Supplementary Information:

Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning

Ho et al.

Species	Figure label	Isolate code	Empiric antibiotic treatment						
Escherichia coli	E. coli 1	ATCC 25922	Meropenem						
Escherichia coli	E. coli 2	ATCC 700728	Meropenem						
Klebsiella pneumoniae	K. pneumoniae 1	ATCC 33495	Meropenem						
Klebsiella pneumoniae	K. pneumoniae 2	Stanford Clinical Collection	Meropenem						
Klebsiella aerogenes	K. aerogenes	ATCC 13048	Meropenem						
Enterobacter cloacae	E. cloacae	ATCC 13047	Meropenem						
Proteus mirabilis	P. mirabilis	ATCC 43071	Meropenem						
Serratia marcescens	S. marcescens	ATCC 13880	Meropenem						
Pseudomonas aeruginosa	P. aeruginosa 1	ATCC 27853	Meropenem						
Pseudomonas aeruginosa	P. aeruginosa 2	ATCC 9027	Meropenem						
Staphylococcus aureus	MSSA 1	ATCC 25923	Vancomycin						
Staphylococcus aureus	MSSA 2	ATCC 6538	Vancomycin						
Staphylococcus aureus	MSSA 3	ATCC 29213	Vancomycin						
Staphylococcus epidermidis	S. epidermidis	ATCC 12228	Vancomycin						
Staphylococcus lugdunensis	S. lugdunensis	ATCC 49576	Vancomycin						
Staphylococcus aureus	isogenic MSSA	USA300-ex	Vancomycin						
Staphylococcus aureus	MRSA 1 (isogenic)	USA300-wt	Vancomycin						
Staphylococcus aureus	MRSA 2	ATCC 43300	Vancomycin						
Streptococcus pneumoniae	S. pneumoniae 1	ATCC 49619	Ceftriaxone						
Streptococcus pneumoniae	S. pneumoniae 2	ATCC 6305	Ceftriaxone						
Streptococcus pyogenes (Group A)	Group A Strep.	ATCC 19615	Penicillin						
Streptococcus agalactiae (Group B)	Group B Strep.	ATCC 12386	Penicillin						
Streptococcus dysgalactiae (Group C)	Group C Strep.	ATCC 12388	Penicillin						
Streptococcus dysgalactiae (Group G)	Group G Strep.	ATCC 12394	Penicillin						
Streptococcus sanguinis	S. sanguinis	ATCC 35571	Penicillin						
Enterococcus faecalis	E. faecalis 1	ATCC 29212	Penicillin						
Enterococcus faecalis	E. faecalis 2	ATCC 51299	Penicillin						
Enterococcus faecium	E. faecium	ATCC 700221	Daptomycin						
Salmonella enterica	S. enterica	ATCC 13314	Ciprofloxacin						
Candida albicans	C. albicans	ATCC 10231	Caspofungin						
Candida glabrata	C. glabrata	ATCC 66032	Caspofungin						

Supplementary Table 1: Reference isolates. The empiric treatments are chosen by the authors of this paper specializing in infectious diseases from recommendations from Sanford Guide to Antimicrobial Therapy and trends in patient susceptibility profiles at the Stanford Hospital and the Veterans Affairs Palo Alto Health Care System ^{1,2}. However, specific choices for each of the empiric species groups may be modified according to individual hospital susceptibility profiles.

Species	Figure label	Source	Isolate code				
Escherichia coli	E. coli	Urine Culture	1136				
Escherichia coli	E. coli	Sputum	1881				
Escherichia coli	E. coli	Urine Culture	1923				
Escherichia coli	E. coli	Urine Culture	1925				
Escherichia coli	E. coli	Tissue	1959				
Pseudomonas aeruginosa	P. aeruginosa	Peritoneal Fluid	1964				
Pseudomonas aeruginosa	P. aeruginosa	Sputum	2012				
Pseudomonas aeruginosa	P. aeruginosa	Sputum	2043				
Pseudomonas aeruginosa	P. aeruginosa	Sputum	2044				
Pseudomonas aeruginosa	P. aeruginosa	Wound	2046				
Staphylococcus aureus	S. aureus/MSSA	Blood Culture	0608				
Staphylococcus aureus	S. aureus/MSSA	Blood Culture	2142				
Staphylococcus aureus	S. aureus/MSSA	Blood Culture	5293				
Staphylococcus aureus	S. aureus/MSSA	Blood Culture	6007				
Staphylococcus aureus	S. aureus/MSSA	Blood Culture	8987				
Staphylococcus aureus	MRSA	Sputum	0341				
Staphylococcus aureus	MRSA	Blood Culture	0342				
Staphylococcus aureus	MRSA	Urine Culture	0343				
Staphylococcus aureus	MRSA	Wound	0344				
Staphylococcus aureus	MRSA	Sputum	0389				
Enterococcus faecalis	E. faecalis	Pleural Fluid	1613				
Enterococcus faecalis	E. faecalis	Blood Culture	1698				
Enterococcus faecalis	E. faecalis	Abscess, Abdominal	1797				
Enterococcus faecalis	E. faecalis	Tissue	1899				
Enterococcus faecalis	E. faecalis	Blood Culture	1903				
Enterococcus faecium	E. faecium	Urine Culture	1980				
Enterococcus faecium	E. faecium	Urine Culture	1981				
Enterococcus faecium	E. faecium	Tissue	1985				
Enterococcus faecium	E. faecium	Urine Culture	1986				
Enterococcus faecium	E. faecium	Urine Culture	1992				

Supplementary Table 2: Clinical isolates

Supplementary Figure 1: a) Isolate-level classification accuracy increases with SNR. Under the measurement conditions used in this study, performance of the CNN is negatively affected by shorter measurement times. Further increase of SNR should saturate the performance of the CNN to a minimal baseline error rate. For this experiment, training, validation, and test sets are split between a single measurement series for each isolate. b) Spectral examples (from *E. coli* 1) for measurement times of 1 s, 0.1 s, and 0.01 s. c) Raw spectra for MRSA 1, *E. coli* 1, and *P. aeruginosa* 1 for a measurement time of 1 s. d) Spectra after background subtraction and normalization for a measurement time of 1 s. These are the direct inputs into our model.

Supplementary Figure 2: Inter-isolate vs intra-isolate pairwise spectral differences. Average differences are calculated as the average L2 distance between pairs of spectra over 4 million (2000 x 2000) possible pairs. a) Intra-isolate distances (along the diagonal) are computed as the difference between two spectra from the same isolate, while inter-isolate distances (off-diagonals) are computed as the difference between one spectrum from the row isolate and one spectrum from the column isolate. For each row, red marks indicate isolates for which inter-isolate differences are smaller than the average intra-isolate difference. For example, in the second row, the average distance between an MSSA 1 spectrum and an MRSA 1 spectrum is smaller than the average distance between two MRSA 1 spectra in other words, MSSA 1 and MRSA 1 spectra are more similar (on average) than MRSA 1 spectra are to themselves (on average). b) For each isolate, we summarize the total number of more similar isolates. For 19 out of 30 isolates, spectra from at least one other isolate are more similar than spectra from the same isolate. c) Example sort by similarity for E. faecalis 2, demonstrating that spectra from 8 isolates are more similar on average to E. faecalis 2 than different spectra from E. faecalis itself, on average.

Supplementary Figure 3: Isogenic MRSA/MSSA classifier. a) Sensitivity to antibiotic resistance alone with all other factors held constant can be tested using an isogenic pair of *S. aureus*, meaning that the two are genetically identical aside from the deletion of the *mecA* gene which confers methicillin resistance³. The expression of *mecA* results in replacement of Penicillin Binding Proteins (PBPs) with PBP2a, which has a low binding affinity for methicillin. b) A binary classifier is trained to distinguish between MRSA 1 and its isogenic variant, achieving $78.5\pm0.6\%$ accuracy. For this experiment, training, validation, and test sets are split between a single measurement series for each isolate. These results are a first step in ongoing work aiming to understand whether isogenic pairs can be distinguished by their Raman spectra. Because the measured spectral differences are so small between isogenic pairs, we expect that true signal differences may be confounded by experimental factors including minute differences in sample drying time, incubation time, and sample positioning. These confounding factors would need to be carefully controlled for in future experiments where training, validation, and test sets are split between samples. c) The ROC shows sensitivities and specificities significantly higher than random classification, with an AUC of 86.1%.

Supplementary Figure 4: Spectra for individual patient isolates, averaged across the full 400 spectra dataset for each patient.

Supplementary Figure 5: a) Classification results for each patient isolate. Element (i, j) represents the percentage out of 10,000 trials in which species j is predicted by the CNN for patient i. b)Classification results for each MRSA/MSSA patient isolate. Heatmap represents the percentage out of 10,000 trials in which the binary CNN accurately identifies whether the isolate is MRSA or MSSA. 10 spectra per isolate are used for both fine tuning and identification.

Supplementary Figure 6: Experimental schematic of the Horiba Labram Raman spectrometer.

Supplementary Figure 7: Comparison of signal intensity on reflective and non-reflective substrates. We find that the signal intensity and SNR of our measurements on gold substrates is 2X the the signal intensity and SNR of measurements on glass substrates. Because quartz is transparent at visible wavelengths and gold is reflective, it is more likely that this 2X enhancement is due to the reflection of forward-scattered photons rather than a SERS enhancement. These measurements were taken with the same measurement conditions as our datasets, but consist of 100 1s accumulations to help visualize the spectral shape with less noise.

a) Legicted True	MRSA 1	MRSA 2	MSSA 1	MSSA 2	MSSA 3	S. epidermidis	S. lugdunensis	S. pneumoniae 1	S. pneumoniae 2	Group A Strep.	Group B Strep.	Group C Strep.	Group G Strep.	S. sanguinis	E. faecalis 1	E. faecalis 2	E. faecium	E. coli 1	E. coli 2	K. pneumoniae 1	K. pneumoniae 2	K. aerogenes	E. cloacae	P. mirabilis	S. marcescens	S. enterica	P. aeruginosa 1	P. aeruginosa 2	C. albicans	C. glabrata
MRSA 1	82				17													P								-	-			
MRSA 2		86			4		4	1		1									D)			g	U.	e		Li	С,	acir		۳D
MSSA 1		2	82			3	1			3			2		1							lict	Š	axor	⊑	м	ene	lox6	4	
MSSA 2	1			98	1																	red		ftria	nici	pto	srop	orof	<u>ـ</u>	spc
MSSA 3	22			1	75														True			•	Va	ů	Pe	Da	Me	j j	71	رa رa
S. epidermidis	_					100		_											Vancomycin				97		1					Ш
S. lugdunensis		10	1				86												Ceftriaxone			ne	2	93	3	-	2			
S. pneumoniae 1		4						70	18	2				2						Per	nicil	lin			97	1	1			
S. pneumoniae 2								6	91	2									Daptomycin						ī	00				
Group A Strep.									2	95			2						Meropenem				1		2		95			
Group B Strep.											100								Ciprofloxacin						2		1	96		
Group C Strep.												98							TZP				4	3			7	8	36	
Group G Strep.										2			96					(Cas	pof	unc	in							10	00
S. sanguinis								1	1			5		75	1	16				_										
E. faecalis 1							1							2	82	12														
E. faecalis 2														6	7	79				1					3					
E. faecium																	100													
<i>E. coli</i> 1																		96	2	1										
E. coli 2																		4	43	44			4	4						
K. pneumoniae 1		1																	15	61	4	2	10	3	2					
K. pneumoniae 2																2				2	92				1					
K. aerogenes		3																2		36		24	19	2	7	2	2	1		
E. cloacae		1																	1	5	1	2	81	1	5					
P. mirabilis												1	6					1	33	16	2	1	2	25	8		3			
S. marcescens								1								4						6	9	3	75					
S. enterica																2				1						96				
P. aeruginosa 1		2						2																	6		89			
P. aeruginosa 2		5						3	1													8					5	77		
C. albicans																													99	
C. glabrata																													6	94

Supplementary Figure 8: CNN performance breakdown by class with test and fine-tune datasets swapped. The trained CNN classifies 30 bacterial and yeast isolates with isolate-level accuracy of $81.6\pm0.6\%$ and antibiotic grouping-level accuracy of $95.9\pm0.6\%$. a) Confusion matrix for 30 strain classes. Entry (i, j) represents the percentage out of 100 test spectra that are predicted by the CNN as class j given a ground truth of class i; entries along the diagonal represent the accuracies for each class. Misclassifications are mostly within antibiotic groupings, indicated by colored boxes, and thus do not affect the treatment outcome. b) Predictions can be combined into antibiotic groupings to estimate treatment accuracy. TZP = piperacillin-tazobactam. All values below 0.5% are not shown.

Supplementary Figure 9: Detailed breakdown by class for the first clinical dataset. Each patient is classified into one of 8 treatment classes where each species corresponds to a different treatment class. Correct pairings between species and treatment group are outlined in the colored boxes. The rate of accurate identification is $99.0\pm1.9\%$.

Supplementary Figure 10: The spectra of MSSA 2 and Group B *Strep*. demonstrate resonant Raman effects from chromophores (e.g. carotenoids or cytochromes), resulting in enhanced Raman peaks around $1005 \ cm^{-1}$, $1121-1162 \ cm^{-1}$, and $1505-1525 \ cm^{-1} \ ^4$.

Clinical 1 Experiment details

Supplementary Note 1: Pseudocode for fine-tuning and identification of clinical spectra.

Supplementary References

- 1. Banaei, N., Watz, N., Getsinger, D. & Ghafghaichi, L. SUH antibiogram data for bacterial and yeast isolates. Tech. Rep., Stanford Healthcare Clinical Microbiology Laboratory (2016). URL http://med.stanford.edu/bugsanddrugs/clinical-microbiology/_jcr_ content/main/panel_builder/panel_0/download_748639600/file.res/SHC\%20antibiogram\202016.pdf.
- 2. Nakasone, T. *et al.* Bacterial susceptibility report: 2016. Tech. Rep., VA Palo Alto Health Care System (2017). URL https://web.stanford.edu/~jonc101/tools/Antibiogram/ VAPAabgm2016Report\%20FINAL4-14-17.pdf.
- 3. Diep, B. A. *et al.* The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant staphylococcus aureus. *J. Infect. Dis.* **197**, 1523–1530 (2008).
- 4. Lorenz, B., Wichmann, C., Stöckel, S., Rösch, P. & Popp, J. Cultivation-Free raman spectroscopic investigations of bacteria. *Trends Microbiol.* **25**, 413–424 (2017).