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1 Precipitation observations

The Global Fire Weather Database (GFWED; Field et al 2015) offers three different precipitation datasets,
one from reanalysis and two based on the interpolation of gauge observations. The station density in western
Canada is low (e.g., see Figure 10 in Field et al 2015), which presents challenges for the calculation of gridded
gauge-based observations datasets in this region. The interpolation of sparsely located gauges leads to
higher uncertainties in un-gauged locations, particularly in regions of complex terrain. Several precipitation
datasets were investigated over this western Canada region and MSWEP (Multi-Source Weighted-Ensemble
Precipitation; Beck et al 2016) was chosen for its representation of the topographical features with both the
general climatology and extreme events. Although this dataset can suffer from too many days with very
light precipitation (not shown), an issue common to reanalyses and models (Sun et al, 2006), the calculation
of the FWI System indices does not consider rainfall below 0.5 mm.

2 Model

The Canadian Earth System Model version 2 (CanESM2; Arora et al 2011) was used to produce a large
ensemble as part of the Canadian Sea Ice and Snow Evolution (CanSISE) Network project. The CanESM2
submission to CMIP5 contained 5 ensemble members with simulations beginning in 1850; the different
realizations were branched off from the pre-industrial control run every 50 years. For the large ensembles
(Fyfe et al, 2017), each of the 5 historical ALL and NAT forcing ensemble members was branched into 9
additional members in 1950, resulting in 50 member ensembles each under ALL forcing and NAT forcing.
In 1950, the seed of a random number generator included in the parameterization of a cloud process was
changed to produce the different realizations.

3 Downscaling procedure

The topography of the region, namely the Western Cordillera, can have an impact on the local weather and
thus on the fire indices and these effects may not be captured adequately with the resolution of CanESM2.
Here, the large ensemble output was downscaled to the resolution of the GFWED data. This was done for
each variable and for each realization by first calculating anomalies on the original, large-scale grid relative
to an ensemble mean monthly climatology. These anomalies were bi-linearly interpolated to the target grid
and the climatology of the observations added by month. For precipitation, a ratio with climatology was
used instead of a difference due to the presence of many rain-free days. Hard bounds were enforced for RH
[0,100] and wind speed [0,∞).

The data were then debiased following the methodology of Cannon (2017), which employs a multivariate
quantile mapping bias correction procedure that maintains the multivariate dependence structure between
the four variables (tair, RH, wspd, prcp), as well as the forced response of the climate model (e.g., absolute
changes in quantiles for tair and RH and relative changes in quantiles for wspd and prcp relative to the ALL
baseline). If debiased separately, the relationship between weather variables could be altered, which would
have implications for the calculation of the CFFDRS indices. This is indicated in split-sample verification
results for FWI system indices (Cannon, 2017) based on evaluation runs of CanRCM4 (Scinocca et al, 2016),
a regional climate model that uses the same physical parameterizations as CanESM2.

The multivariate quantile mapping algorithm is based on the N-dimensional probability distribution
transform (N-pdft) proposed by Pitié (2005, 2007). The multivariate distribution of the climate model
simulations is transformed to match the distribution of historical observations by iteratively applying a
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random orthogonal rotation to the datasets followed by univariate quantile mapping of the rotated marginal
distributions. The additional rotation step provides linear combinations of the original variables – rather
than each original variable separately – to the univariate quantile mapping bias correction. When these two
steps are combined in sequence and repeated, correction of the multivariate distribution becomes possible.
The algorithm is proven to converge with random rotation matrices and a multivariate Gaussian target
(Pitié et al, 2007), which means that any distribution can be mapped to another by using the multivariate
Gaussian as a pivot. Empirical evidence suggests, however, that the intermediate Gaussian is unnecessary
and that direct mapping between arbitrary continuous distributions is possible.

In Cannon (2017), the N-pdft algorithm is extended for use with climate model simulations by further
ensuring that the post-processed outputs preserve the climate change signal of the underlying climate model
in the projection period, subject to multivariate bias correction of the empirical copula in the historical
calibration period. This is done by first applying a change-preserving form of univariate quantile mapping
(Cannon et al, 2015) to each variable of the climate model projection dataset and saving the outputs. Next,
the multivariate N-pdft algorithm is used to bias correct both the historical calibration and climate model
projection datasets. Finally, the change-preserving quantile mapping outputs in the projection period are
reordered, following Cannon (2016), according to the ordinal ranks of the corresponding variable from the
N-pdft algorithm. This maintains the preservation of trends from the quantile mapping algorithm and
the rank dependence structure from the N-pdft algorithm. As described below, the change-preservation
property allows the NAT realizations to maintain their separation from the ALL response. More details and
an implementation of the algorithm are provided at https://cran.r-project.org/package=MBC

The bias correction procedure is trained with a baseline period of 1980-2014 to include all available ob-
servations and then applied over 1980-2020; each ALL and NAT realization is debiased using a different ALL
realization for calibration to account for internal variability. Failure to account for internal variability when
applying bias correction algorithms will artificially reduce ensemble spread (Kim et al, 2016). The combined
downscaling/bias correction approach maintains the separation between the ALL and NAT responses; before
downscaling, the NAT anomalies are calculated relative to the ALL ensemble mean climatology. For each
of the ALL and NAT realizations, the multivariate quantile mapping then corrects marginal distributions
and multivariate dependence structure using an ALL calibration realization as the model reference in the
N-pdft algorithm. Subject to the N-pdft corrections needed to transform the ALL calibration distribution to
the observed distribution, simulated differences between empirical quantiles for the NAT or ALL realization
of interest and the ALL calibration realization are also preserved following Cannon (2016). Furthermore,
the bias correction routine also corrects for any difference between the maximum temperature and daily
averaged values of the other variables and the local noon values requested for the FWI System calculations
and provided by GFWED.

4 Fire season statistical models

Instead of downscaling and bias correcting snow information from the coarse-resolution model realizations,
a simple statistical model was derived to predict the fire season start date for each year. The multiple
linear regression model was calibrated with the observations, using the snow-based fire season start date
(day of year) as the predictand. A cross-validation procedure was used to select the predictors: a year was
removed from the time series, the model was fit for all predictor combinations with the remaining years and
then applied to the removed year, and this procedure was repeated for all years. The Akaike information
criterion (AIC) was used to determine the best predictor set. Although the model is fit and applied by grid
box, the predictors were chosen common to all grid boxes in HFR9. Tested predictors included spring mean
temperature, total winter precipitation, snow cover, growing degree days, and the fire season start date using
a temperature-based approach. The final model includes only the growing degree days over a 0◦C threshold
(calculated with noon temperature) at the end of April.

There are fewer predictor options to predict the date of the return of snow cover and regression models
tested performed very poorly. Hence, the fire season end date was defined as the first day after 01 July
where a grid box reported precipitation over 0 mm with a noon temperature below 5◦C. Several thresholds
were tested for both temperature and precipitation and the pair that resulted in the lowest root mean square
error for the observations compared to the snow-based date was chosen.
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5 Wind speed sensitivity analysis

A sensitivity analysis was performed to compare the influence of increases in wind speed with increases
in temperature on the FWI and FBP indices. Figure S6 shows the density curves of fire season 90th
percentile values for NAT forcing, as well as similar curves calculated with adjusted temperatures and also
with adjusted wind speeds. For the adjusted inputs, all variables were taken from the NAT simulations, but
the temperatures (and separately, the wind speeds) were shifted by the difference in mean values between
the ALL and NAT simulations. Essentially, the FWI and FBP indices were recalculated using tair values of
magnitudes seen in the ALL scenario, but maintaining the sequence of events and keeping all other input
variables at their NAT values. This was repeated changing wind speed to ALL magnitudes and holding tair,
relh, and prcp at NAT values. Only indices that depend on wind speed were included. The ISI is most
affected by changes in wind speed and shows similar curves for temperature and for wind speed changes,
both of which are shifted towards more extreme values than the NAT simulations. For all other indices, the
temperature change has a stronger influence on the FWI and FBP indices than the wind speed change.

The difference in wind speed between the ALL and NAT responses appears to be due to land-use change
early in the 20th century. Figure S6 shows a comparison of fire season mean wind speeds from six different
forcing scenarios.
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(a) Fire Season Start (b) Fire Season End (c) Fire Season Length

Apr May Jun Jul Aug Sep Oct Nov 0 50 100 150 200

Figure S1: Average (1981-2010) fire season start date (a), end date (b), and fire season length in days (c) using snow data from
GFWED. The start date occurs after three consecutive snow-free days (after 01 March) and the end date is the first day with
snowfall recorded (after 01 July). Months are labelled on the first day.
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Figure S2: (a) Time series of anomalies in air temperature averaged over the May-Sep fire season for land grid boxes in western
Canada for ALL forcing (blue), NAT forcing (green), and observations from CRU-TS3 (black). The ensemble means are plotted
and shading indicates the 5th-95th percentile across the 50-member ensemble. In red is the ALL ensemble mean rescaled to
match observations, with dashed 90% uncertainty. (b) Scaling factors and 90% confidence intervals from a one-signal detection
and attribution analysis with ALL forcing (blue) and 2-signal for ANT (purple) and NAT (green). The one-signal scaling factor
and uncertainty were used for the red lines in panel (a). (c) Observed trends in fire season mean temperature for two different
time periods. Trends are assumed to be linear and uncertainty is determined from the regression analysis. (d) The resulting
trend in fire season mean temperature that is attributed to the influence of ALL forcing (red), which is dominated by the
influence of greenhouse gas increases from anthropogenic activities, and NAT forcing (orange). The rescaled ensemble means
were used to calculate these trends.
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Figure S3: Density curves for many event metrics during 2011-2020 with ALL forcing in blue and NAT forcing in green. The
uncertainty range for each curve is shaded and was calculated using a bootstrapping method. The FBP metrics in panels (i) -
(k) use the C2 fuel class.
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Figure S4: Density curves for the fire season 90th percentile value of the FWI System input variables and vapor pressure deficit
(VPD) during 2011-2020 with ALL forcing in blue and NAT forcing in green. The uncertainty range for each curve is shaded
and was calculated using a bootstrapping method.
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Figure S5: Density curves for the fire season 90th percentile value of the FWI and FBP indices during 2011-2020 averaged over
HFR9 for NAT forcing shown in green. The red line is the same except the input temperatures were shifted to match the mean
of the ALL forcing scenario. Purple line was calculated with wind speeds shifted similarly. The uncertainty range for each
curve is shaded and was calculated using a bootstrapping method. Only indices that depend on wind speed are included. FBP
metrics in panels (d) and (e) depend on the C2 fuel class.
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Figure S6: Mean wind speeds across HFR9 during the fire season (May - September) for CanEMS2 forced with natural-only
(green), greenhouse-gas only (light blue), solar only (orange), atmospheric aerosols only (pink), land-use only (brown), and all
forcings (dark blue). Values are averaged across the 5 ensemble members with data for the whole period plotted here.
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Figure S7: Density curves (left column), PN (center column), RR (right column) for the FBP metrics for fuel classes C3 and
D1 during 2011-2020. D1 does not have any days in a fire intensity class of 5 or 6.
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Figure S8: The probability of necessary causality (PN) for many event metrics using data for 2011-2020. Values are for an
event more extreme than that indicated on the horizontal axis and the vertical bar represents the threshold for an extreme
value. The uncertainty range for each PN curve is shaded and was calculated using a bootstrapping method. The FBP metrics
in panels (i) - (k) use the C2 fuel class.
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