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Supplementary Note 

 

 

1. Phylogenetic Analyses 

PhyDS was modified to allow for the inclusion of in-paralogs in the analysis. These 

modifications also included an ignore option so the user can selectively ignore certain taxa in 

the search algorithm as well as inclusion of clades with more than a single taxon in results for 

estimation of relationships to focal paralogs. The ignore parameter allows the user more control 

over what PhyDS finds as an acceptable occurrence to stop the searching algorithm for a 

particular paralog’s closest relatives. The latest version of PhyDS v. 2.1 is available at 

https://github.com/mrmckain/PhyDS.  

 

Orthogroup trees were queried using the syntelog set identified in Edger et al. 20191 with and 

without ignoring other genes from Fragaria x ananassa Camarosa (--ignore Fxa option) and with 

a minimum bootstrap value of 50 and 80 using PhyDS v.2.1. By ignoring other F. x ananassa  

Camarosa genes, we only stop the PhyDS search for a relative of the target paralogs when 

either a) the other paralog is found or b) a different taxon is found. By not ignoring other F. x 

ananassa Camarosa genes, we are allowing instances where a F. x ananassa Camarosa gene 

that is not the target paralog’s mate to stop the search. Since the syntelog set represents a 

highly filtered portion of the F. x ananassa Camarosa genome, we used a script derived from 

PUG v.2.1 to estimate all possible gene pairs from F. x ananassa Camarosa given the 

orthogroup trees. These gene pairs were queried in the same manner as the above. We also 

took the chromosomes from Edger et al. (2019) assigned to predominantly a F. viridis-like 

subgenome and a F. nipponica-like subgenome and filtered both the syntelog and orthogroup-

https://github.com/mrmckain/PhyDS
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derived paralog pairs into sets based on these putative histories. These sets of paralogs were 

used to query the ortholog trees as above using PhyDS.  

 

Results are available in Figure 1 and Supplementary Dataset 1. Results of all analysis coincide 

with the results of Edger et al. (2019). The comparison of with and without ignoring the F. x 

ananassa Camarosa genes in the PhyDS search allows us to identify instances where the 

proposed hypothesis of Liston et al. would be supported for the “C” and “D” genomes. To 

support the hypothesis that the “C” and “D” genomes are sister to each other and then sister to 

F. iinumae, we would expect there to be a high number of paralogs that are most closely related 

to another F. x ananassa Camarosa gene when we do not ignore other F. x ananassa genes in 

the analysis. We would also expect that a large proportion of those paralogs have F. iinumae as 

the most closely related diploid relatively when we ignore other F. x ananassa genes. Our 

results demonstrate that there is a large number of paralogs that find other F. x ananassa  

genes before they find a diploid relative across all analyses. These are the “Fxa” row in 

Supplementary Dataset 1. However, we do not see a large component in a clade with F. 

iinumae when we ignore the other F. x ananassa genes. Instead, there is a distribution across 

multiple putative diploid relatives with F. vesca, F. iinumae, F. viridis,and F. nipponica being in 

the largest proportions except for Malus domestica2, which is likely due to these being derived 

from a whole genome sequence and not transcriptomes. 

 

 

2. Genome Assembly and Analyses 

Samples collection and Sequencing 

Young leaves of Fragaria iinumae collected from the strawberry germplasm resources nursery 

in Shenyang Agricultural University were used for high-molecular weight genomic DNA 

extraction. An SMRTbell DNA library was then prepared and sequenced according to the 

manufacturer’s protocols (Pacific Biosciences, CA, USA), and a 20-kb SMRTbell library was 

generated using a BluePippin DNA size selection instrument (Sage Science, MA, USA) with a 

lower size limit of 10kb. Single-molecule real-time sequencing of long reads was conducted on a 

PacBio Sequel platform with 9 SMRT cells which generated a total of 45.77Gb of data 

(Supplementary Table 1). For Illumina sequencing, paired-end (PE) libraries with insert sizes of 

450bp and 250bp were constructed and sequenced on an Illumina HiSeq X Ten platform. A total 

of 28.42Gb of Illumina genomic data was generated (Supplementary Table 1). Illumina data 

were used for genome size estimation, correction of genome assembly and assembly 

evaluation. Genome size and heterozygosity were estimated using Illumina data and the k-mer 

statistics3,4. 

 

Total RNA was extracted from leave, flower and fruit organs of F. iinumae using the QIAGEN 

RNeasy Plant Mini Kit (QIAGEN, Hilden, Germany). RNA-seq libraries were then prepared 

using the TruSeq RNA Library Preparation Kit (Illumina, CA, USA), and paired-end sequencing 

with a read length of 150 bp was conducted on the HiSeq 2000 platform. The RNAseq data 

were used for genome annotation.  
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Genome assembly and quality evaluation 

Genome assembly was performed on PacBio long reads using FALCON v0.3.0(GitHub, 2018. 

Mar 18)(Supplementary Table 1). Total genome coverage (~172X) before assembly was 

estimated by total bases from PacBio reads divided by the genome size (265.56 Mb) for F. 

iinumae. Error correction and preassembly were carried out with the FALCON pipeline after 

evaluating the outcomes of using different parameters in FALCON during the pre-assembly 

process. The draft genome, with a contig N50 of >10Mb, was polished with Arrow using all 

SMRT reads and polished using Pilon v1.225 using the Illumina reads (~107X coverage) with 

the default settings. A GC depth analysis was conducted to assess the potential contamination 

during sequencing and the coverage of the assembly. The completeness of the genome 

assembly was also evaluated using BUSCO (Benchmarking Universal Single Copy Orthologs) 

software6 (Supplementary Table 2). 

 

Anchoring genome sequence to the genetic map  

Previously a high-density linkage map of F. iinumae was constructed by 4173 markers, with 

3280 from the Array and 893 from genotyping by sequencing7. Here we anchored the contigs 

(Supplementary Table 1) to this genetic map to obtain a chromosome-scale genome of F. 

iinumae (Extended Data Figure 1).  

Genome annotation 

For repeat detection, four software packages, i.e., RepeatModeler8,9 

(http://www.repeatmasker.org/RepeatModeler.html), RepeatScout10 

(http://www.repeatmasker.org), Piler11 (http://www.drive5.com/piler/), and LTR-Finder12 

(http://tlife.fudan.edu.cn/ltr_finder), were used to build a de novo repeat library on the basis of 

our assembly with the default settings. To identify known transposable elements (TEs) in the 

genomes, RepeatMasker8 (http://www.repeatmasker.org) was used to screen the assembled 

genome against the Repbase v22.1113 and Mips-REdat libraries14 (Supplementary Table 3).  

 

We constructed a de novo long terminal repeat retrotransposon (LTR-RT) library by scanning 

the assembled F. iinumae genome using LTRharvest15 (-motif tgca -motifmis 1) and 

LTR_Finder12 (LTR length 100-5000nt, length between two LTRs: 1000-20000nt). Homolog-

based, de novo-based, and RNA-sequencing (RNA-seq)-based gene prediction methods were 

used in combination to identify the protein-coding genes in the F. iinumae genome assembly. 

For homology-based predictions, protein sequences of Arabidopsis thaliana, Oryza sativa, 

Solanum lycopersicum, Fragaria vesca, and Malus domestica were used as the references. For 

de novo-based prediction, Augustus v2.416, GlimmerHMM v3.0.417, SNAP v200618, GeneID 

v1.419 and Genscan20 with default parameters were used for de novo-based gene prediction. All 

software was trained using the 1000 full-length genes from the homology-based predictions and 

Arabidopsis gene model before gene prediction (Supplementary Table 2 & 4). For the RNA-seq-

based prediction, TransDecoder v2.0 (http://transdecoder.github.io.), GeneMarkS-T v5.121, and 

PASA v2.0.222 were used. Finally, the results from the three methods were integrated using 

EVM v1.1.123. All the genes were annotated by aligning to the Nucleotide collection (NR), 

Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG database release 84.0). Then, 

https://paperpile.com/c/gkCBvS/sidh
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InterProScan24 package was used to annotate the predicted genes using the InterPro (5.21–

60.0) database. 

 

Comparative Genomics 

The octoploid strawberry1  and F. iinumae genomes were aligned in CoGe’s SynMap program 

with LAST25. The maximum distance between two matches was set to 20 genes, and the 

minimum number of aligned pairs was set to ten genes.  Neighboring syntenic blocks were 

merged with ‘Quota Align Merge’26, with the maximum distance between two blocks set to 40 

genes. Syntenic depth was calculated with ‘Quota Align’, and the ratio of coverage depth for F. 

iinumae to F. ananassa gene was set to 1:4. Tandemly duplicated genes were identified and 

filtered from CoGe outputs with a max distance of ten genes. Synonymous mutation (Ks) rates 

was then calculated between syntenic gene pairs within CoGe. The analysis of Ks divergence 

permits the rapid identification of genes and genomic regions with different evolutionary 

histories 27. These analyses can be regenerated with CoGe (see URLs). Syntenic gene pairs 

with Ks divergence of <4 were used to calculate median Ks estimates for each chromosome. 

The median Ks estimates for each chromosome plotted using ggplot2 in R 28,29. 

 

Lastly, a Ks analysis of the assembled transcriptome data 1 against the orthologs in the 

‘Camarosa’ genome using FastKs (available on GitHub; https://github.com/mrmckain/FASTKs 

) was run and the genes identified with PhyDs (i.e. those with phylogenetic support) for each of 

the four-progenitor species are plotted in Figure 2. The distributions of F. iinumae, F. nipponica, 

and F. viridis against their respective transcriptomes are each unique. This further supports our 

model that four progenitors were involved in the formation of the octoploid strawberry. 
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Supplementary Tables 

 

Supplementary Table 1: Genome assembly of Fragaria iinumae 

Predicted Genome Size 265.56Mb 

Predicted heterozygosity 0.18% 

Illumina reads (250bp and 450bp) 28.42Gb 

PacBio reads 45.77Gb 

Total reads 74.19Gb 

Total Sequence Coverage 279.37x 

Genome Coverage > 4X 99.80% 

Assembled Genome Size 240.58Mb 

Total number contigs 94 

Length of contig N50 10.67Mb 

Number of contig N50 8 

Length of contig N90 3.13Mb 

Number of contig N90 22 

GC content 39.70% 

Anchored chromosome size 239.09Mb 

Anchored chromosomes (%) 99.38% 

 

 

Supplementary Table 2: Gene annotation of Fragaria iinumae genome 

Gene numbers 23,665 

BUSCO Assessment 94.80% 

Average gene length (base pairs) 2,686.96 

Average CDS length (base pairs) 1,254.27 

Average exons per gene 5.09 

Average exon length (base pairs) 246.48 

Average intron length (base pairs) 350.4 

 



 

 

Supplementary Table 3: Repeat element content in F. iinumae genome (number / percent 

of genome) 

DNA transposon 12,405 / 5.16% 

LINE retrotransposon 3,591 / 1.49% 

SINE retrotransposon 12 / 0.005% 

LTR retrotransposon 81,237 / 33.77% 

Unclassified transposon 3,816 / 1.59% 

Total transposable elements 99,805 / 41.49% 

Total repeat elements  102,724 / 42.70% 

 

 

Supplementary Table 4: Number of non-coding RNA genes in F. iinumae genome 

miRNA  280 

tRNA 461 

rRNA 128 

Small nuclear RNA 545 
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