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I. SUPPLEMENTARY NOTE 1: EXPERIMENTAL DETAILS

A. Thermodynamic equilibrium phase diagram of Cu2OSeO3

Supplementary Fig. 1a indicates H-T magnetic phase diagram for Cu2OSeO3, obtained

with the zero field cooling procedure followed by the H-increasing scans. This represents

the thermodynamic equilibrium phase diagram, where the SkX phase appears only for the

narrow T -H region just below Tc[1, 2]. The corresponding H-dependence of magnetic res-

onance spectra ∆L11 measured at 25 K are plotted in Supplementary Fig. 1b. From the

comparison with the theoretically predicted behaviors[3], we can identify the pure conical

spin state between 30 mT and 70 mT. In Figs. 3a-c in the main text, the data sets for the

conical spin state were measured through such a zero field cooling procedure.

B. Dependence on the wave number of spin excitation

In the present study, the CPW pattern as shown in Supplementary Fig. 2a is employed for

the generation and detection of spin excitation. The injection of oscillating electric current Iν
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Supplementary Figure 1: a, H-T magnetic phase diagram for Cu2OSeO3, obtained with the zero

field cooling procedure as shown by the arrow. SkX, C, H, FM, and P represent the skyrmion

lattice, conical, helical, ferromagnetic, and paramagnetic states, respectively. b, The corresponding

H-dependence of magnetic resonance spectra ∆L11 at 25 K. The data is taken for the H-increasing

process after zero field cooling.
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into a CPW generates oscillating magnetic field Hν via the Biot-Savart law, which couples to

the spin excitation in the neighboring Cu2OSeO3 crystal. Here, the wave number distribution

of induced spin excitation is given by the Fourier transform of the spatial distribution of

electric current density[4, 5]. In Supplementary Fig. 2b, the corresponding profiles for the

CPW pattern in Supplementary Fig. 2a with the period of λSW = 12µm and λSW = 24µm

are plotted. In both cases, the maximum peak intensity appears at kSW
p = 2π/λSW. Since

the intensity of higher order peak is almost one order of magnitude smaller, we analyzed our

∆Lnm data assuming that the contribution from the main peak centered at kSW
p is dominant.

Note that Eq. (1) in the main text predicts the relationship ∆ν ∝ |kSW
p |, which suggests

that the magnitude of frequency shift ∆ν between ±kSW (as observed in Fig. 2a in the main

text) should depend on the |kSW
p | value of the CPW pattern. In Supplementary Fig. 2c,

the ∆ν value experimentally measured for the CCW mode in the SkX state is plotted as a

function of |kSW
p |. This data confirms the predicted ∆ν ∝ |kSW

p | relationship, in accord with

the asymmetric dispersion as shown in Figs. 2i-k in the main text.
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Supplementary Figure 2: a, Schematic illustration of coplanar waveguide pattern used for the

present study, which consists of a signal (S) line and a pair of ground (G) lines. The oscillating

electric current Iν injected from network analyzer generates oscillating magnetic field Hν . Here,

G and S lines and the space between them have the width of λSW/4. b, Fourier transform of the

current distribution |Iν(k)| for the waveguide pattern shown in a, calculated with various λSW

values. Here, the maximum peak intensity always appears at kSW
p = 2π/λSW. c, |kSW

p |-dependence

of frequency shift ∆ν between ±kSW, measured for the CCW mode in the SkX state at 30K and

+25mT using two different waveguide patterns considered in b. The definition of ∆ν is given in

Fig. 2a in the main text.
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C. Dependence on the gap distance

In general, the ratio between the self-inductance |∆L11| and mutual inductance |∆L21|

provides the decay rate of spin excitation amplitude during the propagation for the gap

distance d between two CPWs used for the excitation and detection[4]. In Supplementary

Fig. 3a, the 2|∆L21|/|∆L11| value (deduced from the similar experimental data sets as shown
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Supplementary Figure 3: a, The decay rate of spin excitation amplitude during the propagation,

plotted as a function of the gap distance d. The measurement is performed for various spin

excitation modes in the SkX state at 25K and 25mT. The corresponding spectra of |∆L21| and

|∆L11| for d = 20µm are shown in Fig. 4a in the main text. The solid lines represent the theoretical

fitting by the exponential decay function 2|∆L21|/|∆L11| = exp(−d/l). b, Top-view optical image

of the device with d = 40µm. c,d, Temperature dependence of decay length l and damping

parameter α, obtained from the device with d = 40µm.
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in Fig. 4a in the main text) is plotted for various excitation modes in the SkX state as a

function of d. It roughly follows the expected 2|∆L21|/|∆L11| = exp(−d/l) relationship[4],

where the slight deviation from this curve is mainly ascribed to the device dependence of

the unintentional air gap between the CPWs and Cu2OSeO3 sample that is inevitable in the

FIB micro-fabrication process.

Here, the decay length l is related with the damping parameter α in form of l =

vg/(2πν0α)[4]. In Supplementary Fig. 3c and d, temperature dependence of l and α for

various excitation modes, experimentally deduced for the device with d = 40µm (Supple-

mentary Fig. 3b), are plotted. The corresponding data for the device with d = 20µm are

also shown in Figs. 4d and e in the main text. In both cases, the SkX phase always hosts

slightly larger, but less than twice of, α value as compared to the ferromagnetic phase. The

order of l and α values for these two devices also roughly agree with each other. These

results confirm the overall reliability of observed mode dependence of l and α. (Note that

the high temperature data for the d = 40µm device become less reliable than the d = 20µm

device, because the 2|∆L21|/|∆L11| value for the former one is more suppressed due to the

longer distance of propagation.)

As discussed in the main text, the effective damping parameter α reflects not only the

intrinsic Gilbert damping, but also the scattering by the imperfections in the magnetic order

such as defects in the skyrmion crystal. Therefore, the only slightly enhanced value of α

in the SkX state as compared with the FM state suggests that the defect density in the

skyrmion crystal is rather low, which demonstrates the well long-range ordered nature of

the skyrmion string structure despite its complex internal spin texture.

Note that the decay length l often exceeds 1mm in case of ferrimagnetic YIG with lower

intrinsic Gilbert damping[6–9], and further search of novel material systems allowing longer

distance of signal transfer through skyrmion strings would be a future challenge.

D. Dependence on the geometrical configuration

In the main text, we discussed the results for the H ‖ kSW configuration (Fig. 2d), where

the spin excitation propagates parallel to the skyrmion strings in the SkX state. For the

H ⊥ kSW configuration (Supplementary Fig. 4a), on the other hand, we can investigate the

character of spin excitation propagating normal to the skyrmion strings. Supplementary
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Figs. 4b and c indicate the spectra of mutual inductance ∆L21 and ∆L12 (representing the

propagation character of spin excitation with the wavevector +kSW and −kSW) measured

with the H ⊥ kSW configuration for the CCW and breathing modes in the SkX state (Note

that the signal of the CW mode is too weak to be detected here). The corresponding

data measured in the ferromagnetic state is also plotted in Supplementary Fig. 4d. Unlike

the case of H ‖ kSW, nonreciprocal propagation behavior or associated frequency shift

∆ν between ±kSW have not been observed for any mode in the H ⊥ kSW configuration.

Such an absence of nonreciprocity is consistent with symmetry analysis; For the present

H ⊥ kSW configuration (Supplementary Fig. 4a), the two-fold rotational symmetry around

H is sustained, which requires the equivalent nature of +kSW and −kSW. The above results

demonstrate that the appearance or absence of nonreciprocity is strongly dependent on the

geometrical relationship between the directions of kSW-vector and skyrmion strings.
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Supplementary Figure 4: a, Schematic illustration of the measurement configuration for the

H ⊥ kSW setup. b-d, The spectra of mutual inductance ∆L21 and ∆L12, which represent the

propagation character of spin excitation with the wave vector +kSW and −kSW, respectively. All

the data were measured at 30 K under the configuration shown in a. Here, b and c represent the

CCW and breathing modes in the SkX state at +125 mT, respectively, and d indicates the reso-

nance mode in the collinear ferromagnetic state at +250 mT. Note that the H-value required for

the stabilization of the SkX phase is different between the H ⊥ kSW and H ‖ kSW configurations,

due to the demagnetization effect.
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II. SUPPLEMENTARY NOTE 2: THEORETICAL CALCULATIONS

We present details of our theoretical analysis supporting the conclusion in the main

text. The computations are performed in the framework of linear spin wave theory for the

skyrmion crystal following Supplementary Refs. 3 and 10. We present in section IIA the

energy functional for chiral magnets and the wave equation for the spin excitations. We

also specify the parameters entering the theory and explain the connection to experiment.

In sections II B and IIC we discuss the field-polarized and conical phase, respectively. The

numerical solution for the skyrmion crystal phase is explained in section II D. The section

II E focusses on the non-reciprocity of spin waves in the skyrmion crystal phase. It is

demonstrated that it derives both from the DM interaction and the stray field energy with

the main results given in Supplementary Equations (27) and (29).

A. Linear spin wave theory for cubic chiral magnets

1. Free energy and equation of motion

The magnetic properties of the cubic chiral magnets deep within the order magnetic

phases are well described in terms of a unit vector m(r) representing the direction of the

magnetization. It is governed by the free energy functional F = F0 + Fdip with

F0 =

∫
dr
[J
2

(∇jmi)
2 + Dm(∇× m) − µ0MsHmz + λ(m2 − 1)2

]
(1)

where J is the exchange interaction, D is the DM interaction, Ms is the saturation magne-

tization, µ0 is the magnetic constant, and H is the magnetic field applied along the z-axis.

In the following, we assume a right-handed magnetic system with positive D > 0. It is

convenient to impose the condition m2(r) = 1 approximately with the help of a ’soft-spin’

implementation represented by the last term in Supplementary Equation (1). In the follow-

ing, we use a fixed λ = 160000 so that the length |m(r)| varies, for example, by less than

half per mille within the skyrmion crystal phase.

The stray field energy reads

Fdip =

∫
dk

(2π)3

1

2
mi(−k)χ−1

dip,ij(k)mj(k) (2)
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with the Fourier transform m(k) =
∫

dre−ikrm(r). For wavevectors much larger than the in-

verse linear size of the sample |k| � 1/L, the susceptibility is given by χ−1
dip,ij(k) = µ0M

2
s

kikj

k2 .

For zero wavevector it is determined by the demagnetization factors χ−1
dip,ij(0) = µ0M

2
s Nij

with Nij = diag(Nx, Ny, Nz) for an ellipsoidal sample. For intermediate wavevectors

|k|L <∼ 1, the system is in the magnetostatic limit where the magnetic properties depend on

the details of the sample size.

The equation of motion that governs the magnetization dynamics is given by

∂tm = −γm × Beff (3)

with the effective field Beff = − 1
Ms

δF
δm

and the gyromagnetic ratio γ = gµB/h̄. The magnetic

phases are identified in equilibrium by a vanishing effective magnetic field Beff |m0 = 0

when evaluated with the equilibrium magnetization m0(r). In first order in the deviation

δm(r, t) = m(r, t) − m0(r) the field Beff,i(r, t) = − 1
Ms

∫
dr′χ−1

ij (r, r′)δmj(r
′, t) is then given

in terms of the susceptibility χ−1
ij (r, r′) = δ2F/(δmi(r)δmj(r

′))|m0 that is to be evaluated

with the equilibrium magnetization m0(r). The linear spin wave theory is obtained by

expanding the equation of motion (3) in first order in δm,

∂tδm(r, t) =
γ

Ms

m0(r) ×
∫

dr′χ−1(r, r′)δm(r′, t) (4)

The spin wave spectrum and its eigenvectors are obtained by solving the spin wave equation

(4).

2. Parameters entering the theory

Important parameters are the wavevector Q = D/J , the internal critical field µ0H
int
c2 =

D2/(JMs) separating the conical from the field-polarized phase, and the susceptibility in

the conical phase χint
con = µ0M2

s

JQ2 . For Cu2OSeO3 we use Q = 2π/λ with λ = 60 nm and

χint
con = 1.76 [3]. The critical field H int

c2 is temperature dependent and for T = 25 K we

have µ0H
int
c2 ≈ 0.07 T. After measuring length in units of 1/Q and energy in units of

gµBµ0H
int
c2 with g factor g ≈ 2.1, the theory then only depends on the parameters given by

the demagnetization factors of the sample and the ratio H/Hc2 measuring the strength of the

applied magnetic field with Hc2 = H int
c2 (1 + Nzχ

int
con). In the present study, the investigated

plate-shape sample of Cu2OSeO3 can be approximately characterized by the demagnetization

8



factors:

Nx = 0.879, Ny = 0.105, Nz = 0.016, (5)

where the magnetic field is applied along the z-axis. In the following discussion, we will also

use the abbreviation D = gµBµ0H
int
c2 /Q2 for the stiffness.

3. Limits of the spin wave dispersion and experimental quantities

In the following, we discuss volume spin waves and their dispersion ω(k) = 2πν(k).

We distinguish between the bulk spin wave dispersion for wavevectors |k|L � 1 and the

magnetostatic limit of the spin wave dispersion for wavevectors |k|L <∼ 1 with the linear size

L of the sample. It is important to note that the limits of small wavevectors k → 0 and

a large bulk sample L → ∞ do not commute. The precise form of the dispersion in the

magnetostatic limit depends on the details of the sample shape and the boundary conditions,

and we will not attempt to provide a discussion of the dispersion in this regime. We will

limit ourselves to a discussion of the bulk dispersion for |k|L � 1 and the uniform resonance

frequency at zero wavevector, ν(0). In particular, we focus on the bulk spin wave dispersion

for wavevectors longitudinal to the applied magnetic field H = Hẑ that is non-reciprocal

ω(kz) 6= ω(−kz) in chiral magnets and gives access to the following quantities

ν∞ ≡ lim
kz→0

lim
L→∞

ω(kz)

2π
, v∞ ≡ lim

kz→0
lim

L→∞
∂kzω(kz). (6)

The limit ν∞ and the uniform resonance frequency ν(0) differ, and the dispersion ν(kz)

interpolates between these two values in the magnetostatic limit |kz|L <∼ 1 as sketched, e.g.

in Fig. 2j of the main text. Magnetostatic modes with ν(0) > ν∞ and ν(0) < ν∞ are known,

respectively, as backward (BVMSW) and forward (FVMSW) volume magnetostatic spin

wave modes. The two values ν∞ and ν(0) are shown in Fig. 3d of the main text as dashed

and solid lines, respectively. The experiment is performed in the magnetostatic limit (as

|kSW|b ∼ 1 in our setup) so that the recorded frequency ν(kz), also denoted by ν0 in the main

text, is located within the frequency range enclosed by ν∞ and ν(0). As the interpolation

between these two values occurs on the scale of a wavevector given by the inverse thickness

of the sample 1/b, we can crudely estimate the experimentally measured group velocity by

vg ≈ 2π(ν(0) − ν∞)b.
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The velocity v∞ in Supplementary Equation (6) is a measure of the non-reciprocity of

the bulk spectrum. We assume that it also determines the non-reciprocity in the magneto-

static limit (with the conical phase being an exception, see below) so that we approximate

∆ν(kz) = ν(kz) − ν(−kz) ≈ 2v∞kz/(2π).

We summarize the relation between the measured quantities ν0 = ν(kz), ∆ν(kz) and

vg(kz) shown in Fig. 3 of the main text and the theoretically accessible parameters ν(0), ν∞

and v∞,

ν0 ∈ {min{ν∞, ν(0)}, max{ν∞, ν(0)}}, (7)

∆ν = ν(kz) − ν(−kz) ≈
2v∞kz

2π
, (8)

vg ≈ 2π(ν(0) − ν∞)b. (9)

Here, the wavevector kz denoted by kSW in the main text is assumed to be in the magne-

tostatic limit |kSW|b ∼ 1 with the width b of the sample. These approximations allow for a

comparison with theory without the computation of the full dispersion in the magnetostatic

limit, which is a formidable task and requires much more effort. Note that all parameters

entering the calculation, see section IIA 2, are known from independent measurements so

that the theory provides quantitative parameter-free predictions for ν(0), ν∞ and v∞.

In the next sections, we discuss the theoretical values ν(0), ν∞ and v∞ for the various

magnetic phases.

B. Field-polarized phase

In the field-polarized (FP) phase at H > Hc2, the magnetic ground state within the

bulk of the sample is polarized along the applied field, m0 = Ĥ = ẑ. The bulk spin wave

spectrum for a wavevector aligned with the magnetic field is given by [11]

h̄ω(kz) = 2DQkz + Dk2
z + gµBµ0Hint (10)

with the internal field Hint = H − NzMs. We obtain for the quantities of Supplementary

Equations (6)

νFP,∞ =
gµBµ0Hint

2πh̄
, vFP,∞ =

2DQ

h̄
= 2

gµBµ0H
int
c2

h̄Q
. (11)
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The excitation energy at strictly zero wavevector k = 0 is given by the Kittel formula

νFP(0) =
gµBµ0

2πh̄

√
(H − (Nz − Nx)Ms)(H − (Nz − Ny)Ms). (12)

In the geometry (5) the Kittel frequency is larger than νFP,∞ so that the spin wave is a

BVMSW with a dynamic magnetization that oscillates within the plane perpendicular to

the wavevector k = kz ẑ.

C. Conical phase

The magnetization of the conical phase for H < Hc2 is given by m0(z) =

(sin θ cos Qz, sin θ sin Qz, cos θ) with the cone angle θ that obeys Ms cos θ = χint
conHint. The

periodicity of the magnetization leads to Bragg scattering of spin waves and a magnon band

structure [11]. The bulk spin wave spectrum for k = kz ẑ in the extended zone scheme is

given by

h̄ω(kz) = D|kz|

√√√√k2
z + (1 + χint

con)Q
2

(
1 −

(
Hint

H int
c2

)2
)

. (13)

There are two magnetic resonances in the conical phase denoted by +Q and −Q whose

limit ν∞ for small wavevectors kz → 0 is degenerate in the repeated zone scheme, and it is

obtained by the taking the limit kz → ±Q of Supplementary Equation (13),

ν±Q,∞ =
ω(±Q)

2π
=

gµBµ0H
int
c2

2πh̄

√√√√1 + (1 + χint
con)

(
1 −

(
Hint

H int
c2

)2
)

. (14)

The computation of the group velocity of the bulk spectrum v∞ is tricky due to the

degeneracy ν±Q,∞. Considering the derivative of Supplementary Equation (13) in the limit

kz → ±Q, one finds a finite velocity with v+Q,∞ = −v−Q,∞, i.e., the dispersion of the ±Q

modes cross at ν±Q,∞. This crossing becomes however an avoided crossing in the magneto-

static limit where the stray field lifts the degeneracy. For this reason, we argue that in the

conical phase the equation (8) is not applicable, and instead the non-reciprocity is practically

vanishing ∆ν ≈ 0.

We note however that higher-order gradient corrections to the theory of Supplementary

Equation (1) can shift the crossing point of the bulk spectrum at energies ν±Q,∞ away from

kz = 0 in the repeated zone scheme, see the discussion in Supplementary Refs. [12, 13]. This
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leads to a small non-reciprocity even in the conical phase that decreases with the applied

magnetic field. This effect is neglected in the theoretical figure of Fig. 3 in the main text.

The uniform resonance frequencies of the two modes ν±Q(0) are known in closed form

and given in Supplementary Refs. [3, 11] so that we do not repeat them here. Both modes

are BVMSW, ν±Q(0) > ν±Q,∞, as their mean magnetization oscillates within the plane

perpendicular to the wavevector k = kz ẑ. However, the spectral weight of the −Q mode is

much smaller in the investigated field range [11] so that only the +Q mode is detected in

the experiment. Consequently, only the theoretical results for the +Q mode is presented in

Fig. 3 of the main text.

D. Skyrmion crystal phase – numerical solution of the spin wave spectrum

1. Variational Ansatz and spin wave equation

In order to obtain the magnetization of the skyrmion crystal, we use the variational

Ansatz

m0(r) =
∑

G⊥∈LR

m0(G⊥)eiG⊥r (15)

with the Fourier components m0(G⊥) where the vectors G⊥ belong to the two-dimensional

triangular reciprocal lattice LR that is perpendicular to the applied magnetic field, G⊥ẑ = 0.

In practice, the reciprocal lattice is restricted to a finite number of primitive unit cells of

the reciprocal lattice and the symmetries of the skyrmion crystal are exploited in order

to reduce the amount of variational parameters m0(G⊥), for details see Supplementary

Ref. [10]. First, the free energy is minimized with the Ansatz (15) and, in a second step,

the spin wave equation (4) is solved.

With the help of the Fourier transforms δm(r, t) =
∫

dq
(2π)3

dω
2π

e−iωt+iqrδm(q, ω) and

χ−1(r, r′) =
∫

dq
(2π)3

dq′

(2π)3
eiqr+iq′r′χ−1(q,q′) this wave equation can be expressed as

−iωδm(q, ω) =
γ

Ms

∑
G⊥∈LR

∫
dq′

(2π)3
m0(G⊥) ×

(
χ−1(q − G⊥,−q′)δm(q′, ω)

)
. (16)

Decomposing the wavevectors q = K⊥ +k and q′ = K′
⊥ +k′ into reciprocal lattice vectors,

K⊥ and K′
⊥, and wavevectors k and k′ whose components perpendicular to the z-axis belong

to the first Brillouin zone, k⊥,k′
⊥ ∈ 1.BZ, we can exploit that the susceptibility is diagonal
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Supplementary Figure 5: The bulk spin wave spectrum ν(kz) = ω(kz)/(2π) for the skyrmion crystal

in Cu2OSeO3 numerically evaluated for a magnetic field H/Hc2 = 0.4 as a function of wavevector

kz parallel to the applied magnetic field. There are various modes (grey) but only the CCW (red),

B (blue) and CW (green) modes possess a global dynamic magnetization. The uniform resonance

frequency ν(0) at kz = 0 of these modes for the geometry of Supplementary Equation (5) is also

indicated by the dots.

in wavevectors but only up to reciprocal lattice vectors, χ−1
ij (K⊥ + k − G⊥,−K′

⊥ − k′) =

χ−1
ij (K⊥ − G⊥,−K′

⊥;k)(2π)3δ(k − k′), so that the wave equation simplifies to

ωδm(K⊥ + k, ω) =
∑

K′⊥∈LR

W(K⊥,K′
⊥;k)δm(K′

⊥ + k, ω) (17)

with the matrix

Wnm(K⊥,K′
⊥;k) = i

γ

Ms

∑
G⊥∈LR

εn`jm0,`(G⊥)χ−1
jm(K⊥ − G⊥,−K′

⊥;k). (18)

The solution for a given frequency ω and wavevector k yields the dispersion ω(k) and the

eigenvectors δm(K⊥ + k, ω).

2. Numerical solution for the spin wave spectrum

The numerical solution for the bulk spin wave spectrum for wavevectors perpendicular to

the applied field, ω(k⊥), was presented, e.g., in Supplementary Ref. [11]. Here, we discuss

the spectrum for wavevectors along the field ω(kz). In Supplementary Fig. 5 the spectrum

13



numerically evaluated for a magnetic field H = 0.4Hc2 is shown. There are various modes

but only three of them possess a global dynamic magnetization, i.e., an oscillating magnetic

dipole moment on average: the counterclockwise (CCW), the breathing (B) and the clock-

wise (CW) mode indicated by the colored lines. Their dispersion is reproduced in Fig. 2i

of the main text. The uniform resonance frequency ν(0) of these modes at zero wavevector

is represented by the colored dots for the geometry of Supplementary Equation (5). We

can conclude that the CCW and the CW modes are BVMSW modes as their ν∞ < ν(0)

whereas the breathing mode is a FVMSW mode with ν∞ > ν(0). This is consistent with

the observation that their global dynamic magnetization oscillates within the plane perpen-

dicular to the wavevector k ‖ H for the CCW and CW modes (in a counterclockwise and

clockwise manner, respectively), and it is linearly polarized along the wavevector k ‖ H

for the B mode. The numerically computed values of ν(0) and ν∞ for the three modes at

various magnetic fields are shown in Fig. 3d of the main text by the solid and dashed lines,

respectively.

Moreover, the slope v∞ of the spectra in Supplementary Fig. 5 close to zero wavevector,

that is a measure for the non-reciprocity, is the largest for the CCW mode. In the next

section, we present an analytical expression for this slope v∞ in terms of the spin wave

function that elucidates the different non-reciprocities present in Supplementary Fig. 5.

It is instructive to compare the spectrum in Supplementary Fig. 5 of the skyrmion crys-

tal with the excitation spectrum of a single skyrmion string, which was recently studied in

Supplementary Refs. [14–16]. The skyrmion crystal is periodic within the plane perpendic-

ular to the applied field, so that its spectrum at the center of the Brillouin zone is discrete

due to the finite extension of its Wigner-Seitz cell. As a function of wavevector kz, this

gives rise to distinct dispersive modes. In contrast, a single skyrmion string acts only as an

isolated scattering center for spin waves. Consequently, one can distinguish between delo-

calized scattering states and localized states that are bound to the skyrmion. The former

give rise to a continuous spectrum, and the localized bound states yield a discrete spectrum.

Similarly to the skyrmion crystal, the dispersion of both the scattering and localized states

is non-reciprocal, i.e., asymmetric with respect to the wavevector kz along the skyrmion

string.
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E. Skyrmion crystal phase – non-reciprocity of the bulk spin wave spectrum

We aim to derive an analytical expression for the slope v∞ of the bulk spin wave dis-

persions for the skyrmion crystal that quantifies their non-reciprocity. When we consider

the limit kz → 0 in the following, it is implied that the limit L → ∞ for an infinitely large

sample was taken first in order to comply with the definition of Supplementary Equation (6)

1. Solution of the spin wave equation for k⊥ = 0 and kz → 0

In this limit the spin wave equation (17) reads

ωδm(K⊥, ω) =
∑

K′⊥∈LR

W(K⊥,K′
⊥; 0ẑ)δm(K′

⊥, ω), (19)

where 0ẑ in the last argument of the matrix W defined in Supplementary Equation (18) is

a reminder of the particular limit we are considering. The eigenvectors with eigenfrequency

ωα will be denoted by δmα(K⊥). These eigenfrequencies identify ν∞, see Supplementary

Equation (6), of the mode with quantum number α. Note that the matrix W is non-

hermitian so that the system must be solved with a Bogoliubov transformation instead of

a unitary transformation. As a consequence, the eigenvectors (for positive eigenvalues) are

orthonormal with respect to the scalar product

〈δmα′|δmβ〉 =
∑

G⊥,G′⊥∈LR

δm†
α′(G

′
⊥)i (m0(G

′
⊥ − G⊥) × δmα(G⊥)) = δα,α′ . (20)

It is convenient to express this relation in real space with the help of the Fourier transform

δmα(r⊥) =
∑

G⊥∈LR
eiG⊥r⊥δmα(G⊥) and the standard relations

1

VUC

∑
G⊥∈LR

eiG⊥r⊥ = δ(r⊥),

∫
VUC

dr⊥eiG⊥r⊥ = VUCδG⊥,0, (21)

where the integral in the second equation is over the two-dimensional (primitive) unit cell

of the magnetic skyrmion crystal with volume VUC. The orthogonality relation can then be

expressed as

1

VUC

∫
VUC

dr⊥δm†
α′(r⊥)i (m0(r⊥) × δmα(r⊥)) = δα,α′ . (22)

The integrand A(r⊥) = δm†
α(r⊥)i (m0(r⊥) × δmα(r⊥)) for α = α′ has a transparent geo-

metrical interpretation. The vector i (δmα(r⊥) × δm∗
α(r⊥)) = A(r⊥)m0(r⊥) (assuming that
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Supplementary Figure 6: a-c, Integrand A(r⊥) = δm†
α(r⊥)i (m0(r⊥) × δmα(r⊥)) of the normal-

ization condition (22) in the two-dimensional plane perpendicular to the magnetic field for the

CCW, breathing and CW mode at the magnetic field H = 0.4Hc2. The black lines indicate the

primitive unit cell of the magnetic skyrmion crystal.

m2
0(r⊥) = 1) composed of the complex spin wave eigenfunction is by definition aligned with

the local magnetization m0(r⊥) as both δmα(r⊥) and its complex conjugate are perpendicu-

lar to m0(r⊥) in the linear spin wave approximation. In order to understand the geometrical

meaning of the scalar quantity A(r⊥) consider the dynamical part of the magnetization at-

tributed to the spin wave mode with quantum number α, δmα(r⊥, t) = δmα(r⊥)e−iωαt +c.c..

The area enclosed by δmα(r⊥, t), i.e., by the local precession of the magnetization over one

oscillation period is given by

2π/ωα∫
0

dt
1

2
|δmα(r⊥, t) × ∂tδmα(r⊥, t)| = 2π|iδmα(r⊥) × δm∗

α(r⊥)| = 2π|A(r⊥)|. (23)

Up to a factor of 2π this can be identified with the magnitude of A(r⊥). Further inspec-

tions shows that A(r⊥) is positive and negative when the local magnetization precesses,

respectively, counterclockwise and clockwise around the local equilibrium magnetization.

Examples for the density distribution A(r⊥) can be found in Fig. 1k-m of the main text

that are repeated in Supplementary Fig. 6 with a different coloring. For the important spin

wave modes under consideration we find that A(r⊥) is always positive implying that the

local precession is counterclockwise at all positions r⊥.

16



2. Analytical expression for the velocity v∞

In order to determine the velocity v∞ we can apply perturbation theory in the wavevector

kz. Consider first the contribution to the matrix W attributed to the DM interaction and

stray field energy

Wnm(K⊥,K′
⊥;k) = i

γ

Ms

εn`jm0,`(K⊥ − K′
⊥)
(
χ−1

DM,jm(K′
⊥ + k) + χ−1

dip,jm(K′
⊥ + k)

)
+ . . .

(24)

with χ−1
DM,jm(q) = 2Dεjnmiqn and χ−1

dip,jm(q) = µ0M
2
s

qjqm

q2 of Supplementary Equation (2).

Both contribute to first order in kz,

W(1)
nm(K⊥,K′

⊥;k) = (25)

i
γ

Ms

εn`jm0,`(K⊥ − K′
⊥)

(
2Dεjzmi + µ0M

2
s

K′
⊥,jδm,z + K′

⊥,mδj,z

K′2
⊥

∣∣∣
K′⊥ 6=0

)
kz.

Treating this correction in perturbation theory we obtain a correction to the spin wave

frequency

δωα(kz) = 〈δmα|W(1)|δmα〉 = (26)

=
∑

G⊥,G′⊥,K′⊥∈LR

δm†
α(G′

⊥)i
(
m0(G

′
⊥ − G⊥) × (W(1)(G⊥,K′

⊥;k)δmα(K′
⊥))
)
.

This identifies the slope vα,∞ = δωα/kz for the mode with quantum number α.

In the following, we discuss separately the two contributions to vα,∞ attributed to the

DM interaction and the stray field energy. The expressions for vα,∞ become particularly

transparent when they are expressed as a spatial integral over the two-dimensional magnetic

unit cell.

a. Non-reciprocity due to the DM interaction. The contribution due to the DM inter-

action can be written in the form

vDMI
α,∞

vFP,∞
=

1

VUC

∫
VUC

dr⊥δm†
α(r⊥)i (ẑ × δmα(r⊥)) (27)

where vFP,∞ = 2
gµBµ0Hint

c2

h̄Q
is the velocity of the field-polarized phase. In the derivation

we used that δmα(r⊥)m0(r⊥) = 0 and m2
0(r⊥) = 1. Only regions in space contribute to

the integral of Supplementary Equation (27) where the spin wavefunction δmα(r⊥) are in-

plane, i.e., orthogonal to ẑ. Examples for the distribution of the integrand are shown in

Supplementary Fig. 7.
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As discussed in the main text, the integrand can be written, δm†
α(r⊥)i (ẑ × δmα(r⊥)) =

A(r⊥)m0,z(r⊥), as a product of the normalized density A(r⊥) and m0,z(r⊥) that varies

between −1 and 1. For the important modes under consideration we find that A(r⊥) > 0

so that it follows for the product A(r⊥)m0,z(r⊥) ≤ A(r⊥) at each position r⊥. This implies

vDMI
α,∞

vFP,∞
≤ 1

VUC

∫
VUC

dr⊥A(r⊥) = 1 (28)

yielding the upper bound vFP,∞ for the DM contribution vDMI
α,∞ . We conclude that in the

skyrmion crystal phase the non-reciprocity of spin waves attributed to the DM interaction

cannot exceed the one of the field-polarized phase.

b. Non-reciprocity due to the stray field energy. The additional contribution attributed

to the stray field energy can be expressed in the form

vdip
α,∞

vFP,∞
= χint

con

1

VUC

∫
VUC

dr⊥Im{φ∗
α(r⊥)δmα,z(r⊥)} (29)

where φα(r⊥) is the dimensionless magnetic potential attributed to the dynamical bulk

magnetic charges after Fourier transform with respect to time,

φα(r⊥) = −i
∑

G⊥∈LR;G⊥ 6=0

Q
(G⊥δmα(G⊥))

G2
⊥

eiG⊥r⊥ . (30)

The potential obeys the equation

∇2φα(r⊥) = −Qρα(r⊥), (31)
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Supplementary Figure 7: a-c, Integrand δm†
α(r⊥)i (ẑ × δmα(r⊥)) of vDMI

α,∞ , see Supplementary

Equation (27), in the two-dimensional plane perpendicular to the magnetic field for the CCW,

breathing and CW mode at the magnetic field H = 0.4Hc2.
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Supplementary Figure 8: a-c, Integrand Im{φ∗
α(r⊥)δmα,z(r⊥)} of vdip

α,∞, see Supplementary Equa-

tion (29), in the two-dimensional plane perpendicular to the magnetic field for the CCW, breathing

and CW mode at H = 0.4Hc2.

with the dynamical magnetic charge density ρα(r⊥) = −∇δmα(r⊥) in the bulk of the sample.

Even in the limit k⊥ = 0 and kz → 0, the spin wave excitation of the skyrmion crystal

generates dynamically a spatially modulated magnetic potential, φα(r⊥), that periodically

depends on the in-plane position r⊥. This potential generates a dynamic dipolar field. In

the limit kz → 0, this field lies in the plane, Hdip,α(r⊥) = −(Ms/Q)∇φα(r⊥), as the potential

does not depend on the spatial z-coordinate. However, at a small but finite kz there exists a

finite spatially modulated z-component of the stray field whose Fourier transform to linear

order in kz is given by −Ms

Q
ikzφα(r⊥). This leads to a stray field energy density proportional

to kz(−iφα(r⊥)δm∗
α,z(r⊥)+c.c.) that eventually accounts for the integrand of Supplementary

Equation (29).

Examples for the r⊥-dependence of this integrand are shown in Supplementary Fig. 8.

It is only finite in regions where the spin wave function possesses a finite z-component, i.e.,

the local magnetization oscillates out-of-plane because it derives from a coupling to the z-

component of the dipolar stray field. Consequently, the integrand vanishes at the center and

the edges of the unit cell where the equilibrium magnetization is aligned with the z axis.

The importance of dynamic dipolar interactions for the nonreciprocity of spin excita-

tions has been pointed out before for other non-collinear spin textures, see Supplementary

Refs. [17–19].
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vDMI
α,∞

vFP,∞

vdip
α,∞

vFP,∞

vDMI
α,∞+vdip

α,∞
vFP,∞

CCW 0.83 0.25 1.08

B 0.24 0.21 0.45

CW 0.07 0.10 0.17

Supplementary Table I: Non-reciprocal velocities of the bulk spin wave dispersion for the CCW, B,

and CW mode for the magnetic field H = 0.4Hc2, that is attributed to the DM interaction, vDMI
α,∞ ,

and to the stray field energy, vdip
α,∞, see Supplementary Equations (27) and (29).

3. Numerical values for the velocities vDMI
α,∞ and vdip

α,∞

The numerically evaluated values for the velocities attributed to the DM interaction,

vDMI
α,∞ , and to the stray field energy, vdip

α,∞, at the magnetic field H = 0.4Hc2 are listed in

Supplementary Table I. The sum of the two velocities listed in the last column is consistent

with the numerically evaluated spectrum shown in Supplementary Fig. 5. Note that this

value even exceeds vFP,∞ for the CCW mode, which is only possible due to the contribution

of the stray field energy as vDMI
α,∞ ≤ vFP,∞. The dipolar contribution vdip

∞ for the three modes is

substantial and corresponds to 23%, 47%, and 59% for the CCW, breathing and CW mode,

respectively. The strength of vdip
α,∞ is weighted by the parameter χint

con, see Supplementary

Equation (29), that is larger for Cu2OSeO3, χint
con = 1.76, than for MnSi, χint

con = 0.34 [3].

Consequently, the dipolar contribution is particularly important for the material Cu2OSeO3

as χint
con is relatively large.
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