 32mer [◆] * | CCUACUCGUUACCCUCUUCUGAUACUGUUUAA | (NAB) package of Amber) | | 2,2S | 48mer [◆] * | CCUACUCGUUACCUUCUUCUGACUUCCCUCUUU
CUUCCUACUGUUUAA | | | 2,2S | 64mer [◆] * | CCUACUCGUUACCUUCUUCUGACUUCCCUCUUU
CUUCCUAUCUGAAUUGUGUUCUCCUGUUUAA | | | 3 | 10,16,32,48 ,64mers PolyA, polyC, polyG, polyU | | Used for Testing
(Structures are
generated using
Nucleic Acid Builder
(NAB) package of
Amber) | | 4 | 6mer [◆] * | CGCGCG | | | 4 | 10mer * | CGCGCGCGCG | | | 4 | 10mer [◆] * | CCUACUCGUU | | |---|---------------------------------|---|---| | 4 | 16mer [◆] * | CCUACUCGUUACCUUC | | | 4 | 18mer [◆] * | CGCGCGCGCGCGCG | Used for Testing. (Structures are snapshots from all | | 4 | 22mer ** | GCGCGCGCGCGCGCGCG | atom MD
simulations) | | 4 | 26mer [◆] * | CGCGCGCGCGCGCGCGCGCG | | | 4 | 30mer [◆] * | CUGUUGCACUAUGCCAGACAAUAAUUUUCU | | | 4 | 32mer [♦] * | CCUACUCGUUACCCUCUUCUGAUACUGUUUAA | | | 4 | 48mer [♦] * | CCUACUCGUUACCUUCUUCUGACUUCCCUCUUU
CUUCCUACUGUUUAA | | | 4 | 64mer * | CCUACUCGUUACCUUCUUCUGACUUCCCUCUUU
CUUCCUAUCUGAAUUGUGUUCUCCUGUUUAA | | | 4 | | (All DNA sequences are the same as those of the RNA oligomers above with the Us replaced by Ts) | Used for Testing.
(Structures are
snapshots from | | 5 | | (All sequences are the same as those of the ones in figure 2,2S. The CG structures are generated using the oxRNA model) | Used for Testing.
(Structures are
snapshots from all
atom MD
simulations) | | 6 | 20mer
hairpin
(SL 20 RNA) | GGACUAGCGGAGGCUAGUCC | Used for Testing. (Structures are snapshots from all atom and coarsegrained MD simulations) | | 6 | 34mer
hairpin
(SL 34 RNA) | GUCAGGGUCAGGAAAAAAAAAACCUGACCCUGAC | Used for Testing.
(Structures are
snapshots from
coarse-grained MD
simulations only) | |---|---------------------------------|------------------------------------|--| | 6 | 16mer
hairpin
(SL 16 DNA) | TGCGATACTCATCGCA | Used for Testing. (Structures are snapshots from all atom and coarsegrained MD | | 6 | 28mer
hairpin
(SL 28 DNA) | GCGTTCATCAGAGTCATCTGATGAACGC | Used for Testing. (Structures are snapshots from all atom and coarsegrained MD | Table 2S. Hard-sphere radii for the five-bead representation of nucleotides. | Pseudo- | R _{HSO} Å | R _{HS1} Å | R _{HS2} Å | | |---------|------------------------------------|--------------------------------------|-------------------------|--| | atom | (initial guess) | (optimized for single | (optimized for | | | | (r _B = 3.00Å, f=0, s=0, | nucleosides) | DNA/RNA oligos) | | | | s _T =0) | (r _B =2.88Å, f=0, s=0.05, | (r _B =2.88Å, | | | | | s _T =0.1) | f=0.125, s=0.05, | | | | | | s _T =0.1) | | | Р | 3.8* | 3.8 | 3.32 | | | R | 4.2* | 4.2 | 3.68 | | | dR | 3.9 [*] | 3.9 | 3.41 | | | B_1^Y | 3.00 | 3.02 | 3.17 | | | B_1^R | 3.00 | 2.74 | 2.60 | | | B_{23}^{N} | 3.00 | 2.88 | 3.12 | |--------------|------|------|------| | B_{23}^T | 3.00 | 3.17 | 3.43 | $^{^*}r_P$ =3.8 Å, r_R = 4.2 Å, r_{dR} = 3.9 Å are R_{HS} values for the phosphate, sugar and deoxy-sugar group, respectively, which are independently obtained as described in the parameterization section of the main text. **Table 3S.** Comparison of the five-bead model (R_{HS1}) with the all-atom model. Nucleobases are indicated with the respective alphabets, and nucleotides with an R/D prefix to indicate RNA/DNA, respectively. | | CCS, EHSS (Å ²) | | | CCS, PA (Ų) | | | |----|-----------------------------|----------|-------|-------------|----------|-------| | | Five-bead | All atom | % Δ | Five-bead | All atom | % Δ | | Α | 59.55 | 60.09 | -0.91 | 56.65 | 58.97 | -3.94 | | С | 55.40 | 55.59 | -0.34 | 52.78 | 54.58 | -3.30 | | G | 66.09 | 64.90 | 1.84 | 62.02 | 63.50 | -2.34 | | U | 55.32 | 54.66 | 1.21 | 52.74 | 53.64 | -1.67 | | Т | 61.68 | 61.20 | 0.48 | 59.31 | 59.67 | -0.36 | | RA | 113.00 | 114.52 | -1.34 | 106.72 | 107.62 | -0.84 | | RC | 107.56 | 107.41 | 0.15 | 101.84 | 101.15 | 0.69 | | RG | 119.23 | 118.80 | 0.36 | 111.93 | 111.42 | 0.46 | | RU | 107.78 | 106.77 | 0.95 | 101.89 | 100.44 | 1.43 | | DT | 106.76 | 106.16 | 0.60 | 101.14 | 100.13 | 1.01 | **Table 4S. Comparison of the five-bead model (R**_{HS2}**) with the all-atom model.** Nucleobases are indicated with the respective alphabets, and nucleotides with an R/D prefix to indicate RNA/DNA, respectively. | | CCS, EHSS (Ų) | | | CCS, PA (Å ²) | | | |----|---------------|----------|-------|---------------------------|----------|-------| | | Five-bead | All atom | % Δ | Five-bead | All atom | % Δ | | А | 66.60 | 60.09 | 10.83 | 63.88 | 58.97 | 7.68 | | С | 61.98 | 55.59 | 11.49 | 59.54 | 54.58 | 8.33 | | G | 73.98 | 64.90 | 14.00 | 69.85 | 63.50 | 9.08 | | U | 61.85 | 54.66 | 13.16 | 59.46 | 53.64 | 9.79 | | Т | 69.14 | 61.20 | 13.00 | 66.98 | 59.67 | 12.25 | | RA | 104.35 | 114.52 | -8.9 | 98.26 | 107.62 | -9.53 | | RC | 99.61 | 107.41 | -7.3 | 93.62 | 101.15 | -8.04 | | RG | 111.46 | 118.80 | -6.2 | 104.18 | 111.42 | -6.95 | | RU | 99.67 | 106.77 | -6.7 | 93.62 | 100.44 | -7.28 | | DT | 101.98 | 106.16 | -3.93 | 96.55 | 100.13 | -3.58 | ## **FIGURES** **Figure 1S.** The mean squared errors for the five-bead and all-atom CCS values averaged over the four nucleobases, plotted as a function of s and rB. Starting with an initial value of 3.0 (r_B) and 0.0 (s), the parameter space ($r_B \rightarrow (3.0,2.95,2.9,2.88,2.85,2.83,2.8 \text{ Å})$, s $\rightarrow (0.0,0.05,0.1)$) was explored. The values of r_B and s that minimized the mean square errors between the calculated and the reference all-atom CCS values were chosen for the R_{HS1} model. **Figure 2S.** Comparison of collision cross-section (CCS) values obtained from static all-atom and five-bead models by using the R_{HS2} parameter set. Single-stranded species are marked by blue triangles, while the double-stranded ones are red-circles. The CCS values were obtained by both the PA (left) and EHSS (right) algorithms. **Figure 3S.** The simulated hairpins (16mer & 28mer DNA hairpins and 20mer & 34mer RNA hairpins) in CG representation. The backbone is represented in dark (RNA) & light (DNA) tan and the different colored beads represent different nucleobases. (red – A, green – G, cyan – C, magenta – U, blue – T)