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S1 Additional results

Selection intensity: Here, we analyse the impact of the selection intensity w which modulates the pulling
force in models with an attractive fixed point. For a more robust result we compare the simulations (lines
in Figure S1) with sojourn times (section S6) calculated for the discrete time dtEvo+ and dtEvo processes.
Since only discrete time and discrete state processes can be represented by a transition matrix, we can
only apply this approach to the discrete time constant population size processes. Although the Evo+

process has an attracting fixed point, intuitively making extinction times longer than in the Evo process,
for low population sizes and weak selection we see the opposite – fast extinction. Furthermore, while the
extinction time increases exponentially with increasing intensity of selection in the Evo+ process, the Evo
extinction times stay comparably constant, which is not surprising considering the neutral stability. One
interesting and unexpected result is that extinction time is lower for increasing selection intensity of one
species while keeping the other constant. This occurs when one of the selection intensities is very low:
some dark lines are decreasing, especially for example wH = 0.2, and colours are reversed for low values
of wP .

Dimensionality: We next include more types to observe the exponential decline of diversity, here simply
the number of genotypes nH and nP alive (Figure S2). The Evo+ process simulated with a Gillespie
algorithm is updated such that the interaction matrix is normalised depending on the number of strains
(otherwise there is an imbalance between matching and non-matching pairs which results in change of
selection strength). Oscillating selection can give an advantage to any type, but at different time points.
A previously extinct parasite type (P2) is reintroduced manually at time point 16, where the abundance
of the corresponding host is especially high.
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Figure S1: Average extinction time for constant population sizes and different selection in-
tensities. The dtEvo+ and dtEvo process are compared by the mean (�, ×) extinction times and the
standard deviation from simulations with the exact sojourn times (—, - -) calculated analytically. The
simulations start with equal abundance of both types H1(0) = H2(0) = NH/2 and P1(0) = P2(0) = NP /2.
Parameters: NH = 250, wH = wP = 1, α = 1, β = 0. Note the log scale and different ranges on the
y-axis.

0

25

50

75

100

125

150

175

200

ab
un

da
nc

e

P2

H2
H4
H5
H6
H7
H8
H14
H15
H16
H19
P5
P7
P16
P19

0 5 10 15 20 25
time

100

101

di
ve

rs
ity

nH

nP

Figure S2: Diversity decline of subtypes of hosts and parasites. Example of an Evo+ process im-
plemented with a Gillespie algorithm. The simulations start with equal abundance of all 20 types
Hi(0) = NH/20 and Pi(0) = NP /20. At time point t = 16 a well adapted but extinct P2 = 1 is rein-
troduced manually, while P5 is reduced by one individual to keep NP constant. Parameters: NH = 200,
NP = 200, wH = wP = 1, α = 1, β = 0. The legend shows host and parasite subtypes present at t = 16.
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S2 Model descriptions

Verbal model descriptions and some parameter explanations are available in the main text, here we show
the mathematical details.

S2.1 The Evo+ and Evo process

In the Evo+ process (often Moran process in evolutionary game theory) and Evo process (often pairwise
comparison or local update process) population size NH and NP is constant, so it is enough to focus on
one type H = H1 = NH −H2 and P = P1 = PN −P2. Then the fitness of the second type has a negative
influence on the first type and we can write fitness as fsr , with s ∈ {+,−} indicating whether the fitness
has a positive or negative influence on the focal type and r ∈ {h, p} denoting the population. Fitness
depends on the payoff taken from the game played between hosts and parasites with relative abundances

h := H/NH and p := P/NP . The infection matrices Mp =
(
α β
β α

)
and Mh =

(
β α
α β

)
result in payoffs(

π+
p

π−
p

)
= Mp

(
h

1−h
)

=
(
αh+β(1−h)
βh+α(1−h)

)
and (

π+
h

π−
h

)
= Mh

( p
1−p

)
=
(
βp+α(1−p)
αp+β(1−p)

)
.

The strength of the influence of this payoff on fitness is modulated by the selection intensity wr ∈ [0, 1].
Here we use a linear dependence

fsr = 1− wr + wrπ
s
r . (1)

In an Evo+ process the local probabilities depend on the fitness of a type divided by an average fitness
(fitness of subtypes weighed with the relative abundance) of the species.

Φsr =
fsr
〈fr〉

=
fsr

rf+
r + (1− r)f−r

. (2)

For the Evo process, the local transition probabilities are influenced by the fitness difference between
the two types scaled with the maximal possible payoff difference

Φsr =
1

2
+

1

2

fsr − f¬sr
∆πrmax

, (3)

where ¬s is the other type (chosen for death). We often use α = 1 and β = 0, then ∆πrmax = 1, else
∆πrmax = α − β. The local rates Φsr are the specific rates for the birth-death reactions. Multiplied with
the relative abundance of the reactants, we get the global transition probabilities T sr = r (1− r) Φsr.

In the discrete time processes host and parasite populations are updated simultaneously and all tran-
sition probabilities sum up to one. For each population, there must therefore be a transition probability
for increasing, decreasing or not changing the number of the focal type. The respective probabilities are
T+
r , T−r and T 0

r = 1−T+
r −T−r . For the two interacting populations this yields nine probabilities, Tab. S1.

In the computer simulation, in each time step ∆t = 1, a random number is compared with the
cumulative probabilities and the resulting transition is carried out by adjusting the population accordingly
and updating time to t+ 1.

S2.2 Gillespie algorithm

In a Gillespie algorithm we assume independent interactions with one or two reactants that react with a
certain rate, which is the product of the reactant concentrations multiplied with a reaction constant (not
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Transition
in (h,p)-space

number l ∆h ∆p Probability Tl

• 1 0 0 T 0
h T

0
p

→ 2 1
NH

0 T+
h T 0

p

↑ 3 0 1
NP

T 0
h T

+
p

← 4 − 1
NH

0 T−h T 0
p

↓ 5 0 − 1
NP

T 0
h T
−
p

↗ 6 1
NH

1
NP

T+
h T+

p

↙ 7 − 1
NH

− 1
NP

T−h T−p
↘ 8 1

NH
− 1
NP

T+
h T−p

↖ 9 − 1
NH

1
NP

T−h T+
p

Table S1: Transition probabilities Tl(h, p)

necessarily a constant here). If reactions happen with waiting times that follow an exponential distribution
we can calculate the time of the next reaction, for each reaction with mass-action rate φ and the help of
a random number R ∈ [0, 1],

∆t =
1

φ
log

1

R
. (4)

We then choose the reaction that happens first and update population and time.
For reactions with one reactant, the reaction rates are multiplied with the absolute abundance (e.g.

φ = H1b for the first reaction in the EcoEvo+ process), but when two reactants are necessary, the
probability of that reaction would be amplified. The reaction is therefore scaled. In the Evo+/Evo
process pair reactions are scaled with NH (NP ) for the first two (last two) reactions (see Table S2), so
that φ = H1

H2

NH
Φ+
H , etc. In the EcoEvo+ and EcoEvo process reactions with two reactants are scaled

with the carrying capacity K (φ = H1
H2

K µ for the third reaction). The last case is very close to the usual
approach in chemistry, where reactions rates with more than one reactant are scaled with the system
volume.

S2.3 EcoEvo+ and EcoEvo process

For the completely independent EcoEvo models reactions with two reactants are scaled with an extrinsic
carrying capacity K. These are reactions where host and parasite interact with rate λ = λ0

K or where

hosts are in competition with each other µ = bh
K (or µ = 0 in the EcoEvo model). The choice of µ

becomes apparent in the deterministic limit, where the carrying capacity in the logistic term is K = bh
µ

(see Tab. S3). Note that the carrying capacity does not equal the population size of the hosts when
parasites are present. The initial conditions are chosen to be similar with the game theory processes by
varying the value of the fixed point through bh.

S2.4 Hybrid process

Like the Evo+ an Evo process the Hybrid model takes its interaction rates via a game theory approach
from the payoff matrix. In the Evo+ and Evo process the payoff matrix for the host is adjusted to realise
positive fitness. Here, the set-up is closer to typical host-parasite modelling by using only one payoff matrix

for positive rates bP1 , bP2 for the parasite and negative rates dH1 , dH2 for the host. With M =
(
α β
β α

)
we obtain bP1

= 1 − wP + wP
H1α+H2β
H1+H2

, bP2
= 1 − wP + wP

H1β+H2α
H1+H2

, dH1
= 1 − wH + wH

P1α+P2β
P1+P2

and
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dH2
= 1− wH + wH

P1β+P2α
P1+P2

. When wH = wP = 1 the model is equivalent to the independent reactions
with two reactants, however, scaled with different quantities H1 + H2 or P1 + P2, which are dynamic.
This model is in between the EcoEvo and the Evo+/Evo processes.
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Model reactions time population
size

fixed
point

dimension

discrete time
Evo+

(dtEvo+)

H1 +H2

T0
PΦ

+
H−−−−−→ 2H1

H1 +H2

T0
PΦ

−
H−−−−−→ 2H2

P1 + P2

T0
HΦ

+
P−−−−−→ 2P1

P1 + P2

T0
HΦ

−
P−−−−−→ 2P2

H1 +H2 + P1 + P2

Φ
+
H

Φ
+
P−−−−−→ 2H1 + 2P1

H1 +H2 + P1 + P2

Φ
+
H

Φ
−
P−−−−−→ 2H1 + 2P2

H1 +H2 + P1 + P2

Φ
−
H

Φ
+
P−−−−−→ 2H2 + 2P1

H1 +H2 + P1 + P2

Φ
−
H

Φ
−
P−−−−−→ 2H2 + 2P2

no reaction with probability T 0
HT

0
P

discrete constant attractive 2D

Evo+ H1 +H2

Φ
+
H−−−→ 2H1

H1 +H2

Φ
−
H−−−→ 2H2

P1 + P2

Φ
+
P−−→ 2P1

P1 + P2

Φ
−
P−−→ 2P2

continuous constant attractive 2D

discrete time
Evo

dtEvo

like discrete time Evo+, but different equa-
tions for Φ and T

discrete constant neutral 2D

Evo like Gillespie Evo+, with different Φ and T continuous constant neutral 2D

Hybrid H1

(H1dH1
+H2dH2

)/(H1+H2)

−−−−−−−−−−−−−−−−−−−−→ 2H1

H2

(H1dH1
+H2dH2

)/(H1+H2)

−−−−−−−−−−−−−−−−−−−−→ 2H2

continuous nearly con-
stant

neutral 4D

H1

dH1−−−→ ∅

H2

dH2−−−→ ∅

P1

bP1−−−→ 2P1

P2

bP2−−−→ 2P2


P1

(P1bP1
+P2bP2

)/(P1+P2)

−−−−−−−−−−−−−−−−−−→ ∅

P2

(P1bP1
+P2bP2

)/(P1+P2)

−−−−−−−−−−−−−−−−−−→ ∅

death host and birth parasite when wH = wP = 1 :

H1 + P1
α−→ P1

H1 + P2
β−→ P2

H2 + P1
β−→ P1

H2 + P2
α−→ P2

P1 +H1
α−→ 2P1 +H1

P1 +H2
β−→ 2P1 +H2

P2 +H1
β−→ 2P2 +H1

P2 +H2
α−→ 2P2 +H2

EcoEvo+ H1
b−→ 2H1

H2
b−→ 2H2

H1 +H2
µ−→ H1

H1 +H1
µ−→ H1

H1 +H2
µ−→ H2

H2 +H2
µ−→ H2

P1 +H1
λ−→ P1

P1 +H1
λ−→ 2P1 +H1

P2 +H2
λ−→ P2

P2 +H2
λ−→ 2P2 +H2

P1
d−→ ∅

P2
d−→ ∅

continuous constrained attractive 4D

EcoEvo like EcoEvo+ but with µ = 0 continuous unconstrained neutral 4D or
2×2D

Table S2: Model overview. Model names and their main properties. See main text for explanation.
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S3 Stochastic differential equation and deterministic limit

S3.1 Master equation

In the limit of NH , NP →∞ and ∆t→ 0 the stochastic process is described by a Fokker Planck equation
with a selection term (the deterministic ordinary differential equation, often called drift in physics) and
a diffusion term (stochastic term often called genetic drift in biology). The Fokker Planck equation can
also be converted into a stochastic differential equation. As an example we explain this procedure for the
discrete time Evo+ or Evo process.

From the transition probabilities above, one can write down the master equation

P (t+ ∆t, h, p) =P (t, h, p)

+ ∆t

9∑
l=2

P (t, h−∆h, p−∆p) Tl(h−∆h, p−∆p)

−∆t P (t, h, p)

9∑
l=2

Tl(h, p)

(5)

The probability P (h, p, t + ∆t) of being at the specific state (h, p) at time t + ∆t is the probabil-
ity of being in that state plus the probability of being in a state close by at time t multiplied with the
probability of transitioning to the new state (h, p) minus the probability of leaving that state. See Tab. S1.

S3.2 Fokker-Planck equation

We can now use the shift operator E∆x

f(x+ ∆x) = E∆xf(x) = e∆x d
dx f(x)

=

(
1 + ∆x

d

dx
+ ∆x2 1

2!

d2

dx2
+ ...

)
f(x)

(6)

on the left hand side and on the right hand side of the master equation. Then approximating

P (t+ ∆t, h, p)− P (t, h, p) =
d

dt
∆tP (t, h, p) (7)

to first order and

P (t,h−∆h, p−∆p)Tl(h−∆h, p−∆p)

=

(
1−∆h

d

dh
+ ∆h

d2

dh2

)(
1−∆p

d

dp
+ ∆p

d2

dp2

)
P (t, h, p)Tl(h, p)

(8)

to second order ( 1
N2 , see (van Kampen, 1997; Risken, 1996; Gardiner, 1985)) we get
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d

dt
P (t, h, p) =

+

(
−

1

NH

∂

∂h
+

1

2N2
H

∂2

∂h2

)
P (t, h, p)T2(h, p)

+

(
−

1

NP

∂

∂p
+

1

2N2
P

∂2

∂p2

)
P (t, h, p)T3(h, p)

+

(
+

1

NH

∂

∂h
+

1

2N2
H

∂2

∂h2

)
P (t, h, p)T4(h, p)

+

(
+

1

NP

∂

∂p
+

1

2N2
P

∂2

∂p2

)
P (t, h, p)T5(h, p)

+

(
−

1

NH

∂

∂h
−

1

NP

∂

∂p
+

1

2N2
H

∂2

∂h2
+

1

NHNP

∂

∂h

∂

∂p
+

1

2N2
P

∂2

∂p2

)
P (t, h, p)T6(h, p)

+

(
+

1

NH

∂

∂h
+

1

NP

∂

∂p
+

1

2N2
H

∂2

∂h2
+

1

NHNP

∂

∂h

∂

∂p
+

1

2N2
P

∂2

∂p2

)
P (t, h, p)T7(h, p)

+

(
−

1

NH

∂

∂h
+

1

NP

∂

∂p
+

1

2N2
H

∂2

∂h2
−

1

NHNP

∂

∂h

∂

∂p
+

1

2N2
P

∂2

∂p2

)
P (t, h, p)T8(h, p)

+

(
+

1

NH

∂

∂h
−

1

NP

∂

∂p
+

1

2N2
H

∂2

∂h2
−

1

NHNP

∂

∂h

∂

∂p
+

1

2N2
P

∂2

∂p2

)
P (t, h, p)T9(h, p).

The resulting Fokker-Planck equation emerges when we collect similar terms

∂

∂t
P (t, h, p) =

(
− ∂

∂h
a1 −

∂

∂p
a2

)
P (t, h, p)

1

2

(
+
∂2

∂h2
d1 +

∂2

∂p2
d2 +

∂

∂h

∂

∂p
d1,2 +

∂

∂p

∂

∂h
d2,1

)
P (t, h, p).

(9)

The drift vector a = (a1, a2) and the diffusion matrix D =
(
d1 d1,2

d2,1 d2

)
are calculated as follows, where we

have dropped the arguments (h, p) for readability.

a1 = ḣ =
1

NH
(T2 + T6 + T8 − T4 − T7 − T9) =

1

NH
(T+
H − T

−
H )

=
h(1− h)

NH
(Φ+

H − Φ−H)

a2 = ṗ =
1

NP
(T3 + T6 + T9 − T5 − T7 − T8) =

p(1− p)
NP

(Φ+
P − Φ−P )

d1 =
1

N2
H

(T2 + T4 + T6 + T7 + T8 + T9) =
h(1− h)

N2
H

(Φ+
H + Φ−H)

d2 =
1

N2
P

(T3 + T5 + T6 + T7 + T8 + T9) =
p(1− p)
N2
P

(Φ+
P + Φ−P )

d1,2 = d2,1 =
1

NHNP
(T6 + T7 − T8 − T9)

=
h(1− h)p(1− p)

NHNP

(
Φ+
H + Φ−H

) (
Φ+
P + Φ−P

)
.

We have summarised the results for the infection matrices Mp =
(
α β
β α

)
and Mh =

(
β α
α β

)
in Tab. S3.

For the Evo+ process Φ+
H −Φ−H = wH(α−β)(1−2p)

1−wH+wH〈πH〉 , Φ+
H +Φ−H = 2−2wH+wH(α+β)

1−wH+wH〈πH〉 , Φ+
P −Φ−P = wP (α−β)(2h−1)

1−wP+wP 〈πP 〉

and Φ+
P + Φ−P = 2−2wP+wP (α+β)

1−wP+wP 〈πP 〉 . And for the Evo process Φ+
H − Φ−H = wH(1 − 2p), Φ+

H + Φ−H = 1,
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Φ+
P − Φ−P = wP (2h − 1) and Φ+

P + Φ−P = 1. We have normalised the reaction rates in the discrete
time processes so that all probabilities sum up to one. The other processes’ reaction rates are on the
order of NH or NP (also see appendix section S2.2), for the continuous time processes the Fokker Planck
equation is therefore faster. Furthermore, some of the processes are four dimensional with drift vector

a = (a1, a2, a3, a4) for H1, H2, P1, P2 and diffusion matrix D =

(
d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

)
. Here, all correlative

noise (non-diagonal entries) is zero because all the reactions only change one reactant at a time. Note
that without diffusion, the Hybrid process is equivalent to the scaled two-dimensional replicator dynamics
because a1 + a2 = Ḣ1 + Ḣ2 = 0 which implies H1 +H2 = NH .

S3.3 Stochastic differential equation

From the Fokker Planck equation a stochastic differential equation (SDE) can be constructed. The SDE
is a differential equation with a deterministic part, which has to be integrated with respect to time and
a second term which is integrated with the Wiener process (continuous time random walk/Brownian
motion). While the Fokker Planck equation describes the probabilities for certain states in time, and thus
a probability distribution, the SDE accounts for the change of a random variable. Integrated with respect
to one particular realisation of a random walk (Wiener process), it will give one particular realisation of
the stochastic process.

To derive a non-unique SDE from the Fokker Planck equation we take the “square root” of the matrix

D =
(
d1 d1,2

d2,1 d2

)
= BTB with d1,2 = d2,1. A Cholesky decomposition can achieve this,

B =


√
d1

d1,2√
d1

0

√
d2 −

d1,2c

(
d1,2√
d1

)
√
d1

 (10)

where c(x) is the complex conjugate of x. This is only important if d1 can become negative which is not
the case for our purposes. With the drift term a(Xt) diffusion matrix B = B(Xt) we set up the stochastic
differential equation in the Itô sense

dXt = a(Xt) dt+B(Xt) dWt (11)

where the stochastic variable Xt =
(
h
p

)
describes the relative abundance of the first host and first par-

asite, and W is the Wiener process. The terms a1 and a2 are equivalent to the differential equation
(deterministic terms in Table S3) and describe the N → ∞ limit of the stochastic process, which is e.g.
the replicator equation for the Evo process and the adjusted replicator dynamics for the Evo+ process.

The Fokker Planck equation is a deterministic partial differential equation, which can be solved in
simple cases. Although this is not the case here, we can learn from the matrix D how the variance in the
distribution is affected by the parameters. Again, although all seven models stem from the same biological
mechanisms, the results are quite different. The Evo+, Evo, EcoEvo+ and EcoEvo processes have only
diagonal elements, therefore the random term is not correlated across species (2D models) or even types
(4D models).

Stochastic differential equations can be numerically integrated in a robust way (Rößler, 2010; Kloeden
and Platen, 1992) using random numbers for the Wiener process. The advantage of an SDE with respect
to a stochastic simulation (via Gillespie’s algorithm) is the independence of run time on the population
size N . In a stochastic simulation each individual in the population is simulated. An SDE, like an ODE
is integrated stepwise, thus the limiting factor here is the time step used. For small population numbers
as displayed in the figures of the main text both algorithms are comparable in speed. As population size
increases stochastic simulations become infeasible, yet SDE integration does not increase the runtime.

9



Model deterministic terms stochastic terms

dtEvo+ ḣ = h(1−h)
NH

wH (α−β)(1−2p)
1−wH+wH〈πH〉

ṗ = p(1−p)
NP

wP (α−β)(2h−1)
1−wP+wP 〈πP 〉

d1 = h(1−h)
N2
H

2−2wH+wH (α+β)
1−wH+wH〈πH〉

d2 = p(1−p)
N2
P

2−2wP+wP (α+β)
1−wP+wP 〈πP 〉

d1,2 = h(1−h)p(1−p)
NHNP

2−2wH+wH (α+β)
1−wH+wH〈πH〉

2−2wP+wP (α+β)
1−wP+wP 〈πP 〉

Evo+ ḣ = h(1− h)wH (α−β)(1−2p)
1−wH+wH〈πH〉

ṗ = p(1− p)wP (α−β)(2h−1)
1−wP+wP 〈πP 〉

d1 = h(1−h)
NH

2−2wH+wH (α+β)
1−wH+wH〈πH〉

d2 = p(1−p)
NP

2−2wP+wP (α+β)
1−wP+wP 〈πP 〉

d1,2 = 0

dtEvo ḣ = h(1−h)
NH

wH(1− 2p)

ṗ = p(1−p)
NP

wP (2h− 1)

d1 = h(1−h)
N2
H

d2 = p(1−p)
N2
P

d1,2 = h(1−h)p(1−p)
NHNP

Evo ḣ = h(1− h)wH(1− 2p)
ṗ = p(1− p)wP (2h− 1)

d1 = h(1−h)
NH

d2 = p(1−p)
NP

d1,2 = 0

Hybrid Ḣ1 = H1H2wH (α−β)(P2−P1)
(H1+H2)(P1+P2)

Ḣ2 = H1H2wH (α−β)(P1−P2)
(H1+H2)(P1+P2)

Ṗ1 = P1P2wP (α−β)(H1−H2)
(H1+H2)(P1+P2)

Ṗ2 = P1P2wP (α−β)(H2−H1)
(H1+H2)(P1+P2)

d1 = 2H1(1− wH + wH(α(P1H1+
H2

P1+P2
2

) + β(P2H1 +H2
P1+P2

2
)))

d2 = 2H2(1− wH + wH(α(P2H2+
H1

P1+P2
2

) + β(P1H2 +H1
P1+P2

2
)))

d3 = 2P1(1− wP + wP (α(P1H1+
P2

H1+H2
2

) + β(H2P1 + P2
H1+H2

2
)))

d4 = 2P2(1− wP + wP (α(P2H2+
P1

H1+H2
2

) + β(H1P2 + P1
H1+H2

2
)))

EcoEvo+ Ḣ1 = bhH1(1− µ
bh

(H1 +H2))
−λP1H1

Ḣ2 = bhH2(1− µ
bh

(H1 +H2))
−λP2H2

Ṗ1 = P1(λH1 − dp)
Ṗ2 = P2(λH2 − dp)

d1 = bhH1(1 +
µ
bh

(H1 +H2)) + λP1H1

d2 = bhH2(1 +
µ
bh

(H1 +H2)) + λP2H2

d3 = λP1H1 + dpP1

d4 = λP2H2 + dpP2

EcoEvo Ḣ1 = bhH1 − λP1H1

Ḣ2 = bhH2 − λP2H2

Ṗ1 = P1(λH1 − dp)
Ṗ2 = P2(λH2 − dp)

d1 = bhH1 + λP1H1

d2 = bhH2 + λP2H2

d3 = λP1H1 + dpP1

d4 = λP2H2 + dpP2

Table S3: Deterministic and stochastic terms for the time evolution of relative abundances h =
H1/NH or absolute abundances H1, etc. for all models. Deterministic equations are the drift terms in
the Fokker Planck equation. Stochastic terms are the diffusion terms in the Fokker Planck equation. See
main text for explanation.
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S4 Deterministic properties

Fixed points occur when the dynamics have come to a halt and there is no more change in (relative)
abundances. In the two-dimensional deterministic models (dtEvo+, Evo+, dtEvo, Evo and Hybrid - if
normalised), which can be described by the replicator dynamics or the adjusted replicator dynamics,
there are trivial points, where one subtype is extinct: (h = 0 or h = 1) and (p = 0 or p = 1). The less
trivial fixed point is the inner coexistence fixed point with h∗ = p∗ = 0.5 in the symmetric case where
there is no distinction between subtypes except the specificity to a matching host/parasite. The four-

dimensional deterministic models (EcoEvo+ and EcoEvo) have coexistence fixed points H∗i =
dp
λ =

dpK
λ0

and P ∗i = bh
λ

(
1− µ

bh
(H∗1 +H∗2 )

)
, where P ∗i = bh

λ when µ = 0, there is no logistic growth.

A linear stability analysis is carried out to learn more about the properties of the fixed point. The

Jacobian at this inner fixed point J(h∗, p∗) =

(
dḣ
dh

dḣ
dp

dṗ
dh

dṗ
dp

) ∣∣∣∣
h=h∗,p=p∗

is calculated to reveal the characteris-

tic function det (J(h∗, p∗)− λI) = 0. If the real parts of all Eigenvalues are negative, the fixed point is
attractive and thus (in the terms of evolutionary game theory) an evolutionary stable strategy ESS. If at
least one Eigenvalue has a positive real part, the state is a repellor (unstable). And if all real parts are
zero, it is not enough to conduct a linear stability analysis. For the replicator dynamics and the adjusted
replicator dynamics we find only imaginary Eigenvalues where the real part is zero, indicating neutral
stability. This can be addressed by more sophisticated methods.

A constant of motion (Hofbauer, 1996; Koth and Sigmund, 1987) for the replicator dynamics reveals
that the dynamics are volume preserving. The fixed point is neutrally stable. All trajectories follow orbits
as shown in Fig. S3.

Also, from Hofbauer and Sigmund (1998, chapter 11) we know that in our example with Mp =
(
α β
β α

)
and Mh =

(
β α
α β

)
we have a c-zero-sum game. Then the fixed point is globally asymptotically stable

(attractive) in the adjusted replicator dynamics.
A simple stability analysis shows that the EcoEvo+ is attractive for many parameters but neutral when
µ = 0 in the EcoEvo interactions with no constraint on population size.

S5 Approximate diffusion for a constant of motion

For the neutrally stable models that lead to replicator dynamics (dtEvo, Evo, Hybrid) and to the origi-
nal independent reactions dynamics (EcoEvo) one can set up a constant of motion H. Here we use the
replicator dynamics as an example.

A constant of motion is a function of the state variables in the system that does not change in time
dH
dt = 0 when a trajectory is not perturbed by chance. Intuitively one can think of a system with constant

energy where the dynamics are confined to the constant energy contour lines. For the two-dimensional
replicator dynamics and a matching allele infection matrix Mp = ( 1 0

0 1 ) and Mh = ( 0 1
1 0 ) the constant of

motion is

H(h, p) = 16h p (1− h) (1− p) (12)

h, p ∈ [0, 1] are the relative abundances of host type one and parasite type one (1 − h and 1 − p are the
relative abundances of type two) and the constant of motion is scaled so that it has the value one when
both types are equally abundant (h = p = 1/2) and the value zero when any type is extinct (Claussen,
2016). The deterministic trajectory would start with a certain value of H, depending on the initial
condition, and would follow that line indefinitely (see Fig. S3).
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Figure S3: Constant of motion for replicator dynamics. Trajectories starting on a certain line are
confined to it. This is described by the constant of motion Eq. (12). The axes (h, p) are the relative
abundances of the focal subtype (H1, P1).

In a stochastic model the constant of motion loses this meaning, but it can still be used as an observ-
able to measure the distance of the state to the inner fixed point or the outer border where a type goes
extinct. Claussen (2007) uses the average change of this observable to analyse under what conditions the
system can be forced to return to the inner fixed point (drift reversal) or whether extinction is inevitable
owing to the outward diffusion in a ”battle of the sexes” game. In fact, the quantity can be used as an
observable also for models that are not neutrally stable, but where H = 0 still means extinction and h, p
are the two dimensions. Hence, we can use the following approach not only for the Evo process (which
is equivalent to the replicator dynamics in a limit) but also the Evo+ process (which is equivalent to the
attractive adjusted replicator dynamics). The discrete time versions of these processes allow us to focus
on the probabilities only, without having to keep track of time, since ∆t = 1. We now use the average
change of this observable to analyse whether the system can be forced to return to the inner fixed point
or whether extinction is inevitable due to the outward diffusion.

When a transition occurs, the value of the observable H also changes. For each transition Tl(h, p)
with l = 1, 2, ..., 9 and corresponding ∆h and ∆p there is a ∆Hl(h, p) := H(h + ∆h, p + ∆p) −H(h, p).
By weighing all possible changes in H with the corresponding transition probabilities one receives the
average change of the observable for each configuration of host and parasite populations.

∆H(h, p) =

9∑
l=1

∆Hl(h, p) Tl(h, p) (13)

This is the average change in H for each coordinate (h, p) in each time step, but the actual extinction
time remains to be calculated.

The average diffusion over the whole space would be the integration over h, p ∈ [0, 1], which is not
possible in all generality. It becomes possible when taking the weak selection approximation via a Taylor
approximation

∆HT (h, p) = ∆H(h, p) +O(w3
i ) (14)
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around wH = wP = 0 is up to second order in wi, i ∈ {H,P}. After this approximation it is possible to
integrate the formula to get a (phase space) average of the average diffusion.

〈∆H〉 =

∫ 1

0

∫ 1

0

∆HT (h, p) dh dp (15)

For the matching allele infection matrices MH = ( 0 1
1 0 ) and MP = ( 1 0

0 1 ) in a discrete time Evo or Evo+

process the average diffusion is

〈∆H〉dtEvo =
−100(N2

H +N2
P − 1)− 4NHNPwHwP
225N2

HN
2
P

(16)

〈∆H〉dtEvo+ =
A+Bw2

H − C wHwP +Dw2
P

225N2
HN

2
P

(17)

with

A = −200(N2
H +N2

P − 2)

B = 4− 2N2
P +NH(2N2

P − 4)

C = 4− 4NP +NH(4NP − 4)

D = 4− 4NP +N2
H(2NP − 2)

per time step. Now we can find out the time steps it takes to reach a certain value of Hfinish starting in
a certain value of Hstart.

t =
Hfinish −Hstart

〈∆H〉
(18)

We start in Hstart = 1, which is the coexistence fixed point with a maximum variability of host and
parasite subtypes. The value of H when one subtype dies out is Hfinish = 0.

t =
−1

〈∆H〉
. (19)

This method only works if the average diffusion is negative. For example, with wH = wP = 1 and
NH = 250, 〈∆H〉dtEvo is always negative but 〈∆H〉dtEvo+ becomes positive for NP ≥ 85. The stronger
the selection intensity in the dtEvo+ process, the more the pull towards the coexistence (attractive) fixed
point. For the dtEvo, the selection intensity has hardly any influence (there are only terms in 1

N2
i

, whereas

in the dtEvo+ there are terms in 1
Ni

).
One has to be careful to use this formula since it was derived in a weak selection limit and large N . Yet
the simulations present results for small N and relatively large w. However, we see that the order of
magnitude is the same as in the simulated extinction times above. Yet the logarithmic scale, although
convenient to represent the different orders of magnitude, may be misleading.

S6 Exact sojourn times

The constant population size processes with discrete time (dtEvo+ and dtEvo) allow for a description of
transitions as probabilities in each discrete time step ∆t = 1. For each state with index k ∈ {1, 2, ...(NH +
1)(NP + 1)} in the two-dimensional state space H1 ∈ {0, 1, ..., NH} × P1 ∈ {0, 1, ..., NP } there is a
probability of transitioning to every other state (most of these probabilities are zero, because only one step
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is taken in state space for each time step, see also Table S1). This transition matrix Π ∈ [0, 1](NH+1)(NP+1)

can be ordered into a block matrix containing one block for transient states Q, one block for transitions
from transient states to absorbing states R, and one identity matrix block for absorbing states I. Then
the transition matrix is

Π =
(
Q R
0 I

)
, (20)

and the recursion equation

ρ(t+ 1) = ρ(t) Π, (21)

for the probability density ρ(t) = (ρk)k over all states k ∈ {1, 2, .., (NH + 1)(NP + 1)}. Grinstead and
Snell (2012) proved that the time spent in the inner states, which are part of the matrix Q, depending
on the initial state is an entry in (Q− I)−1. Hindersin et al. (2016) apply this by solving the equivalent
system of equations (Q − I)x = −1 for x. We have applied this numerical approach to the inner states
H1 ∈ {1, 2, ..., NH − 1} × P1 ∈ {1, 2, ..., NP − 1} which then gives the exact average time to extinction of
one of the subtypes in one of the populations.

S7 Literature overview

In the main text, Table 1 summarises some mathematical models on host-parasite dynamics found in
the literature. We have based the choice of our models on the visibility of the studies, the relatedness
and comparability to our work and the availability of the information found in the publications, that
is necessary to complete the table. We have aimed at focussing on explicit host-parasite models (HP),
that build on the classic Lotka-Volterra or Rosenzweig-MacArthur models or the evolutionary game the-
ory literature. There are many such publications from before the year 2000 (Schaffer and Rosenzweig,
1978; Seger, 1988; Nee, 1989, and more), but we aimed at comparing predominantly the more recent
literature. However, many models are host-focussed, such as susceptible-infected (SI) epidemiological
models. Many host centred models include parasite genotype frequencies and infection probabilities, but
the host dynamics are more complex than the parasite dynamics, and the focus is often on host evolution
or the maintenance of sexual reproduction in the host. We have briefly discussed these studies, yet we
are predominantly interested in co-evolution models, where parasites play a similarly important role (HP
models). Furthermore, we have also included some studies that are concerned with slightly less related
topics to show the diversity in assumptions and authors that this field provides. Some of these models
include stochasticity and a changing population size (spatial structure model of Boots and Sasaki (1999))
while others include stochasticity but not a variable population size (model on special host or parasite
behaviour Abou Chakra et al. (2014)) and others include a variable population size but are determin-
istic (non-host-parasite Red Queen dynamics Bonachela et al. (2017)). This is, naturally, a subjective
approach, and we have not excluded any publications for belligerent reasons. We also wish to caution,
that this study is not a systematic literature review and we do not make the claim to have collected all
relevant publication in this extensive field.
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