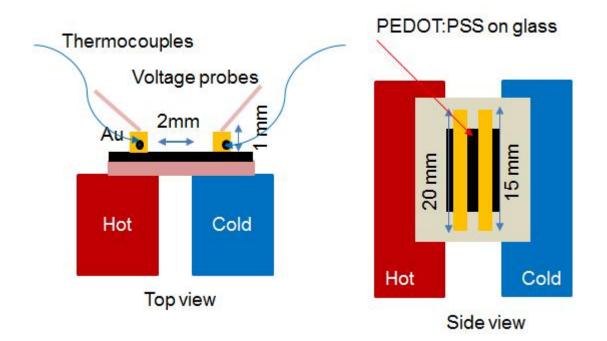
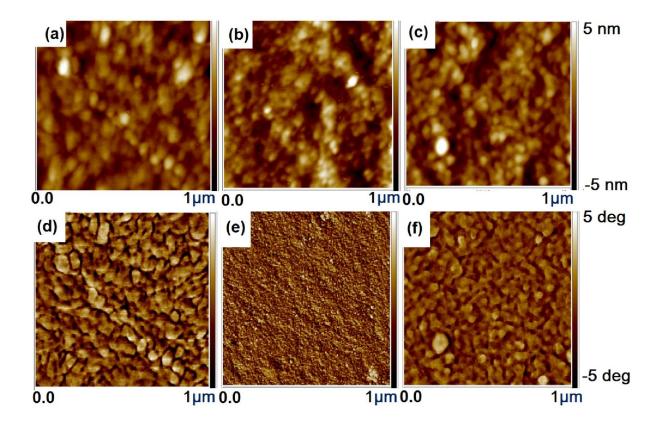
Supplementary Material

Improved thermoelectric properties and environmental stability of conducting PEDOT:PSS films post-treated with imidazolium ionic liquids

Temesgen Atnafu Yemata^{1,2}, Yun Zheng ¹, Aung Ko Ko Kyaw^{1,3}, Xizu Wang¹, Jing Song ¹, Wee Shong Chin^{2*}, and Jianwei Xu^{1,2*}


¹Institute of Materials Research and Engineering; Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore

²Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore


³Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China

* Correspondence:

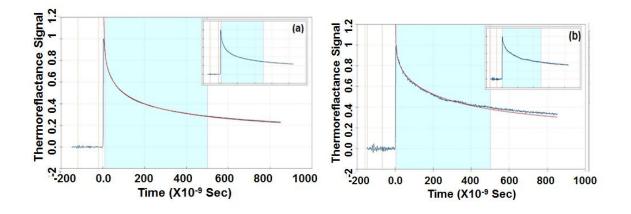

jw-xu@imre.a-star.edu.sg (J. Xu) and chmcws@nus.edu.sg (W. S. Chin)

Figure S1. TE characterization of the PEDOT:PSS films. Schematic illustration of the *S* measurement setup and detailed electrode geometry.

Figure S2. The AFM surface morphology of pristine and SFS-F-PEDOT:PSS films at various concentration SFS in water. Height images: (**a**) pristine, (**b**) 0, and (**c**) 100 mM SFS in water. Phase images: (**d**) pristine, (**e**) 0, and (**f**) 100 mM SFS in water. The area scanned is $1 \times 1 \mu m^2$ for each image.

Figure S3. The normalized thermal reflectance signals of pristine and BMIM-TFSI-SFS-F-PEDOT:PSS films coated with 100 nm-thick-Al after the nanosecond-pulse heating. (**a**) Pristine and (**b**) 40 vol.% BMIM-TFSI-SFS-F-PEDOT:PSS films. The *b* of the PEDOT:PSS

films are extracted from the fitted temperature response curve which is represented with the solid red lines.

Vol.% BMIM-TFSI-SFS-F- PEDOT:PSS	σ (S/cm)	S (µV/K)	<i>PF</i> (μW/mK ²)
0	$693.01 \ \pm 7$	$51.78\ \pm 0.8$	185.77 ± 4.3
20	645.9±6	60.44 ± 0.5	235.9±4.3
40	641±5	61.09±0.7	239.2±4.5
60	635.1±7	60.7 ± 0.6	234±5.5
80	633.2±5	$60.81{\pm}0.8$	234.1±5.1
100	631.3±4	60.56±0.6	231.5±4.5

Table S1. Thermoelectric properties (σ , *S* and *PF*) of the sequential formamide (three times) and 100 mM SFS pre-treated films at various vol.% BMIM-TFSI in methanol.

Table S2. Comparison of this work with previous reports in the literature on some typical

 sequential treated PEDOT based TE materials

Ref.	Dedoping Treatment	σ (S/cm)	S (μV/ K)	<i>PF</i> (µW/K ² m)	<i>k</i> (W/mK)	ZT
(Bubnova et al., 2011)	PEDOT:TOS dedoping with TDAE $(C_{10}H_{24}N_4)$	67	220	324	-	-
(Park et al., 2014)	PEDOT:PSS treated with a mixture of DMSO and hydrazine	578	67	112	-	
(Yi et al., 2015)	Addition of DMSO in to PEDOT:PSS and then treated with Poly(ethylene oxide)	1061	38.4	157.35	-	-
(Lee et al., 2014b)	PEDOT:PSS treated with DMSO (C_2H_6OS), then DMSO and hydrazine (N_2H_4)	677	41	115.48	0.17	0.2
(Wang et al., 2015)	PEDOT:PSS treated with DMSO/NaBH ₄	~580	~40	98.1	0.451	0.064
(Lee et al., 2014a)	PEDOT:PSS treated with p- toluenesulfonic acid monohydrate (C ₇ H ₈ O ₃ S · H ₂ O)	~1300	~50	318.4	0.3	0.31

	, then hydrazine (N ₂ H ₄) /DMSO solution					
(Fan et al., 2017)	PEDOT:PSS treated with H ₂ SO ₄ , then NaOH	2170	39.2	334	-	-
This work	PEDOT:PSS treated with formamide (HCONH ₂), then SFS (CH ₃ NaO ₃ S) and then 40 Vol.% BMIM-TFSI	641	61.1	239.2	0.27	0.26

References

- Bubnova, O., Khan, Z.U., Malti, A., Braun, S., Fahlman, M., Berggren, M., and Crispin, X. (2011). Optimization of the thermoelectric figure of merit in the conducting polymer poly (3, 4-ethylenedioxythiophene). *Nat. Mater.* 10, 429.
- Fan, Z., Li, P., Du, D., and Ouyang, J. (2017). Significantly Enhanced Thermoelectric Properties of PEDOT: PSS Films through Sequential Post - Treatments with Common Acids and Bases. *Adv. Energy Mater.* 7, 1602116.
- Lee, S.H., Park, H., Kim, S., Son, W., Cheong, I.W., and Kim, J.H. (2014a). Transparent and flexible organic semiconductor nanofilms with enhanced thermoelectric efficiency. J. Mater. Chem. A 2, 7288-7294.
- Lee, S.H., Park, H., Son, W., Choi, H.H., and Kim, J.H. (2014b). Novel solution-processable, dedoped semiconductors for application in thermoelectric devices. J. Mater. Chem. A 2, 13380-13387.
- Park, H., Lee, S.H., Kim, F.S., Choi, H.H., Cheong, I.W., and Kim, J.H. (2014). Enhanced thermoelectric properties of PEDOT: PSS nanofilms by a chemical dedoping process. *J. Mater. Chem. A* 2, 6532-6539.
- Wang, J., Cai, K., and Shen, S. (2015). A facile chemical reduction approach for effectively tuning thermoelectric properties of PEDOT films. *Org. Electron.* 17, 151-158.
- Yi, C., Wilhite, A., Zhang, L., Hu, R., Chuang, S.S., Zheng, J., and Gong, X. (2015). Enhanced thermoelectric properties of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) by binary secondary dopants. ACS Appl. Mater. Interfaces 7, 8984-8989.