Supplementary Information for the manuscript "Global translational repression induced by iron deficiency in yeast depends on the Gcn2/eIF2α pathway"

Antonia María Romero¹, Lucía Ramos-Alonso¹, Paula Alepuz^{2,3}, Sergi Puig¹* and María Teresa Martínez-Pastor²**

¹Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, E-46980, Paterna, Valencia, Spain.

²Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, E46100, Burjassot, Valencia, Spain.

³ERI Biotecmed, Universitat de València, Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain.

*spuig@iata.csic.es

**maria.teresa.martinez@uv.es

В

elF2α

Supplementary Figure S1. Full blot image of Figure 3A with cropped regions marked with rectangles. The blots show the phosphorylated eIF2 α (A) and total eIF2 α protein of three biological replicates from cells grown under iron deficiency for the indicated times (R1, R2 and R3). The three lanes on the right show the phosphorylated eIF2 α (A) and total eIF2 α protein (B) of cells untreated (0) or treated with 1 µg/mL Rapamycin for 15 min (Rap), as a positive control of eIF2 α phosphorylation.

Supplementary Figure S2. The gcn2 Δ and gcn1 Δ mutant strains display a growth defect in the presence of 3-aminotriazole. Wild-type BY4741, gcn2 Δ and gcn1 Δ cells were transformed with pRS413 plasmid, which contains the *HIS3* gene. (A) Cells were cultivated overnight in liquid SC-His medium and then spotted in 1:10 dilutions, starting at OD at 600 nm of 0.1, on solid SD + Ura + Leu + Met plates that contained increasing 3-aminotriazole (3-AT) concentrations. Plates were incubated for 3 days at 30°C and photographed. (B) Cells were cultivated in liquid SD + Ura + Leu + Met medium without or with 3-AT in a Spectrostar Nano absorbance reader (BMGLabtech) for 3 days at 28°C, and the final OD at 600 nm was registered. Mean values and standard deviations from three biologically independent experiments are shown. Different letters over the bars indicate statistically significant differences (*p*-value < 0.05).

Supplementary Figure S3. eIF2 α is not phosphorylated in the *gcn2* Δ and *gcn1* Δ mutant strains in response to iron deficiency or 3-aminotriazol treatment. Wild-type BY4741, *gcn2* Δ and *gcn1* Δ cells transformed with pRS413 plasmid were cultivated overnight and reioculated in SC-His (+Fe) or SC-His + 100 μ M BPS (-Fe) for 9 hours, and in SC-His + 30 mM 3-AT for 5 hours. The levels of phosphorylated eIF2 α (A) and total eIF2 α (B) protein were determined by Western blot analyses in three independent biological replicates (R1, R2, R3) using the anti-eIF2 α -Ser51/52 and anti-eIF2 α antibodies, respectively. L: ladder. (C) Quantification of the relative levels of eIF2 α -P/eIF2 α . The average and standard deviation is shown. Different letters over the bars indicate statistically significant differences (p-value < 0.05).

Supplementary Figure S4. The Gcn2-dependent improvement of translation under iron deficiency is temporary. Wild-type BY4741 (A) and $gcn2\Delta$ (B) strains were cultivated in SC with 100 μ M BPS (-Fe) for 12 hours. Polysome analyses were performed as described in Figure 1.

Strain	Description	Source	
W303	HTLU-2832-1B: <i>MATa</i> , <i>HIS3</i> , <i>TRP1</i> , <i>LEU2</i> , <i>URA3</i> , <i>ADE2</i> , <i>can1</i>	Fred Cross	
W303 ura3∆	W303 ura3::hphB	This study	
W303 ura3∆gcn2∆	W303 ura3::hphB gcn2::KanMX4	This study	
BY4741	MATa, his $3\Delta 1$, leu $2\Delta 0$, met $15\Delta 0$, ura $3\Delta 0$	Research Genetics	
$gcn2\Delta$	BY4741 gcn2::KanMX4	Research Genetics	
gcn1∆	BY4741 gcn1::KanMX4	Research Genetics	
SUI2	RS-86: MATa, ura3-52, leu2-3,112, trp1 Δ 63, Δ sui2, Δ p919 [SUI2, URA3], pRS414 [SUI2, TRP1]	32	
SUI2-S51A	RS-88: MATa, ura3-52, leu2-3,112, trp1∆63, ∆sui2, ∆p919 [SUI2, URA3], pRS414 [SU2I-S51A, TRP1]	32	

Supplementary Table S1. List of *Saccharomyces cerevisiae* strains used in this work.

Supplem	entarv Ta	ble S2. List o	of oligonucleo	otides used fo	or RT-aPCR in	n this work.
11	•		0		1	

Name	Sequence (from 5' to 3')
RPS16B-qPCR-F	GACGAACAATCCAAGAACGA
RPS16B-qPCR-R	AGAACGAGCACCCTTACCAC
RPL3-qPCR-F	CGAAGCTGTCACCGTTGTTG
RPL3-qPCR-R	AAATGTTCAGCCCAGACGGT
ACT1-qPCR-F	TCGTTCCAATTTACGCTGGTT
ACT1-qPCR-R	CGGCCAAATCGATTCTCAA
GCN4-qPCR-F	GACAACTTCATTCTTACCCACTCC
GCN4-qPCR-R	GATTCGTCATCCTTTCCAACA