Supplemental Materials Molecular Biology of the Cell

Brzeska et al.

<u>Supplemental Materials</u> for Brzeska et. al. "Basic-hydrophobic (BH) sites are localized in conserved positions inside and outside of PH domains and affect localization of *Dictyostelium* myosin 1s"

Plasmid	Expressed Protein	Base Clone	Mutation	Template	Primers
pDTc25	GFP-Myo1C	pDTc24	none	AX2 genomic DNA	myoC26 gccgaattcatgagatctGCACAACAAAAACCAGAATGG myoC27 ctcgag <u>TTA</u> AATTTGTTGAACATAATTTG
pDTc31	GFP-Myo1C- BH-N-Ala	pDTc28	R776A, R783A, K784K	pDTc24 base clone	myoC30n TAGCGTTgcagcaTACTTTGGTGACTATTTAGAC myoC31 ATCATAGAGAAtgcATTTCTCTCTTTACGACC
pDTc27	GFP-Myo1C- BH-Ala	pDTc26	K838A, K845A, K847A	pDTc24 base clone	myoC28 TTAATTgcaTTGgcaCAAAAGAAGAATTTAGCTACC myoC29 ATAGATGGCTTGtgcAGTTACAATGAGGAATCTT
pDTc32	GFP-Myo1C- 2BH-Ala	pDTc29	R776A, R783A, K784K, K838A, K845A, K847A	pDTc26 base clone	myoC30n TAGCGTTgcagcaTACTTTGGTGACTATTTAGAC myoC31 ATCATAGAGAAtgcATTTCTCTCTTTACGACC
pDTd6	GFP-Myo1D	pDTd5	none	AX2 genomic DNA	myd1 ggatccGCATATAAAAGTCAACATGGTG myd2 gctagctcgag <u>TTA</u> AACTCTTGGTGCCATTCC
pDTd8	GFP-Myo1D- BH-Ala	pDTd7	KR804/805AA, KR812/813AA	pDTd5	myd8 TACGTTCAAgcagcaAGACTTTTATTGGCTGGTATC myd9 AATCCAAGGtgctgcTTTACGATCTTCTTATCCTTATTC
pDTe10	GFP-Myo1E	pDTe7	none	AX2 genomic DNA	mye5 ggatccATTCCAAAGACAAAGCAG mye6 ctcgag <u>TAA</u> TCTTTAAATTGGATTGTTGCTTG
pDTe17	GFP-Myo1E- BH-N-Ala	pDTe12	KKK808/809/810AAA	pDTe7	mye12 agcaTGGGACTTCCGTCGTCAT mye13 gcagcACCATGGAAAATATCGTAAGC
pDTf21*	GFP-Myo1F	pDTf20*	none	AX2 genomic DNA	
pDTf28	GFP-MyoF- BH-N-Ala	pDTf25	RKK871/872/873AAA , RRK878/879/880AAA	pDTf20	myf15 GATTGTgctgcagctTTCCAAGCTGATTATCTATCTG myf16 CCATTCtgcagctgcAGAATAACCCATACCAAACAAATC
pDTf29	GFP-MyoF- BH-Ala	pDTf26	KK946/947AA, KK951/952AA	pDTf20	myf17 TCAagcagcAGTGGGTCTTAAACTTCAC myf18 GTATAtgctgcAGTATCGTATTTGTAGATATGTTG
pDTb151	GFP-Myo1B- BH-Myo1B	pDTb92 [#]	KKKVLVHTLIRR/RK KRPWIYVQKRR	pDTb2 ^{&}	myb18 ggctctagaccatggtcaatcgatagaaagttcact myb81 TCTTCTCTTTTGAACGTAAATCCAAGGTCTCTTTTAC Gtattgatttctcaacaagtagag
					myb80 CGTAAAAAGAGACCTTGGATTTACGTTCAAAAGAGAA GAgttggtttacgtgaaattaaagg mybRMEM cctctagattaagttgaatcagttgaac

Table S1. Plasmids and oligonucleotides used for cloning of wild type and mutant myosin 1s. The base clone for each construct carries the full myosin 1 gene (including introns) in a standard cloning vector. Alterations to the BH sequences were made by mutagenizing a starting base clone using the listed primers and then cloning the final mutant full-length gene into a GFP-expression plasmid. In all cases except GFP-Myo1B-BH-Myo1D lowercase letters indicate added restriction enzyme sites or mutagenic sequences, underlined nucleotides indicate the stop codon. In case of GFP-Myo1B-BH-Myo1D the lower case letters indicate myo1D sequence and two pairs of oligos that were used for overlapping PCR done to make the plasmid are shown. Several of the plasmids have been described previously: * (1), #(2) and & (3)

Figure legends

Figure S1. BH plots of full length *Dictyostelium* **myosin 1s.** BH plots were created by BH search (4) of *Dictyostelium* myosin 1s sequences from Cymobase (5,6) with window 19 (default settings). The arrows point to BH peaks located within PH domains (BH), N-terminal to PH domain (BH-N) and within neck (Neck). BH peaks within neck overlap with light chain binding sites.

Figure S2. BH plots of full length human myosin 1s. BH plots were created by BH search (4) of human myosin 1s sequences from Cymobase (5,6) with window 19 (default settings). The arrows point to BH peaks located within PH domains (BH), N-terminal or C-terminal to PH domain (BH-N and BH-C) and within neck (Neck).

Figure S3. Myosin 1s with BH sites at the C-terminus of neck region. BH sites identified in diverse myosin 1s sequences from Cymobase (5,6) as defined by BH search (4) are boxed. Secondary structures are marked based on the crystal structure of HsMyo1C (7) the sequence of which is included in the alignment for reference. BH sites in positions homologous to BH sites of HsMyo1A and HsMyo1B lie in the vicinity of the α 3 helix that is located at the C-terminus of neck region. Some of the BH sites in positions homologous to the BH site of DdMyo1E that lie at the N-terminus of the TH1 domain are also shown for comparison (see Fig. 2B). Alignment was done with MUSCLE (8). Sequences from the following species, abbreviated as in Cymobase (5,6) are presented: mosquito (Aea – Aedes aegypti), bumble bee (Boi - Bombus impatiens), single-celled eukaryote (Co - Capsaspora owczarzaki), water flea (Dap - Daphnia pulex), tsetse fly (Gom - Glossina morsitans morsitans), human (Hs – homo sapiens), human body louse (Pdc - Pediculus humanus corporis), tilapia (Orn - Oreochromis niloticus), fire ant (Siu - Solenopsis invicta) and smooth cauliflower coral (Syp - Stylophora pistillata).

Figure S4. Positions of β 3 and β 4 in *Dictyostelium* myosin 1s according to Phyre2 sequence alignments. Positions of β 3 and β 4 in Phyre2 (9) alignments used for creating 3D models shown in Fig. 3 are marked as red arrows. Positions of β 3 and β 4 in HsMyo1C are marked as blue arrows. BH sites are boxed.

Fig S5. Immunoblotting GFP-myosin 1s strains. Immunoblot of total cell lysates from each of the strains expressing GFP-myosin 1 was probed with anti-GFP and anti-actin antibodies. The positions of molecular weight standards (kD) are indicated on the left of each blot panel. Myo1D line was blotted twice.

Fig S6. GFP fluorescence intensities in individual cells expressing *Dictyostelium* **GFP-myosin 1s and their mutants.** The average fluorescence intensity of individual cells expressing either wild type or mutant Myo1s was measured from confocal microscopy images. Fluorescence intensities of all cells in randomly chosen fields were measured. Each panel compares the intensities of GFP fluorescence of cells expressing mutant protein with that of cells expressing wild type myosin that were observed in the same experiment. The data are reported as histogram. The fluorescence is in relative units where value "1" corresponds to the average fluorescence intensity of the wild type myosin 1 measured in the same experiment. Note that although the fluorescence of individual cells varies, in each experiment there was always a population of cells expressing mutant and wild type proteins that show similar fluorescence intensity (for example look at the 0.5-1.0 and 1.0-1.5 columns). This allowed for comparison of

localization of wild type and mutant proteins in cells with similar expression levels. The number of cells scanned for each protein (N) varied between 69 and 225 and is indicated in the figure.

Figure S7. Myosin 1s localization during closure of macropinocytic vesicles. (A) Myo1C localizes sharply to the plasma membrane at the site of previous vesicle closure where a new cup is forming. (B) Time course of vesicle closure monitored with Myo1F and F-actin. Myo1F is present at the site of vesicle closure prior to the localization of actin. (6 s, 12 s). Note that Myo1F does not localize to actin-enriched cup edges (0 s). Arrows point to regions of interest. Experiments were done in AX2 cells (A) and Myo1B null cells (B). Bars are 10 µm.

<u>Fig. S1</u>

<u>Fig. S3</u>

AeaMyo1A	. W <mark>PQPP</mark> L	V <mark>G</mark> R <mark>E</mark> AI	Е К <u>Q</u> . <mark>L</mark>	RMLI	FSRW	(<mark>R</mark> AAT	ILR	K <mark>Y P</mark>	RE	EW <mark>P</mark> C	LR	LQ	I I A	AS	A F R	KRF	KF	W	GΩ	DRR	IVL	G N Y	(LSI
BoiMyo1B	YWPPCP	(SCR <mark>E</mark> A:	SE <mark>H</mark> .L	RII	Y K KW	/ <mark>K</mark> ARN	I <mark>Y</mark> RL.	A_ S	KE	KQC	FE	LK	ILA	ESI	. F <mark>K</mark>	DKK	KS	YAk	SF	GPK	FK	NDF	LGP
CoMyo 1C	AWPDSP	< TLRPTI	NLL.L	KTM	Υ <mark>Η</mark> ΤŴ	RCRQ	₹ <mark>Y</mark> RK	K <mark>l P</mark>	SAR	RKVI	LQ	EK	L <u>WA</u>	SE	FK	GRK	ES	Y <mark>P</mark> C	sv	PTK	FL	EDT	I <mark>V G</mark> L
CoMyo 1E	.WPALPH	H <mark>P</mark> VLKN/	AESTL	KSV	H A N W	/ <mark>R</mark> AKR	NVL	SLS	E P E	RQDL	LR	к <mark>к</mark>	CLG	ST	FT	SKF	Ρ.	W	NL	QRD	WΤ	G N Y	r I <mark>P</mark> A
DapMyo1A	. WPSSPL	LIAKLY	VNK.F	HAA	FHRW	R AWN	1 <mark>V</mark> IR	<u>a</u> i <mark>p</mark>	NQ	>W <mark>P</mark> C	LR	ιK	IAA	AD,	AL Q	G 🛛 F	SG	Y.,	GL	NRR	W E	GNY	r <mark>v</mark> r d
DapMyo1B	SW <mark>S</mark> DAPA	A S C Q <mark>E</mark> A I	NDV.L	RSM	YM <mark>K</mark> ŵ	MVG R	Y CK	N I A	A P A F	RKR	FE	LK	VLA	EA	/FK	NN	ĸs	Y Q E	S I	SKW	(F V	DCF	≹LST
DdMyo 1E	.WPKHPS	ILD <u>R</u> A	VQ <mark>L.</mark>	нкі	HNC W	(<mark>r</mark> aek	(<mark>m</mark> il	SLG	AGO	2 . N F	I M <mark>R</mark> I	QK	V <u>M</u> A	ΥD	FH	GKK	ĸ.	w	DF	RRH	FD	AD'	(<mark>l</mark> ek
GomMyo1C	DWPTAP	< FL S <mark>E</mark> T :	SRL.L	RAI	YHRW	(<mark>k</mark> cfi	YRN	SFD	QTS	RNF	RMR	EK	V <u>T</u> A	S I	I F <mark>k</mark>	DRK	AS	YVR	sv	SHP	FI	GDY	(<mark>V</mark> RL
HmMyo1C	KW <mark>P</mark> KLF\	LF NVA:	SDH.L	K I L	H H <mark>R</mark> W	RCRK	(<mark>Y</mark> RD	NIS	NDI	<pre>KKI</pre>	FS	EK	LKA	SEI	. F <mark>k</mark>	E Q K	SS	Y <mark>P</mark> A	sv	G V P	FA	GDK	< <mark>1 G</mark> L
HsMyo 1.A	TWPAAP	KCLST/	ANQEL	QQLI	F <mark>Y Q</mark> W	KCKR	FRD	QLS	P K C	2 VEI	LR	EK	LCA	SEI	. F <mark>K</mark>	GKK	AS	Y P Q	sv	PIP	FC	G D Y	r I <mark>G</mark> L
HsMyo 1B	NWPSRP	<pre>L F L D S'</pre>	тнкег	KR I I	F <mark>H</mark> LW	RCKK	(<mark>Y</mark> RD	QFT	" D 🖸 0	2 KL	YE	EK	LEA	SEI	. F <mark>K</mark>	DKK	AL	Y P S	sv	GQP	FQ	GAY	LEI
HsMyo 1C	SWPTPP	ALREAS	SEL.L	REL	CIKN	IN VW K	(YCR	SIS	PEY	VKQ <mark>C</mark>	LQ	Q <mark>K</mark>	AVA	SE	I F <mark>K</mark>	GKK	DN	Y <mark>P</mark> Q	sv	PRL	FI	STR	₹ <mark>L</mark> G T
OmMyo 1H2	TWLTPPA	AVL T <mark>E</mark> T :	S E M . 📘	RKL	HYRL	MVRK	(YVR	GIT	PQ	<ka<mark>C</ka<mark>	2 F Q I	м <mark>к</mark>	LIT	SS	I F <mark>K</mark>	G K K	DS	Y <mark>P</mark> Q	sv	AHP	FA	DSF	≹ ISE
PdcMyo 1A	.WPPAPI	Ι C V Q ΚΑΥ	V <mark>P S</mark> . L	KKM)	Y N RW	R AWN	1 L R	KIP	RE	>W <mark>PC</mark>	LR	LK	MSA	AS,	AL <mark>R</mark>	GKF	QΤ	w	GQ	SRK	We:	G N Y	r <mark>l</mark> sQ
SoiMyo1A	. WPRENF	AVRHV	VFA.L	KKM	YARM	AWAWN	ILR.	AIP	RE) W P C	LR	LK	MAA	G A	/L <mark>R</mark>	SKF	SY	W	GQ	DRR	WE	GNY	(LSK
SypMyo1C	HWPS <mark>SS</mark> F	MFRETI	NN <mark>L</mark> .L	KGI	<mark>ΥΗ</mark> SŴ	(<mark>r</mark> ckk	FRE	RCP	PE	< R A I	LK	Ε <mark>Κ</mark>	LQA	SE	/ F K	DKK	SS	Y <mark>P</mark> S	TV	AVP	FQ	SDF	₹ <mark>V</mark> NL
TicMyo 1A	.WPAPP	/ <mark>sl</mark> q <u>k</u> ti	TR <mark>T.L</mark>	KQI	YN RW	RAFN	1 L N	K I P	RAB	EWPE	EMK	I K	VAA	AS	λL <u>L</u>	NKF	ΡT	Υ	GL	<u>N</u> RR	W E	GNN	(LAT
TicMyo 1B	TWPPCP	IICI <mark>E</mark> A:	SQ <mark>H</mark> .L	ERL	YGAH	MSRV	/ <mark>Y</mark> RL	KLS	PEF	REE	LR	LK	VLA	EKI	. F <mark>k</mark>	DKK	ĸs	YQA	sv	SRW	(F K	TDF	₹ <mark>V</mark> TE
TicMyo1C	EWPSCSS	RLAECI	NNL.L	KKI	H H <mark>R</mark> W	(<mark>r</mark> cgk	(<mark>y</mark> rl	KFD	QTA	RNF	RMR	E <mark>K</mark>	V T A	SF	I F <mark>k</mark>	D R K	CS	Y <mark>P</mark> R	sv	SHP	FL	GDY	r <mark>v</mark> rl
	1	k		_			1	κ.,	A	_				1	k		≜ _	†					
			α3						α4						α5								

Fig. S4

Fig S5

References

- 1. Brzeska, H., Koech, H., Pridham, K. J., Korn, E. D., and Titus, M. A. (2016) Selective localization of myosin-I proteins in macropinosomes and actin waves. *Cytoskeleton (Hoboken, N.J.)* **73**, 68-82
- 2. Brzeska, H., Guag, J., Preston, G. M., Titus, M. A., and Korn, E. D. (2012) Molecular basis of dynamic relocalization of Dictyostelium myosin IB. *J Biol Chem* **287**, 14923-14936
- 3. Novak, K. D., Peterson, M. D., Reedy, M. C., and Titus, M. A. (1995) Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis. *J Cell Biol* **131**, 1205-1221
- 4. Brzeska, H., Guag, J., Remmert, K., Chacko, S., and Korn, E. D. (2010) An experimentally based computer search identifies unstructured membrane-binding sites in proteins: application to class I myosins, PAKS, and CARMIL. *J Biol Chem* **285**, 5738-5747
- 5. Kollmar, M., and Muhlhausen, S. (2017) Myosin repertoire expansion coincides with eukaryotic diversification in the Mesoproterozoic era. *BMC evolutionary biology* **17**, 211
- 6. Odronitz, F., and Kollmar, M. (2006) Pfarao: a web application for protein family analysis customized for cytoskeletal and motor proteins (CyMoBase). *BMC genomics* **7**, 300
- Lu, Q., Li, J., Ye, F., and Zhang, M. (2015) Structure of myosin-1c tail bound to calmodulin provides insights into calcium-mediated conformational coupling. *Nature structural & molecular biology* 22, 81-88
- 8. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res* **32**, 1792-1797
- 9. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., and Sternberg, M. J. E. (2015) The Phyre2 web portal for protein modeling, prediction and analysis. *Nature Protocols* **10**, 845