Supplemental Information

Analysis of Dual Histone Modification-Binding Protein Interaction Network by Combining Mass Spectrometry with Isothermal Titration Calorimetry

Pu Chen^a, Zhenchang Guo^a, Cong Chen^a, Shanshan Tian^a, Xue Bai^a, Guijin Zhai^a, Zhenyi Ma^a, Huiyuan Wu^b, Kai Zhang^{a,1}

^a 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China.

^b School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.

Correspondence information: Kai Zhang, Tianjin Medical University, Tianjin 300070, China. E-mail: <u>kzhang@tmu.edu.cn</u>, Tel: 86-22-83336833

¹ Kai Zhang. Tel.: +86-22-83336833. E-mail address: kzhang@tmu.edu.cn

Figures

Molecule Network

Fig S1. The schematic view of the approach.

First, the tandem-domain proteins were incubated with combinatorial HPTMs peptides and HEK293T nuclear extract separately. Then the enriched peptides or nuclear proteins were identified by MALDI-TOF MS or HPLC-MS/MS. Finally, the network of "HPTMs-reader proteins-binding proteins" was built.

Fig S2. The identification of the tandem-domain proteins (BPTF-PB, CBP-BP, TRIM24-PB, TRIM33-PB and TAF1-BB) by HPLC-MS/MS.

A). The SDS-PAGE gel of the GST tagged tandem-domain proteins (BPTF-PB, CBP-BP,

TRIM24-PB, TRIM33-PB and TAF1-BB); B) The identification of these proteins by

HPLC-MS/MS.

Fig S3. The identification of HPTMs peptides by MALDI-TOF MS.

A). The identification of single HPTMs peptides by MALDI-TOF MS; B). The identification of combinatorial HPTMs peptides by MALDI-TOF MS. The arrow points to the target peptide. While, the asterisk points to the false positive peptides.

Fig S4. The identification of peptides enriched by GST beads and BPTF-PB by MALDI-TOF MS.

The peptide mixture incubated only with GST beads were set as negative control. Except control peptide (a), all peptides could enriched by tandem-domain protein BPTF-PB instead of GST beads by peptide pull-down.

a, control, H3(1-17), peptide with no modification (1814.39 Dalton), b, H3R2meK4me3 (1870.39 Dalton), c, H3K4me3K9ac (1898.40 Dalton), d, H3K4me3K14ac (1898.65 Dalton), e, H3K4me3K9cr (1924.39 Dalton), f, H3K4me3K9bu (1926.50 Dalton), h, H3K4me3K9hib (1942.49 Dalton). The asterisk points to the false positive peptides.

Fig S5. The SDS-PAGE of the tandem-domain proteins during ITC array.

To remove the GST tag, the tandem-domain proteins (GST-BPTF-PB, GST-CBP-BP, GST-TRIM24-PB and GST-TAF1-BB) were digested by thrombin proteases. ("before" refer to before enzyme digestion; "after" refer to after enzyme digestion) Then the tandem-domain proteins were titrated by peptides during ITC array.

Fig S6. The proteins (MBB1A, HELLS, PRKDC and TRRAP) were pointed out in silver stain gel.

The enriched nuclear proteins were separated by silver dye gradient gel. The proteins in each electrophoresis lane were cut and digested in gel by trypsin, and finally identified by HPLC-MS/MS. The four screened proteins (MBB1A, HELLS, PRKDC and TRRAP) were pointed out in the gel. (MBB1A, 149KD, HELLS, 97KD, PRKDC, 469KD, TRRAP, 437.6KD).

Fig S7. The sequence identification of HPTMs peptides by MS/MS.

A. MS/MS Fragmentation of H3 (1-17) with no modification (ARTKQTARKSTGGKAPR);

B. MS/MS Fragmentation of H3K9hib (ARTKQTARKhibSTGGKAPR);

C. MS/MS Fragmentation of H3K9ac (ARTKQTAR*Kac*STGGKAPR);

D. MS/MS Fragmentation of H3K9cr (ARTKQTARKcrSTGGKAPR);

E. MS/MS Fragmentation of H3K9bu (ARTKQTAR*Kbu*STGGKAPR0;

F. MS/MS Fragmentation of H3K4me3 (ART*Kme3*QTARKSTGGKAPR);

- G. MS/MS Fragmentation of H3R2meK4me3 (A*Rme*T*Kme3*QTARKSTGGKAPR);
- H. MS/MS Fragmentation of H3K4me3K9cr (ART*Kme3*QTAR*Kcr*STGGKAPR);
- I. MS/MS Fragmentation of H3T3phK4me3 (AR*TphKme3*QTARKSTGGKAPR);

J. MS/MS Fragmentation of H3K4me3K9ac (ART*Kme3*QTAR*Kac*STGGKAPR).

Query	1	ТССАСТСАААСТСААСАААААССААААТСАТСТСТАСТАС	60
Sbjct	8326	тосаостсаладтосаадаалаадаалатдатстстастасстсаладдаалстаадаад	8385
Query	61	GACACAAAGCTTTACTGTATCTGTAAAACGCCTTATGATGAATCTAAATTTTATATTGGC	120
Sbjct	8386	GACACAAAGCTTTACTGTATCTGTAAAACGCCTTATGATGAATCTAAATTTTATATTGGC	8445
Query	121	TGTGATCGGTGTCAGAATTGGTACCATGGGGCTGGGTTGGCATCTTGCAAAGTGAGGCA	180
Sbjct	8446	TGTGATCGGTGTCAGAATTGGTACCATGGGGCTGGGTTGGCATCTTGCAAAGTGAGGCA	8505
Query	181	GAGCTCATTGATGAGTATGTCTGTCCACAGTGCCAGTCAACAGAGGATGCCATGACAGTG	240
Sbjct	8506	GAGCTCATTGATGAGTATGTCTGTCCACAGTGCCAGTCAACAGAGGATGCCATGACAGTG	8565
Query	241	CTCACCCACTAACAGAGAAGGATTATGAGGGGTTGAAGAGGGTGCTCCGTTCCTTACAG	300
Sbjct	8566	CTCACGCCACTAACAGAGAAGGATTATGAGGGGTTGAAGAGGGTGCTCCGTTCCTTACAG	8625
Query	301	GCCATAAGATGGCCTGGCCTTTCCTTGAACCAGTAGACCTAATGATGCACCAGATTAT	360
Sbjct	8626	GCCATAAGATGGCCTGGCCTTTCCTTGAACCAGTAGACCCTAATGATGCACCAGATTAT	8685
Query	361	TATGGTGTTATTAAGGAACCTATGGACCTTGCCACCATGGAAGAAGAGTACAAAGACGA	420
Sbjct	8686	TATGGTGTTATTAAGGAA@CTATGGACCTTGCCACCATGGAAGAAGAGTACAAAGACGA	8745
Query	421	TATTATGAAAAGCTGACGGAATTTGTGGCAGATATGACCAAAATTTTTGATAACTGTCGT	480
Sbjct	8746	TATTATGAAAAGCTGACGGAATTTGTGGCAGATATGACCAAAATTTTTGATAACTGTCGT	8805
Query	481	TACTACAATCCAAGTGACTCCCCATTT 507	
Sbjct	8806	TACTACAATCCAAGTGACTCCCCATTT 8832	

Fig S8. The sequence alignment of the plasmid pGEX4T-BPTF-PB in GenBank

The sequence identity match of the plasmid pGEX4T-BPTF-PB was 100%, comparing to that

of human sapiens bromodomain PHD finger transcription factor (BPTF) in GenBank.

BPTF-PB

CBP-BP

Query	1	CGCaaaaaaTCTTTAAACCAGAGGAGTTACGCCAGGCCCTCATGCCAACCCTAGAAGCA	60
Sbjet	4038	CGCAA AAAAATCTTTAAACCAG AGGAGTTACGCCAGGCCCTCATGCC AACCCTAGAAGCA	4097
Query	61	CTGTATCGACAGG ACCCAGAGT CATTACCT TTCCGGCA GCCTGTAGA TCCCCAGC TCCTC	120
Sbjet	4098	CTGTATCGACAGGACCCAGAGTCATTACCTTTCCGGCAGCCTGTAGATCCCCAGCTCCTC	4157
Query	121	GGAAT TCCAGACT ATTTTGACA TCGTAAAG AATCCCAT GGACCTCTC CACCATCA AGCGG	180
Sbjet	4158	GGAAT TCCAGACT ATTTTGACA TCGTAAAG AATCCCAT GGACCTCTC CACCATCA AGCGG	4217
Query	181	AAGCT GGACACAG GGCAATACC AAGAGCCC TGGCAGTACGTGGACGACGTCTGGC TCATG	240
Sbjet	4218	AAGCT GGACACAG GGCAATACC AAGAGCCC TGGCAGTA CGTGGACGA CGTCTGGC TCATG	4277
Query	241	TTCAACAATGCCT GGCTCTATA ATCGCAAG ACATCCCG AGTCTATAA GTTTTGCA GTAAG	300
Sbjet	4278	TTCAACAATGCCT GGCTCTATA ATCGCAAG ACATCCCG AGTCTATAA GTTTTGCA GTAAG	4337
Query	301	CTTGC AGAGGTCT TTGAGCAGG AAATTGAC CCTGTCAT GCAGTCCCT TGGATATT GCTGT	360
Sbjet	4338	CTTGC AGAGGTCT TTGAGCAGG AAATTGAC CCTGTCAT GCAGTCCCT TGGATATT GCTGT	4397
Query	361	GGACGCAAGTATG AGTTTTCCC CACAGACT TTGTGCTGCTATGGGAA GCAGCTGT GTACC	420
Sbjet	4398	GGACGCAAGTATGAGTTTTCCCCCACAGACTTTGTGCTGCTATGGGAAGCAGCTGTGTACC	4457
Query	421	ATTCC TCGCGATGCTGCCTACT ACAGCTAT CAGAATAGGTATCATTT CTGTGAGA AGTGT	480
Sbjet	4458	ATTCC TCGCGATGCTGCCTACT ACAGCTAT CAGAATAGGTATCATTT CTGTGAGA AGTGT	4517
Query	481	TTCAC AGAGATCC AGGGCGAGA ATGTGACC CTGGGTGA CGACCCTTC ACAGCCCC AGACG	540
Sbjet	4518	TTCAC AGAGATCC AGGGCGAGA ATGTGACC CTGGGTGA CGACCCTTC ACAGCCCC AGACG	4577
Query	541	ACAAT TTCAAAGGATCAGTTTGAAAAGAAGAAGAAAATGA TACCTTAGACCCCGAACCTTTC	600
Sbjet	4578	ACAATTTCAAAGGATCAGTTTGAAAAGAAGAAAAATGATACCTTAGACCCCGAACCTTTC	4637
Query	601	GTTGA TTGCAAGG AGTGTGGCC GGAAGATGCATCAGAT TTGCGTTCT GCACTATG ACATC	660
Sbjet	4638	GTTGATTGCAAGGAGTGTGGCCGGAAGATGCATCAGATTTGCGTTCTGCACTATGACATC	4697
Query	661	ATTTGGCCTTCAGGTTTTGTGTGCGACAACTGCTTGAAGAAAACTGGC 708	
Sbjet	4698	ATTTGGCCTTCAGGTTTTGTGTGCGACAACTGCTTGAAGAAAACTGGC 4745	

Fig S9. The sequence alignment of the plasmid pGEX4T-CBP-BP in GenBank The sequence identity match of the plasmid pGEX4T- CBP-BP was 100%, comparing to that of human sapiens CREB binding protein (CREBBP) in GenBank.

TRIM24-PB

Query	1	CCCAATGAGGACT GGTGTGCAGTTTGTCAA AACGGAGGGGAACTCCT CTGCTGTGAAAAG	60
Sbjet	2658	CCCAATGAGGACT GGTGTGCAGTTTGTCAA AACGGAGGGGAACTCCT CTGCTGTGAAAAG	2717
Query	61	TGCCCCAAAGTAT TCCATCTTT CTTGTCAT GTGCCCAC ATTGACAAA TTTTCCAA GTGGA	120
Sbjet	2718	TGCCCCAAAGTAT TCCATCTTT CTTGTCAT GTGCCCAC ATTGACAAATTTTCCAAGTGGA	2777
Query	121	GAGTG GATTTGCA CTTTCTGCC GAGACTTA TCTAAACC AGAAGTTGA ATATGATT GTGAT	180
Sbjet	2778	GAGTG GATTTGCA CTTTCTGCC GAGACTTA TCTAAACC AGAAGTTGA ATATGATT GTGAT	2837
Query	181	GCTCCCAGTCACA ACTCAGaaaaaagaaa ACTGAAGGCCTTGTTAAGTTAACACCTATA	240
Sbjet	2838	GCTCC CAGTCACA ACTCAGAAA AAAAGAAA ACTGAAGGCCTTGTTAA GTTAACACCTATA	2897
Query	241	GATAA AAGGAAGT GTGAGEGEE TACTTTTA TTTCTTTA CTGECATGA AATGAGEE TGGET	300
Sbjet	2898	GATAA AAGGAAGT GTGAGCGCCTACTTTTATTTCTTTACTGCCATGAAATGAGCCTGGCT	2957
Query	301	TTTCA AGACCCTGTTCCTCTAACTGTGCCT GATTATTACAAAATAAT TAAAAATCCAATG	360
Sbjet	2958	TTTCA AGACCCTGTTCCTCTAACTGTGCCT GATTATTACAAAATAAT TAAAAATCCAATG	3017
Query	361	GATTT GTCAACCA TCAAGAAAA GACTACAA GAAGATTA TTCCATGTA CTCAAAAC CTGAA	420
Sbjet	3018	GATTT GTCAACCA TCAAGAAAA GACTACAA GAAGATTA TTCCATGTA CTCAAAAC CTGAA	3077
Query	421	GATTT TGTAGCTG ATTTT AGAT TGATCTTT CAAAACTG TGCTGAATT CAATGAGC CTGAT	480
Sbjet	3078	GATTT TGTAGCTG ATTTT AGAT TGATCTTT CAAAACTG TGCTGAATT CAATGAGC CTGAT	3137
Query	481	TCAGA AGTAGCCA ATGCTGGTA TAAAACTT GAAAATTA TTTTGAAGA ACTTCTAA AGAAC	540
Sbjet	3138	TCAGA AGTAGCCA ATGCTGGTA TAAAACTT GAAAATTA TTTTGAAGA ACTTCTAA AGAAC	3197
Query	541	CTCTA TCCAGAAA AAAGGTTTC CCAAACCA GAATTCAG GAATGAATC AGAAGATA ATAAA	600
Sbjet	3198	CTCTATCCAGAAA AAAGGTTTCCCAAACCA GAATTCAGGAATGAATC AGAAGATA ATAAA	3257
Query	601	TTTAGTGATGATTCAGATGATGACTTTGTACAGCCCCGGAAGAAACGCCTCAAAAGCATT	660
Sbjet	3258	TTTAGTGATGATTCAGATGATGACTTTGTACAGCCCCGGAAGAAACGCCTCAAAAGCATT	3317
Query	661	GAAGAACGCCAGTTGCTTAAATAA 684	
Sbjet	3318	GAAGAACGCCAGTTGCTTAAATAA 3341	

Fig S10. The sequence alignment of the plasmid pGEX4T-TRIM24-PB in GenBank The sequence identity match of the plasmid pGEX4T- TRIM24-PB was 100%, comparing to that of human sapiens tripartite motif containing 24 (TRIM24) in GenBank.

TRIM33-PB

Query	1	GACTG GTGTGCTGTCTGCCAAA ACGGAGGA GATCTCTT GTGCTGCGA AAAATGTC CAAAG	60
Sbjet	2789	GACTG GTGTGCCGA AA ACGGAGGA GATCTCTT GTGCTGCGA AAAATGTC CAAAG	2848
Query	61	GTCTT TCATCTAACTTGTCATGTTCCAACACTACTTAGCTTTCCAAGTGGGGGACT GGATA	120
Sbjet	2849	GTCTTTCATCTAACTTGTCATGTTCCAACACTACTTAGCTTTCCAAGTGGGGGACTGGATA	2908
Query	121	TGCAC ATTTTGTA GAGATATTG GAAAGCCA GAAGTTGA ATATGATTG TGATAATT TGCAA	180
Sbjet	2909	TGCAC ATTTTGTA GAGATATTGGAAAGCCA GAAGTTGA ATATGATTGTGATAATTTGCAA	2968
Query	181	CATAGTAAGAAGGGGAAAACTGCGCAGGGGTTAAGCCCCGTGGACCAAAGGAAATGTGAA	240
Sbjet	2969	CATAGTAAGAAGGGGAAAACTGCGCAGGGGTTAAGCCCCGTGGACCAAAGGAAATGTGAA	3028
Query	241	CGTCT TCTGCTTT ACCTCTATT GCCATGAA TTAAGTAT TGAATTCCA GGAGCCTG TTCCT	300
Sbjet	3029	ĊĠŦĊŦŦĊŦĠĊŦŦŦĂĊĊŦĊŦĂŦŦĠĊĊĂŦĠĂĂŦŦĂĂĠŦĂŦŦĠĂĂŦŦĊĊĂĠĠĂĠĊĊŦĠŦŦĊĊŦ	3088
Query	301	GCTTC GATACCAA ACTACTATA AAATTATA AAGAAACC AATGGATT ATCCACCGTGAAA	360
Sbjet	3089	GCTTC GATACCAA ACTACTATA AAATTATA AAGAAACC AATGGATTT ATCCACCGTGAAA	3148
Query	361	AAGAA GCTTCAGA AAAAACATTCCCCAACACTACCAAATCCCGGATGACTTTGTGGCCGAT	420
Sbjet	3149	AAGAA GCTTCAGA AAAAACATTCCCCAACAC TACCAAATCCCGGATGACTTTGTGGCCGAT	3208
Query	421	GTCCGTTTGATCT TCAAGAACT GTGAAAGGTTTAATGA AATGATGATA AGTTGTTC AAGTT	480
Sbjet	3209	ĠŦĊĊĠŦŦŦĠĂŦĊŦŦĊĂĂĠĂĂĊŦĠŦĠĂĂĂĠĠŦŦŦĂĂŦĠĂĂĂŦĠĂŦĠĂŦĠĂĂĂĠŦŦĠŦŦĊĂĂĠŦŦ	3268
Query	481	TATGC AGACACAC AAGAGATTA ATTTGAAGGCTGATTC AGAAGTAGC TCAGGCAG GGAAA	540
Sbjet	3269	TATGC ÁGÁCÁCÁC AÁGAGATTA ÁTTTGAÁG GCTGÁTTC ÁGAÁGTÁGC TCÁGGCÁG GGAÁA	3328
Query	541	GCAGT TGCATTGT ACTTTGAAG AT AAACTC ACAGAGAT CTACTCAGA CAGGACCT TCGCA	600
Sbjet	3329	ĠĊĂĠŦŦĠĊĂŦŦĠŦĂĊŦŦŦĠĂĂĠĂŦĂĂĂĊŦĊĂĊĂĠĂĠĂŦĊŦĂĊŦĊĂĠĂĊĂĠĠĂĊĊŦŦĊĠĊĂ	3388
Query	601	CCTTT GCCAGAGT TTGAGCAGG AAGAGGAT GATGGTGA GGTAACTGA GGACTCTG ATGAA	660
Sbjet	3389	ĊĊŦŦŦĠĊĊĂĠĂĠŦŦŦĠĂĠĊĂĠĠĂĂĠĂĠĠĂŦĠĂŦĠĠŦĠĂĠĠŦĂĂĊŦĠĂĠĠĂĊŦĊŦĠĂŦĠĂĂ	3448
Query	661	GACTT TATACAGC CCCGCAGAA AACGCCTA AAGTCAGA TGAGAGACC AGTACATA TAAAG	720
Sbjet	3449	GACTT TATACAGE CECEGEAGAA AACECETA AAGTEAGA TGAGAGAEE AGTAEATA TAAAG	3508
Query	721	TAA 723	
Sbict	3509	TAA 3511	

Fig S11. The sequence alignment of the plasmid pGEX4T-TRIM33-PB in GenBank The sequence identity match of the plasmid pGEX4T- TRIM33-PB was 100%, comparing to that of human sapiens tripartite motif containing 33 (TRIM33) in GenBank.

IAF	і-вв		
Query	1	AGAAA ATCTCTGGTTCTCAAGT TTCCTAAA CAGCAGCT TCCTCCAAA GAAGAAAC GGCGA	60
Sbjet	4033	ÁGAÁA ATCTCTGGTTCTCAÁGTTTCCTAÁACAGCAGCTTCCTCCAÁAGAÁAGAÁACGGCGA	4092
Query	61	GTTGGAACCACTGTTCACTGTGACTATTTGAATAGACCTCATAAGTCCATCCA	120
Sbjet	4093	GTTGGAACCACTGTTCACTGTGACTATTTGAATAGACCTCATAAGTCCATCCA	4152
Query	121	CGCAC AGACCCTA TGGTGACGC TGTCGTCC ATCTTGGA GTCTATCAT CAATGACA TGAGA	180
Sbjet	4153	CGCAC AGACCCTA TGGTGACGCTGTCGTCC ATCTTGGA GTCTATCAT CAATGACA TGAGA	4212
Query	181	GATCT TCCAAAATACATACCCTT TCCACACT CCAGTCAA TGCAAAGGT TGTAAAGG ACTAC	240
Sbjet	4213	GATCTTCCAAATACATACCCTTTCCACACTCCAGTCAATGCAAAGGTTGTAAAGGACTAC	4272
Query	241	TACAA AATCATCACTCGGCCAA TGGACCTACAAACACTCCGGGAAAACGTGCGTA AACGC	300
Sbjet	4273	TACAAAATCATCACTCGGCCAATGGACCTACAAACACTCCGCGAAAACGTGCGTAAACGC	4332
Query	301	CTCTACCCATCTC GGGAAGAGT TCAGAGAGCATCTGGAGCTAATTGT GAAAAATAGTGCA	360
Sbjet	4333	CTCTACCCATCTC GGGAAGAGTTCAGAGAGCATCTGGAGCTAATTGT GAAAAATAGTGCA	4392
Query	361	ACCTACAATGGGCCAAAACACTCATTGACTCAGATCTCTCAATCCAT GCTGGATCTCTGT	420
Sbjet	4393	ACCTACAATGGGCCAAAACACTCATTGACTCAGATCTCTCAATCCATGCTGGATCTCTGT	4452
Query	421	GATGA AAAACTCA AAGAGAAAG AAGACAAA TTAGCTCGCTTAGAGAA AGCTATCA ACCCC	480
Sbjet	4453	GATGA AAAACTCA AAGAGAAAGAAGACAAA TTAGCTCGCTTAGAGAA AGCTATCA ACCCC	4512
Query	481	TTGCT GGATGATGATGACCAAGTGGCGTTT TCTTTCAT TCTGGACAACATTGTCACCCCAG	540
Sbjet	4513	ŤŤĠĊŤĠĠĂŤĠĂŤĠĂĊĊĂĂĠŤĠĠĊĠŤŤŤŤĊŤŤĊĂŤŤĊŤĠĠĂĊĂĂĊĂŤĠŤĊĂĊĊĊĂĠ	4572
Query	541	AAAAT GATGGCAGTTCCAGATT CTTGGCCA TTTCATCACCCAGTTAA TAAGAAAT TTGTT	600
Sbjet	4573	AAAAT GATGGCAGTTCCAGATTCTTGGCCATTTCATCACCCAGTTAATAAGAAATTTGTT	4632
Query	601	CCAGATTATTACA AAGTGATTGTCAATCCA ATGGATTT AGAGACCAT ACGTAAGA ACATC	660
Sbjet	4633	ĊĊĂĠĂŦŦĂŦŦĂĊĂĂĂĠŦĠĂŦŦĠŦĊĂĂŦĊĊĂĂŦĠĠĂŦŦŦĂĠĂĠĂĊĊĂŦĂĊĠŦĂĂĠĂĂĊĂŦĊ	4692
Query	661	TCCAA GCACAAGT ATCAGAGTC GGGAGAGC TTTCTGGA TGATGTAAA CCTTATTC TGGCC	720
Sbjet	4693	TCCAAGCACAAGTATCAGAGTCGGGAGAGCTTTCTGGATGATGTAAACCTTATTCTGGCC	4752
Query	721	AACAGTGTTAAGT ATAATGGAC CTGAGAGT CAGTATAC TAAGACTGC CCAGGAGA TTGTG	780
Sbjet	4753	AACAGTGTTAAGTATAATGGACCTGAGAGTCAGTATACTAAGACTGCCCAGGAGATTGTG	4812
Query	781	AACGT CTGTTACC AGACATTGACTGACTAT GATGAACA TTTGACTCA ACTTGAGA AGGAT	840
Sbjet	4813	AACGTCTGTTÁCC ÁGÁCÁTTGÁCTGÁGTÁT GÁTGÁÁCÁTTTGÁCTCA ÁCTTGÁGÁ ÁGGÁT	4872
Query	841	ATTTGTACTGCTA AAGAAGCAGCTTTGGAGGAAGCA 876	
Sbjet	4873	ATTTGTACTGCTA AAGAAGCAGCTTTGGAGGAAGCA 4908	

Fig S12. The sequence alignment of the plasmid pGEX4T-TAF1-BB in GenBank The sequence identity match of the plasmid pGEX4T- TAF1-BB was 100%, comparing to that of human sapiens TATA-box binding protein associated factor 1 (TAF1) in GenBank.

TAF1-BB

protein	peptide	KA (M ⁻¹)	ΔH (cal/mol)	∆S(cal/mol/deg)
BPTF-PB	H3R2meK4me3	7.69E4±5.61E3	-7312±215.9	-2.17
BPTF-PB	H3K4me3K9ac	6.34E4±3.38E3	-8976±220.9	-8.13
BPTF-PB	H3K4me3K9bu	3.62E4±3.64E3	-7863±1054	-5.51
BPTF-PB	H3K4me3K9cr	5.72E4±1.00E3	-8549±76.15	-6.91
BPTF-PB	H3K4me3K9hib	7.07E4±2.49E3	-7936±109.7	-4.43

Table S4 The relevant parameters of the ITC titration