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A detailed description of the AutoPACMEN toolbox can be found in AutoPACMEN’s manual 
which is provided as part of the AutoPACMEN package. Herein we only (1) describe the specific 
rules of AutoPACMEN for extracting and assigning kcat values (possibly from different resources) 
and (2) provide a step-by-step description of how the sMOMENT-enhanced model iJO1366* was 
generated with the AutoPACMEN toolbox.



1 Detailed explanation of kcat value selection by 
AutoPACMEN
 

1.1 kcat databases and datasets
Two major public kcat databases are BRENDA (1) and SABIO-RK (2). In both databases, kcat values 
can be sorted according to the EC number of the represented reaction. Additionally, for each kcat 
value, the respective educts (and direction) of a given reaction as well as the organism from which 
the analyzed enzyme comes from are usually specified in these databases. Apart from BRENDA 
and SABIO-RK, AutoPACMEN also allows consideration of other (user-defined) kcat values (or of 
measured apparent turnover numbers kapp), for example, from literature references where these 
values were directly or indirectly determined (3). We refer to these additional data as (external) 
custom database.

1.2 General problems of kcat retrieval and assignments
While the molecular weight of an enzyme can be quite simply determined from its amino acid 
sequence, the determination of an enzyme’s kcat for a specific reaction is much harder and includes a
much higher degree of uncertainty. This has multiple reasons:

1. kcat values are often determined in vitro, whose experimental conditions may not be 
representative for the enzyme’s physiological conditions in vivo.

2. In most kcat-determining experiments, heterologously expressed recombinant enzymes are 
used. This can e.g. lead to differences in the enzyme’s folding and adds an additional level 
of uncertainty to the measured kcat.

3. For some types of reactions, kcat values are not given for all possible substrates. One 
common approach to handle this is to take a mean value of kcat values of this type of reaction
with any kind of substrate. Since enzymes can have a high substrate specificity, this mean 
value does not have to be a necessarily realistic.

4. It is also possible that there is no kcat for a given  enzyme and organism. One way to handle 
this is to select kcat values from the taxonomically nearest organisms, since the role and 
amino acid sequence of enzymes is more likely to be comparable within more related 
organisms than within less related ones.

5. Finally, for some reactions and reaction classes, no kcat are available at all. In these cases, kcat

values of similar reactions (e.g. reactions with similar EC numbers) may be taken with the 
trade-off of a higher uncertainty.



1.3 AutoPACMEN’s approach of retrieving and selecting kcat 
values
AutoPACMEN’s model generator retrieves and assigns kcat values thereby seeking to address the 5 
problems mentioned in the previous chapter. The kcar retrieval method consists of two parts:

1. Preparation of data sources

AutoPACMEN can process data from the kcat databases BRENDA and SABIO-RK, as well as from 
a user-created custom database with protein-dependent kcat  data as explained above. In addition, the 
extraction and assignment process uses the BIGG database’s definition of metabolite identifiers and 
their names (4).

The kcat data of BRENDA and SABIO-RK is processed into machine-readable JSON (JavaScript 
Object Notation) files by AutoPACMEN (for an explanation on how to use the programs 
themselves, see next section and AutoPACMEN’s manual). These JSON files are structured in the 
following way: For each EC number, a list of possible substrate names is given. The substrate 
names are stored in their BIGG identifier form (obtained from the annotations of the SBML version 
of the metabolic model) in order to be able to combine the data from BRENDA and SABIO-RK. If 
a substrate name could not be associated with a BIGG identifier, it is stored with the general 
substrate name “REST”. For each of these substrate names, a list of organism names of the analyzed
enzymes with the given substrate is given. Finally, for each organism, the list of associated kcat 
values is given.

The optional custom kcat database has to be prepared in the form of a JSON, too, whose structure is 
as follows: Its main keys are the name of each included protein (the protein name has to be the same
as the one in the metabolic model). Each protein name has two associated necessary fields. One 
field is “kcats” which includes the list of kcat values that were determined for this protein. The other 
field is “direction”, which includes the names of all protein-associated reactions as keys, and 
“reverse” or “forward” as associated values in order to indicate in which reaction direction the 
protein-dependent kcat was determined.

2. Selection of kcat values

Once the kcat data from SABIO-RK, BRENDA, and the optional custom database have been stored 
as JSON, the actual selection process of kcat values for each reaction of a metabolic model can start. 
In the following description of the kcat selection algorithm (algorithm 1), the combined kcat database 
from SABIO-RK and BRENDA is called the “SABIO-RK/BRENDA database”:

Algorithm 1: kcat selection algorithm of AutoPACMEN.

Step A: For each (reversible or irreversible) reaction of the metabolic model, do the following

I. Retrieve all EC numbers of this reaction.

II. Delete all EC numbers which include a wild-card symbol such as “*” or “-”. For example, 
the EC number “1.1.1.-” would be deleted. This is done in order to prevent the inclusion of 
kcat values from dissimilar reactions.

III. Get the educts for each the forward and reverse direction of the reaction in the form of 



BIGG identifiers using the downloaded BIGG metabolites text file.

IV. For each the forward and reverse direction of the reaction, continue with step B1 if no EC 
numbers are remaining, otherwise continue with step B2.

Step B1: For the current reaction and current direction do

I. Get the list of all enzymes which are given in the reaction’s gene rules of the metabolic 
model.

II. For each enzyme, check if there is an entry in the custom database and in the right reaction 
direction. If no such entry can be found, proceed with step C. Otherwise, retrieve all kcat 
values from the fitting enzyme, and finally select the maximal kcat value of the retrieved kcat 
values.

III. Finally, find the minimal maximal value of all enzymes from which kcat values from the 
custom database and assign this value to the reaction’s kcat. 

IV. Continue with the next reaction, starting from step A.

Step B2: For the current reaction and current direction do

I. Find all SABIO-RK and BRENDA database kcat entries for all of the reaction’s EC 
numbers. These entries contain the measured kcat value of the enzyme as well as the 
organism and the substrate of the of the measurement experiment.

II. Check if the BIGG identifiers of the educts and/or products can be found in any of the 
found SABIO-RK/BRENDA kcat entries.

III. If II turns out to be true, get the entries with the fitting educts (for the forward direction) or 
products (for the reverse direction) only. If substep II turns out to be false, get all entries, 
regardless of the substrate. Merge all resulting selected entries into one combined meta-
entry.

IV. For each organism of the kcat entries in the meta-entry which was selected in substep III, get
the taxonomic distance from the metabolic network’s organism to the kcat entry’s organism.

V. Continue with step B3.

Step B3: Using the list of taxonomic distances in the selected meta-entry, do the following:

I. Start with the minimal taxonomic distance

II. For each kcat entry of the meta-entry, get all kcat values from all organisms up to the 
currently selected minimal taxonomic distances using NCBI TAXONOMY (5).

III. If the list of collected kcat values is shorter than 10, go to the next taxonomic distance and 
redo substep II.

IV. Perform step B1. If the optional custom kcat database includes a protein-specific entry for at
least one of the current reaction’s associated enzymes, add it to the list of kcat values.

V. Take the mean of all selected kcat values and select it as kcat for the reaction and its currently
analyzed direction. If no kcat value could be found for this enzyme for any organism go to 



Step C. 

VI. Continue with the next reaction in Step A

Step C: (If no kcat could be found for the reaction)

Assign a default kcat value for this reaction which is the median of all kcat values used for all of the 
model’s reaction with a selected kcat .

After this algorithm has been finished, a reaction-kcat database with kcat values for each direction of 
the metabolic model’s is created. This database is a JSON text file and has the following form 
(where names starting with $ stand for a variable name, e.g. $REACTION_ID stands for any of the 
included reactions IDs):

{

    “$REACTION_ID”: {

        “forward”: $kcat_value_forward,

        “reverse”: $kcat_value_reverse

    },

    (...)

}



2 Generation and calibration of the enzyme-
constrained E. coli model iJO1366* using AutoPACMEN
2.1 Introduction
In the following we outline how the AutoPACMEN Model Generator and Model Calibrator were 
used with the E. coli K-12 model iJO1366 (6) in order to obtain the calibrated enzymeconstrained 
model iJO1366*. iJO1366 is a widely used a genome-scale model with 2583 reactions and 1805 
metabolites, for both of which it uses BIGG identifiers. Additionally, as required, reactions include 
gene rules and EC-number annotations.

This exemplary run is delivered as a script which is included in the AutoPACMEN package. Its 
program run and custom analysis scripts start with “ec_model_2019_06_25”. All downloadable 
external data was retrieved on the 25th June 2019. The non-script project files – i.e., inputs and 
outputs – can be found in the subfolders starting with the same name.

2.2 Preparation of metabolic model and external data sources
The iJO1366 model was downloaded from the BIGG database’s website (URL: 
http://bigg.ucsd.edu/data_access, accessed on September 9, 2019) in SBML format and lies in the 
subfolder “ec_model_2019_06_25_input”.

The BRENDA database was downloaded as text file from 
https://www.brenda-enzymes.org/download_brenda_without_registration.php (accessed on 
September 9, 2019) and stored in the subfolder “ec_model_2019_06_25_input” as 
“brenda_download.txt” (the latter file is not included in AutoPACMEN’s distribution due to its 
large file size). The kcat values of SABIO-RK are received on the fly (using its API). For the custom 
kcat database we use here values from (3). In order to obtain the custom kcat database data as a 
AutoPACMEN-compatible JSON file, a custom Python script (called 
“ec_model_2019_06_25_data_read_supplementary_table_of_keff_paper.py”) was written in order 
to convert the data from the supplementary table S2 of (3) into a protein-dependent kcat JSON called
“gene_id_data_mapping.json” in this run’s subfolder “ec_model_2019_06_25_input_keff_paper”.

A dataset of the BIGG metabolite definitions was downloaded as text file from http://bigg.ucsd.edu/
data_access (accessed on September 9, 2019) and stored in the subfolder 
“ec_model_2019_06_25_input” as “bigg_models_metabolites.txt”.

2.3  Preparation of growth scenarios
23 in vivo growth rates for different substrates were taken from (7), excluding the growth rate value 
for glucose. For glucose as substrate, the aerobic and anaerobic in vivo growth rate values of (8) 
were taken (using the values with the E. coli strain K-12 MG1655). Additionally, the secretion 
values from (8) were used for the manual calibration step (see chapter 2.5.2). 



Additionally, a “standard exchange scenario” was defined for the iJO1366: In the original iJO1366, 
many exchange reactions are open and it is possible that a secretion of metabolites occurs even if 
there is no biological indication for the possibility under the viewed circumstances. Therefore, all 
exchanges of carbon metabolites except for standard fermentation products are disabled (flux is 
zero) in this “standard exchange scenario” (see also Supplementary File 2).

2.4 Model generator run
For this run, the AutoPACMEN Model Generator was used as Python library. All used Python steps 
are included in the main script “ec_model_2019_06_25_sMOMENT_iJO_CREATION.py” in 
AutoPACMEN’s main folder, which is intersected in the following steps:

Step 1. Parses the BIGG metabolites text file “bigg_models_metabolites.txt” into the more 
easily machine-readable “psb_orth_bigg_id_name_mapping.json” in the subfolder 
“ec_model_2019_06_25_output”.

Step 2. Parses the BRENDA database text file “brenda_download.txt” into the more easily 
machine-readable kcat JSON “kcat_database_brenda.json” in the subfolder 
“ec_model_2019_06_25_output”.

Step 3. Reads out all EC numbers of the iJO1366 model and creates a new kcat JSON named 
“kcat_database_brenda_for_model.json” which includes all kcat entries for the EC numbers, 
either with or without wildcard search (in the current AutoPACMEN implementation, kcat 
entries are only used if they resulted from a search without wildcards, i.e., if a kcat value for a
reaction was found by the reaction’s actual EC number). This JSON is in the subfolder 
“ec_model_2019_06_25_output”.

Step 4. Using the SABIO-RK API, all EC numbers of iJO1366 are searched (on-the-fly) in 
SABIO-RK. The resulting kcat entries for every EC number – again resulting from a search 
with or without wildcards – are stored as “kcat_database_sabio_rk.json” in the subfolder 
“ec_model_2019_06_25_output”.

Step 5. Combines the BRENDA and SABIO-RK kcat databases into the JSON 
“kcat_database_combined.json”, preferring entries which did not result from a wildcard 
search in the subfolder “ec_model_2019_06_25_output”.

Step 6. Creates the reaction↔kcat mapping for iJO1366. Its kcat entry sources are 
“kcat_database_combined.json” and “bigg_id_data_mapping.json”, stored in the subfolder 
“ec_model_2019_06_25_output”.

Step 7. Creates two relevant XLSX spreadsheets in the subfolder 
“ec_model_2019_06_25_output” which are used later in step 9. The 1st of these spreadsheets
is “psb_orth_protein_data.xlsx” which includes two worksheets: In the first worksheet, the 
user can set the protein pool P. By default, this value is at 0.095 mmol/(gDW*h). In the 
second worksheet, the user can set optional enzyme concentration data. Since no such data is
used for iJO1366*’s generation, no concentration data was written inside. The 2nd 
spreadsheet is “psb_orth_enzyme_stoichiometries.xlsx”. In this spreadsheet, the user can 
enter internal stoichiometries for complexes or the number of used single enzymes per 



reaction step. As no such stoichiometry data was used for the generation of iJO1366*, this 
spreadsheet remained unchanged.

Step 8. Creates the protein↔molecular weight mapping for each protein contained in 
iJO1366’s gene rules, using the UniProt API. The resulting JSON is called 
“psb_orth_protein_id_mass_mapping.json” and is located in the subfolder 
“ec_model_2019_06_25_output”.

Step 9. The final sMOMENT model generation script. The resulting (raw) enzyme-
constraint model is saved as “iJO1366_sMOMENT_2019_06_25.xml” in the subfolder 
“ec_model_2019_06_25_output”. Importantly, otherwise included enzyme allocation 
constraints were disabled for the gas-exchanging reactions CO2text, O2tex and H2tex as 
there is no biological justification for the assumption that carbon dioxide, oxygen and 
hydrogen need porine enzymes for membrane exchanges.

Step 10. This step loads “iJO1366_sMOMENT_2019_06_25.xml” from the previous step and
assigns the flux bounds of exchange reactions according to the “standard exchange scenario”
(see section 2.4). The glucose uptake was unconstrained. The resulting model, which we call
here iJO1366*A is saved as 
“iJO1366_sMOMENT_2019_06_25_STANDARD_EXCHANGES_SCENARIO.xml” in 
the subfolder “ec_model_2019_06_25_output”.

2.5 Model calibration
2.5.1 Protein pool calibration
To obtain a valid enzyme-constrained metabolic model, in the next step a calibration of the 
(effective) protein pool P and afterwards of the kcat values needed to be performed (see main 
document). Calibration of the protein pool variable P was manually done with iJO1366*A by fitting
the predicted maximal growth rate with glucose under aerobic and anaerobic conditions against 
known values from (8). Here, we did not use the AutoPACMEN Model Calibrator as only two 
growth rates were used for fitting. The manually determined optimal P value was 0.095 g/gDW (see
Table S1 for the resulting growth rates), which is used in the next optimization steps. We call the 
model with this protein pool iJO1366*B.

Table S1: Comparison of protein-pool-optimized iJO1366*B model (with standard exchange 
scenario) with in vivo data from (8). The chosen maximal protein pool value is 0.095 g/gDW.

Condition Protein pool optimized
iJO1366*B

Maximal growth rate [h-1]

Monk et al., 2016 (8)
Measured growth rate

and standard deviation [h-1]

Glucose, aerobic 0.73 0.73 ± 0.01
Glucose, anaerobic 0.51 0.46 ± 0.02



2.5.2 Manual kcat adjustment
In the model iJO1366*B, obtained in the previous step, the secretion of acetate and glucose uptake 
rates for aerobic conditions were already similar to in vivo values (8) under aerobic conditions (see 
Table 2 for the aerobic secretion values of the final optimized model).

However, under anaerobic conditions, there a larger discrepancy in the secretion of fermentation 
products between the model and the in vivo data could be observed (see Table S2). The most 
apparent discrepancy is a high lactate secretion in the iJO1366*B model. 

To improve this behavior under anaerobic conditions, we introduced very few (just 4) minimal 
changes of kcat values of the following reactions/enzymes:

• The kcat value of PFL (pyruvate formate lyase) was 10 times increased.

• The kcat value of ACALD_reverse (acetaldehyde dehydrogenase (acetylating)) was 5 times 
increased. The original AutoPACMEN-selected kcat value was 8.82 s-1 which is apparently 
too small to achieve high ethanol production rates observed under anaerobic conditions with
E. coli.

• The kcat value of ALCD2x_reverse (Alcohol dehydrogenase (ethanol)) was 10 times 
decreased. 

• The kcat value of LDH_D_reverse (D-lactate dehydrogenase) was 10 times decreased.

We denote the resulting model iJO1366*C. The script with which the manual optimization is 
applied on the model is “ec_model_2019_06_25_modeling_apply_manual_changes.py”, the 
manually changed model is called 
“iJO1366_sMOMENT_2019_06_25_STANDARD_EXCHANGES_SCENARIO_MANUAL_CHA
NGES.xml” and is located in the subfolder “ec_model_2019_06_25_output_optimization”.

Tab. 2 Anaerobic organic compound secretion rates of iJO1366*B and of iJO1366*C obtained after
manually optimization of four kcat values, compared to in vivo values of (8)

Product Monk et al., 2016 (8)
in vivo anaerobic

secretion rates
[mmol/(gDW*h)] at

glucose uptake rate of
16.69 mmol/(gDW*h)

sMOMENT model
iJO1366*B

Anaerobic secretion rates
[mmol/(gDW*h)]

at glucose uptake rate of
16.69 mmol/(gDW*h)

Optimized
sMOMENT model

iJO1366*C
Anaerobic secretion rates

[mmol/(gDW*h)]
at glucose uptake rate of
16.69 mmol/(gDW*h)

Ethanol 11.22 ± 0.6 2.23 13.3

Formate 22.17 ± 1.69 6.14 28.6
Acetate 11.71 ± 1.14 2.42 13.5

Lactate 0 ± 0 23.2 0

Succinate 1.86 ± 0.4 0.12 0.141



2.5.3 Automated kcat calibration
Using the iJO1366*C model (see the previous chapter), an automatic kcat optimization was 
performed in order to get better growth rate predictions for the 25 growth scenarios. The 
optimization was performed using AutoPACMEN’s Model Calibrator. The actual run of the 
calibrator for this model optimization can be found in the MATLAB script 
“optimization_run_fmincon_2019_06_25.m” in the subfolder 
“AutoPACMEN_Model_Calibrator_MATLAB”. The scenarios used for the optimization are in the 
described in the JSON “optimization_scenarios.json” in the same subfolder.

In an initial step, using the Python script 
“ec_model_2019_06_25_CALIBRATOR_get_reaction_flux_control_and_differential_reactions.py”
, we first determined all reactions whose kcat value deletion has an impact on the growth rate on 
exactly one out of the 25 (substrate) scenario. The kcat values of only those reactions were then be 
adjusted in the subsequent optimization step.

A total of 96 reactions were selected for calibration (the list of these reactions can be found in the 
mentioned MATLAB script). Each of the scenarios had at least 2 affected reactions.

For the automatic optimization procedure a maximal kcat change factor of 50 was used.  The 
optimization run itself took around 1 day and stopped after the default MATLAB Optimization 
Toolbox reached its limit of 3000 objective function evaluations per fmincon optimization. The 
resulting kcat values were integrated in the Python script 
“ec_model_2019_06_25_optimization_apply_fmincon_optimized_kcats.py”, which converted the 
iJO1366*C model into the final iJO1366* model by adapting the resulting kcat values.

The resulting final optimized model is called “iJO1366star.xml” and located in the subfolder 
“AutoPACMEN_Model_Calibrator_MATLAB”. In addition, it is given as Additional File 3 with an 
opened glucose exchange reaction.
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