E Briski et al. – Supporting Information

Vector	Taxa	Selection during entrainment into transport	Evidence	Selection during transport	Evidence	References
Ship hull fouling	Bryozoan (Watersipora subtorquata)			Fouling bryozoan developed tolerance to copper due to the application of anti-fouling paints	Strong [*]	McKenzie <i>et al</i> . (2011, 2012a,b)
Ship full fouling	Diverse	Short residence time of vessels may select for early successional fouling organisms	Probable [*]			Berntsson and Jonsson (2003); Chapman <i>et al.</i> (2013)
Ship ballast water	Diverse invertebrates	Non-random entrainment of invertebrates may select for tolerance to human disturbance	Probable*			Briski <i>et al.</i> (2012)
Diverse (eg pet trade)	Birds	Populations adapted to human- altered habitats (AIAI)	Probable*			Hufbauer <i>et al.</i> (2012); Sol <i>et al.</i> (2017)
Diverse (eg hitchhikers and contaminants associated with agriculture and horticulture)	Little fire ant (<i>Wasmannia</i> <i>auropunctata</i>)	Populations from human-altered habitats are more tolerant of hot and dry conditions (AIAI)	Probable*			Hufbauer <i>et al.</i> (2012); Foucaud <i>et al.</i> (2013)
Diverse (eg ship ballast water and hull fouling)	Asian green mussel (Perna viridis)	Populations from human-altered habitats are more tolerant of low oxygen environments (AIAI)	Probable*			Hufbauer <i>et al</i> . (2012); Huhn <i>et al</i> . (2016)
Ship ballast water	Planktonic			Low oxygen and light levels, metal pollutants, and/or fluctuations in temperature and salinity may select for tolerance of harsh environmental conditions common in ports and human-altered habitats	Probable*	Briski <i>et al.</i> (2014); Chan <i>et al.</i> (2015)

WebTable 2. Examples of selection during entrainment and transport for vectors of unintentional introductions

Vector	Taxa	Selection during entrainment into transport	Evidence	Selection during transport	Evidence	References
Wood packing materials	Emerald ash borer (Agrilus planipennis)			Phytosanitary heat treatment of wood products induces a heat shock response of the wood- boring insects, allowing individuals to survive otherwise lethal temperatures	Probable*	Sobek <i>et al</i> . (2011)
Ship hull fouling	Fanwort (<i>Cabomba</i> caroliniana)			Overland transport on boat trailers may select for desiccation tolerance, which may promote the introduction and subsequent spread of non- indigenous populations in recipient ecosystems	Probable [*]	Barnes <i>et al.</i> (2013); Bickel (2014)
Ship hull fouling	Ascidians (Styela clava, Botrylloides violaceus, Didemnum vexillum)			Hydrodynamic conditions experienced by fouling ascidians on the hulls of ships during voyages may act as a selective pressure, favoring individuals with high attachment strength and/or low drag coefficient, which may promote further spread of the species	Probable*	Clarke Murray <i>et al.</i> (2012)
Tsunami marine debris objects	Macro- and micro- invertebrates, fish, and protists			Limited food source, increased sun exposure, and other stressors may select for populations with broad physiological tolerances	No direct*	Carlton <i>et al</i> . (2017)
Marine litters (eg plastic)	Macro- and micro- invertebrates, fish, and protists			Limited food source, increased sun exposure, and other stressors may select for populations with broad physiological tolerances	No direct [*]	Kiessling et al. (2015)

Notes: *strong evidence, probable and no direct evidence represent: (1) cases with clear evidence for both selection during transport and evolved traits that contribute to invasion success; (2) cases that impose selective pressures relevant to adaptation to invade, but there is no study to demonstrate selection; and (3) cases where there is some reason to believe that selection is occurring, but we can only suggest why this might make a difference for invasion success, respectively.

WebReferences

- Barnes MA, Jerde CL, Keller D, *et al.* 2013. Viability of aquatic plant fragments following desiccation. *Invas Plant Sci Mana* 6: 320–25.
- Berntsson KM and Jonsson PR. 2003. Temporal and spatial patterns in recruitment and succession of a temperate marine fouling assemblage: a comparison of static panels and boat hulls during the boating season. *Biofouling* **19**: 187–95.
- Bickel TO. 2014. A boat hitchhiker's guide to survival: *Cabomba caroliniana* desiccation resistance and survival ability. *Hydrobiologia* **746**: 123–34.
- Briski E, Bailey SA, Casas-Monroy O, *et al.* 2012. Relationship between propagule pressure and colonization pressure in invasion ecology: a test with ships' ballast. *P Roy Soc B-Biol Sci* 279: 2990– 97.
- Briski E, Chan F, MacIsaac HJ, and Bailey SA. 2014. A conceptual model of community dynamics during the transport stage of the invasion process: a case study of ships' ballast. *Divers Distrib* **20**: 236–44.
- Carlton JT, Chapman JW, Geller JB, *et al.* 2017. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. *Science* **357**: 1402–06.
- Chan FT, Bradie J, Briski E, *et al.* 2015. Assessing introduction risk using species' rank-abundance distributions. *P Roy Soc B-Biol Sci* **282**: 20141517.
- Chapman J, Breitenstein R, and Carlton J. 2013. Port-by-port accumulations and dispersal of hull fouling invertebrates between the Mediterranean Sea, the Atlantic Ocean and the Pacific Ocean. *Aquat Invasions* **8**: 249–60.
- Clarke Murray C, Therriault TW, and Martone PT. 2012. Adapted for invasion? Comparing attachment, drag and dislodgment of native and nonindigenous hull fouling species. *Biol Invasions* 14: 1651–63.
- Foucaud J, Rey O, Robert S, *et al.* 2013. Thermotolerance adaptation to human-modified habitats occurs in the native range of the invasive ant *Wasmannia auropunctata* before long-distance dispersal. *Evol Appl* **6**: 721–34.
- Hufbauer RA, Facon B, Ravigné V, *et al.* 2012. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. *Evol Appl* **5**: 89–101.
- Huhn M, Hattich GS, Zamani NP, *et al.* 2016. Tolerance to stress differs between Asian green mussels *Perna viridis* from the impacted Jakarta Bay and from natural habitats along the coast of West Java. *Mar Pollut Bull* **110**: 757–66.
- Kiessling T, Gutow L, and Thiel M. 2015. Marine litter as habitat and dispersal vector. In: Bergmann M, Gutow L, and Klages M (Eds). Marine anthropogenic litter. Cham, Switzerland: Springer Open.
- McKenzie L, Brooks R, and Johnston EL. 2011. Heritable pollution tolerance in a marine invader. *Environ Res* **111**: 926–32.
- McKenzie LA, Johnston EL, and Brooks R. 2012a. Using clones and copper to resolve the genetic architecture of metal tolerance in a marine invader. *Ecol Evol* **2**: 1319–29.
- McKenzie LA, Brooks RC, and Johnston EL. 2012b. A widespread contaminant enhances invasion success of a marine invader. *J Appl Ecol* **49**: 767–33.
- Sobek S, Rajamohan A, Dillon D, *et al.* 2011. High temperature tolerance and thermal plasticity in emerald ash borer *Agrilus planipennis*. *Agric Forest Entomol* **13**: 333–40.
- Sol D, González-Lagos C, Lapiedra O, *et al.* 2017. Why are exotic birds so successful in urbanized environments? In: Murgui E and Hedblom M (Eds). Ecology and conservation of birds in urban environments. Cham, Switzerland: Springer International Publishing.