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SUMMARY

The protein-level translational status and function of
many alternative splicing events remain poorly un-
derstood. We use an RNA sequencing (RNA-seq)-
guided proteomics method to identify protein alter-
native splicing isoforms in the human proteome by
constructing tissue-specific protein databases that
prioritize transcript splice junction pairs with high
translational potential. Using the custom databases
to reanalyze ~80 million mass spectra in public
proteomics datasets, we identify more than 1,500
noncanonical protein isoforms across 12 human tis-
sues, including ~400 sequences undocumented on
TrEMBL and RefSeq databases. We apply the
method to original quantitative mass spectrometry
experiments and observe widespread isoform regu-
lation during human induced pluripotent stem cell
cardiomyocyte differentiation. On a proteome scale,
alternative isoform regions overlap frequently with
disordered sequences and post-translational modifi-
cation sites, suggesting that alternative splicing may
regulate protein function through modulating intrinsi-
cally disordered regions. The described approach
may help elucidate functional consequences of alter-
native splicing and expand the scope of proteomics
investigations in various systems.

INTRODUCTION

Protein species outnumber coding genes in eukaryotes, in part,
because one gene can encode multiple transcripts through alter-
native splicing (AS) (Aebersold et al., 2018; Smith and Kelleher,
2018). RNA-seq experiments have discovered over 100,000 AS
transcripts in the human genome (Pan et al., 2008; Wang et al.,
2008), but identifying which AS isoforms are functionally impor-
tant is a major unmet goal, and critically, most have never
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been detected at the protein level. Although computational
approaches can predict isoform conservation and function (Li
et al., 2017; Rodriguez et al., 2013) and Ribo-seq can survey
alternative transcripts engaged to ribosomes (Weatheritt et al.,
2016; van Heesch et al., 2019), these techniques stop short of
assessing AS protein products empirically.

Mass spectrometry (MS)-based proteomics is the standard
tool for unbiased protein identification, but it faces technical
challenges in identifying AS isoforms. Chief among them,
MS-based shotgun proteomics typically identifies proteins by
searching mass spectra against peptide sequences in a pro-
tein database; hence, an isoform sequence not found in
common databases is precluded from identification by search
algorithms in typical experiments. The commonly used protein
database SwissProt catalogs on average ~1.1 alternative
isoforms per human gene and much fewer in other organisms.
Larger sequence databases (e.g., TrEMBL and RefSeq)
exist, but it is unclear whether the majority of deposited se-
quences are bona fide isoforms or gene fragments, polymor-
phisms, and redundant entries. Partly due to these limitations,
the protein molecular functions of most AS events remain
severely under-characterized, and a systematic picture is
lacking on how AS rewires proteome functions (Tress et al.,
2017a, 2017b).

Several approaches have been proposed to improve MS
identification of AS isoforms, including the curation of splice
variant databases (Tavares et al., 2014; Mo et al., 2008) and de
novo 6-frame translation of genome sequences (Power et al.,
2009; Fermin et al., 2006). More recently, RNA-seq has been
leveraged with some success to identify variant sequences
not found in standard protein databases (Ning and Nesvizhskii,
2010; Zickmann and Renard, 2015; Verbruggen et al., 2019; Ci-
fani et al., 2018), corroborating the potential utility of an RNA-
guided approach for discovering protein AS isoforms. Thus
far, however, studies of this type have largely been performed
in transformed cell lines or tumors known to have aberrant
splicing (Ning and Nesvizhskii, 2010; Koch et al., 2014; Sheynk-
man et al., 2013; Evans et al., 2012; Liu et al., 2017). Moreover,
many custom RNA-guided databases remain imprecise and
contain large numbers of low-quality sequences that likely
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cannot be detected in the biological sample (e.g., from transla-
tion of multiple reading frames), suggesting there is a need for
continued refinement of in silico translation and evaluation
methods.

We describe a method that translates splice junction pairs
from RNA-seq data to guide protein isoform discovery. We prior-
itize in silico translation of AS events with appreciable read
counts and enforce one-frame translation to limit database
size inflation and the associated false positives in database
search (Alfaro et al., 2014; Ning and Nesvizhskii, 2010). The
custom databases were used to recover AS protein isoforms
from public MS data on 12 primary human tissues as well as
original MS data on human induced pluripotent stem cell
(iPSC)-directed cardiac differentiation, the latter providing a
model to assess protein isoform changes during cellular differ-
entiation. The results support identification of noncanonical
protein isoforms as well as uncharacterized junction peptides
from MS experiments.

RESULTS

Generation of Junction-Centric Protein Sequence
Databases

We assembled a computational workflow to translate AS
junctions to protein sequences in silico (Figure 1A). Differential
exon usage analysis is a common transcriptomics tool to
assess the percent spliced in (PSI) index of splice events
and exon inclusion across samples. We reasoned that by
focusing our analysis on alternative junction pairs rather
than all assembled transcripts, we can target more relevant
splicing events within a tissue and create precise sequence
databases. We retrieved ENCODE RNA-seq data on the
GTEX tissue collection of human heart, lungs, liver, pancreas,
transverse colon, ovary, testis, prostate, spleen, thyroid,
esophagus, and adrenal gland, each containing 101 nt
paired-end (PE) total RNA-seq data with 2 biological replicates
passing ENCODE consortium-wide quality control. Sequence
reads are mapped to GRCh38 to identify splice junctions
from GTF annotations or de novo. To gather AS events, we
use rMATS (Shen et al., 2014) to count the exon-included
and exon-excluded junction-spanning reads for each AS
event, including alternative 3’ splice site (A3SS), alternative
5’ splice site (A5SS), mutually exclusive exon (MXE), skipped
exon (SE), and retained intron (RI).

We use four criteria to select splice junction pairs that are
more likely detectable in MS experiments (Figure 1A). (1) The
skipped junction read counts of an AS event must pass a sam-
ple-specific threshold. (2) We use the statistical model in
rMATS to remove splice events with significantly different
exon usage across technical and biological replicates in the
same tissue (p < 0.01). (3) We prioritize transcripts with
known annotated translation start sites and frame that can
be translated in-frame without premature termination codons
(PTCs). Where an unambiguous translation frame is not avail-
able, we use one frame that results in the longest translatable
sequence with no PTCs. (4) To ensure reliable junction pep-
tides can be identified that span constitutive and alternative
exons, we stitch both translated slices in a splice pair (each
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containing one upstream exon, the alternative exons, and
one downstream exon) back-to-back to the full-length canon-
ical sequences from SwissProt through a 10-amino-acid (aa)
overhang. In cases of SE and RI, one alternative exon would
be empty (skipped). Orphan slices that are not extensible
back to canonical sequences are discarded and redundant se-
quences combined. The translated junction pairs passing
these criteria are written to a FASTA file for a database search.

From the ENCODE RNA-seq data, we mapped a median of
72,194 AS events per tissue, with the adrenal gland having the
fewest (66,160) and testis the most events (91,895). The most
common AS type was SE, accounting for 65.1% of all identi-
fied events, followed by A3SS (10.8%), then RI (10.1), MXE
(7.3%), and A5SS (6.7%). The mapped splice junctions show
a broad distribution of skipped junction read counts (Fig-
ure S1). As cellular transcription is noisy and MS-based prote-
omics typically omits products of lowly expressed genes
(Ramakrishnan et al., 2009), we sought a junction read count
threshold to minimize the inclusion of non-translatable junc-
tions in the custom database. Indeed, we observed that data-
base entry counts scale with read count filter in a log-linear
relationship in the analyzed RNA sequencing data (Figure 1B).
We, thus, removed low-abundance junctions based on the
excluded junction read count in the two alternative junctions
created by a splice event, such that only AS events expressed
at appreciable levels were retained. To identify optimal read
count cutoffs, a Gaussian mixture model was used to separate
splice junctions into lowly and highly expressed groups. A
read count cutoff was applied at 0.95 posterior probability of
a junction being in the highly expressed group (Figure 1C),
which in the ENCODE heart RNA-seq sample corresponds
to >4 mapped junction reads.

We first evaluated how this read count filter influenced the
number of identifiable splice junction peptides in human heart
left ventricle MS data under fixed false discovery rates (FDRs),
focusing on junctions that correspond to noncanonical
isoforms not found in the SwissProt Homo sapiens canonical
database. FDR is estimated using score distributions of
custom decoy sequences generated from the translated tis-
sue-specific (canonical and noncanonical) sequences. We
saw that the number of identifiable junction peptides gradually
plateaued at 4-count cutoff under stringent significance
threshold (Percolator g-value < 0.01), whereas low-confi-
dence matches (g > 0.05) continued to accrue at lower cut-
offs, reflecting an inflation of false positives when low-read
junctions were included. In parallel, the proportion of se-
quences identified per FASTA entry fell as databases grew in
size; hence, the cutoff chosen (i.e., 4) balanced identification
rate with FDR (Figure 1D). Compared to the indiscriminate 3-
frame translation of assembled transcripts or FASTA data-
bases translated from RNA-seq of mismatched tissues (e.g.,
liver), the junction-based approach supported a greater pro-
portion of undocumented sequence identification at low
FDR, indicating the database preferentially excludes low-qual-
ity sequences (Figure S1). In total, the search identified 13,900
distinct peptides sequences at 1% FDR by using a reverse
decoy database followed by Percolator. Out of these peptides,
397 (2.9%) were not found in the manually curated SwissProt
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Figure 1. Splice-Junction-Centric Approach to Identify Protein Isoforms

RefSeq (71.7%)

(A) Schematic of the method. ENCODE RNA-seq data from 12 human tissues are mapped to GRCh38. AS pairs are extracted then filtered by junction read counts
and consistency. Candidate junctions are trimmed using Ensembl GTF-annotated translation start site (TSS) and translation end site (TES) and then translated in-
frameby using either GTF-annotated reading frames or by choosing a frame that does not lead to PTC. The translated junction pairs are extended to encompass
the full protein sequence. The created custom tissue-specific databases are used to identify noncanonical protein isoforms in public and original MS data.

(B) Number of translated sequences versus minimal skipped junction read count threshold following in silico translation in ENCODE human heart data. Inclusion of

low-read junctions increases database size.

(C) Gaussian mixture fitting overlaid on skipped junction read counts of all AS events in the heart database. Dotted line: chosen threshold.
(D) Number of identified noncanonical isoform sequences in the reanalyzed human heart left ventricle MS data versus junction read count thresholds. Color:

Percolator FDR cutoff calculated with database-specific decoys.

(E) Proportion of identified distinct peptide sequences in the left ventricle dataset (13,900 total) not matchable to SwissProt canonical (SpC), SwissProt ca-

nonical + isoform (SpC + I), TrTEMBL (Tr), or RefSeq.

canonical database (Figure 1E), 142 (35.7 %) were not found in
the SwissProt canonical + isoform database, and 39 (9.8%)
were not found in the automatically annotated sequence

collection TrEMBL. Taken together, these results show that
our approach can identify noncanonical and undocumented
isoforms at low FDR.
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Figure 2. Identification of Noncanonical Isoforms in the Human Proteome

(A) Comparison on the number of sequences in standard databases (RefSeq TrEMBL, SwissProt canonical + isoform, and SwissProt canonical) versus the
custom tissue-specific databases. The custom databases have fewer sequences than SwissProt

(B) The proportion of distinct peptides uniquely mappable to noncanonical isoforms per tissue, with the heart and testis particularly enriched in noncanonical
isoforms. Color of data points corresponds to each of 5 reanalyzed human proteome datasets.

(C) Proportion of AS types in RNA-seq data (left) compared to identified noncanonical peptides (right), showing higher translatable rate for MXE.

(D) The number of uniquely identified noncanonical junction peptides at 1% FDR across tissues in 5 reanalyzed human proteome datasets (ProteomeXchange:
PXD000561, PXD009737, PXD009021, PXD006675, and PXD010154), including noncanonical sequences from known isoforms and undocumented sequences.

Color: AS type (A3SS, A5SS, MXE, RI, and SE).

Identification of Noncanonical Splice Junctions across
Tissues
We next built custom isoform databases for all 12 analyzed tis-
sues. The filtering strategy drastically reduced the number of
entries in the custom databases (Figure 2A), e.g., the heart-spe-
cific database contains 13,816 entries, versus 42,237 in the
Swissprot human reference proteome (20,225 canonical +
22,012 isoform sequences), 93,555 sequences in TrEMBL, and
113,620 in RefSeq. Across 12 tissues, the custom databases
contain on average 11,911 entries, with the pancreas database
having the fewest sequences (6,309) and the testis the most
(19,285). All generated databases are markedly sparser than
SwissProt, TrEMBL, RefSeq, or 3-frame translated databases.
This is expected as RNA-seq data capture only transcripts
from genes expressed in a particular tissue due to tissue-specific
gene regulation.

We used the custom databases to perform a secondary anal-
ysis on 4 MS datasets containing high-resolution Orbitrap FT/FT
spectra on human tissues, comprising a dataset on 10 tissues
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(Kim et al., 2014), 1 on testis by using 3 proteases (Sun et al.,
2018), 1 on liver with extensive fractionation, 1 on the heart
dissected into 16 anatomical regions plus 3 isolated cell types
(Doll et al., 2017), and 1 on all 12 matching tissues (Wang
et al., 2019). In total, we reanalyzed 1,927 MS data files with
79.6 million MS2 fragmentation spectra. In the heart, which is
the most comprehensively reanalyzed tissue here, the translated
isoform sequences belonged to 6,351 genes, of which 5,731
(90.4%) were identifiable by at least 1 isoform in the reanalyzed
MS data. Of all translated isoform entries (whether canonical or
alternative) in the heart, 23% were uniquely identifiable by a pep-
tide that mapped to exactly one FASTA entry in the database.
Because all splice junctions were translated pairs, uniquely
mappable peptides (i.e., peptide mapped to only one FASTA
entry) represent isoform-specific peptides that are not shared
between the two translated isoforms within the same gene
in the tissue. In most tissues, ~1% of uniquely mapped pep-
tides correspond to a noncanonical isoform, whereas this pro-
portion is higher in the testis and the heart, suggesting AS may
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Figure 3. Protein Isoform Diversity and Tissue-Specific Expression
(A) Top 15 genes associated with the most identified noncanonical isoform (Nc) sequences across reanalyzed human proteome datasets.

(B-E) Distributed normalized spectral abundance factor (INSAF)-based assessment of relative isoform prevalence for each gene across tissues in cases where
unique peptide junctions are resolvable. Isoforms across databases are harmonized by junction position and sequence alignment (insertion | deletion on legends)
against the canonical sequence. Examples show 4 classes of tissue distributions in the data.

(B) Tissue-specific isoforms confined to only one assessed tissue, frequently the testis and ovary but also the heart.

(C) Two isoforms of a gene with alternate expression in different tissues.

(D) Quantitative differences in the expression levels of alternative versus canonical isoforms.

RIS

(E) Complex patterns of multiple junctions, including instances where the relative abundance of the canonical isoform is indeterminable by dNSAF in some tissues
due to the absence of unique sequences.

(F) Tissue-specific expression is also evident in anatomical regions within the heart, including isoforms preferentially found in the myocardium over the
vasculature.

Adr, adrenal gland; Col, colon; Eso, esophagus; Hea, heart; Liv, liver; Lun, lung; Ova, ovary; Pan, pancreas; Pro, prostate; Spl, spleen; Tes, testis; Thy, thyroid; Ao,
aorta; AV, aortic valve; AS, atrial septum; IVC, inferior vena cava; LA, left atrium; LCA, left coronary artery; LV, left ventricle; MV, mitral valve; PA, pulmonary artery;
PV, pulmonary valve; PVe, pulmonary vein; RA, right atrium; RCA, right coronary artery; RV, right ventricle; TV, tricuspid valve; VS, ventricular septum.

events (64.8%); MXE appeared to have higher translational po-
tential (16.3% peptides versus 7.2% RNA), whereas Rl produced
relatively few protein products (5.6% peptides versus 10.0%

preferentially influence the proteomes of these two tissues (Fig-
ure 2B). Most identified noncanonical peptides (64.6%) arose
from SE, comparable to the proportion of SE in RNA-seq AS
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RNA) (Figure 2C). In total, we identified 3,418 distinct and
uniquely mapped peptides at 1% FDR that were not found in ca-
nonical SwissProt, corresponding to up to 1,555 noncanonical
isoforms in 1,189 genes (Figure 2D).

Proteins with multiple noncanonical isoforms are found in
diverse pathways, including muscle contraction, metabolism,
and signaling. A number of proteins including SORBS1 and
MAP4K4 had multiple noncanonical isoforms that were detect-
able across multiple tissues, whereas the protein with the most
isoforms identified was titin (Figure 3A), which is also the largest
protein in the human genome with the most exons and whose
splicing has been widely implicated in congenital heart dis-
eases (Guo et al., 2012; Herman et al., 2012). Several categories
of tissue specificity in protein isoform expression are recogniz-
able. First, a number of noncanonical isoforms were found only
in one analyzed tissue, frequently the testis or ovary but in
some cases also the heart; e.g., a 3'(2'),5'-bisphosphate nucleo-
tidase 1 (BPNT1) isoform was identified primarily in the ovary,
whereas noncanonical forms of titin (TTN) were identified only
in the heart (Figure 3B). Second, a number of proteins alternate
in dominant isoforms across tissues in the body, e.g., the nonca-
nonical form of ubiquitin carboxyl-terminal hydrolase 47
(UBP47), a ubiquitin-specific protease involved in base-excision
repair, is present in the liver, ovary, pancreas, spleen, testis, and
thyroid but not the other 6 analyzed tissues; whereas an alterna-
tive isoform for heterogeneous nuclear ribonucleoprotein DO
(HNRPD) was found only in the ovary, prostate, spleen, and testis
(Figure 3C). A third group of proteins including myosin-10
(MYH10) showed broad tissue expression of both canonical
and noncanonical forms but with different relative abundance
across tissues (Figure 3D). Because of difficulties in accurately
measuring quantity from label-free methods with singular junc-
tion peptides, some of the alternative dominant isoforms we
nominated in Figure 3C may also, in fact, be differentially ex-
pressed across tissues quantitatively. A fourth group of proteins
show complex isoform patterns of multiple sequences that are
difficult to unravel due to degenerate junction combinations
(Figure 3E).

Likewise, we observed differential isoform expression across
different anatomical regions of one organ (the heart); e.g., the
vesicular trafficking protein transmembrane emp24 domain-
containing 2 (TMED2) expresses a noncanonical form primarily
in myocardial (atrial and ventricular) tissues but not vascular or
valvular tissues; whereas a noncanonical isoform of NADH dehy-
drogenase (ubiquinone) flavoprotein 3, mitochondrial (NDUFV3)
showed the opposite pattern of preferential expression in the
vasculature (Figure 3F). Overall, the results reflect complex
tissue-dependent regulations of AS at the protein level.

Undocumented Peptide Sequences in Existing Mass
Spectrometry Data

We identified isoform sequences that are undocumented in
common databases. At 1% FDR, we identified 1,385 peptides
in 681 genes that were not in SwissProt (canonical + isoform).
Among them, 566 peptides were also not in TrEMBL, which
encompasses all SwissProt entries plus computationally anno-
tated and unreviewed sequences, and 453 peptides in 366
genes were not matched to the larger RefSeq database (Fig-
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ure 4A). Undocumented peptides are particularly enriched in
the testis, which is known to differ markedly from other tissues
in splicing pattern (Yeo et al., 2004). On average, the undocu-
mented sequences had higher adjusted p values and posterior
error probability than noncanonical peptides in TrEMBL (Fig-
ure 4B); hence, some may be false-positive identification.
However, a lower score distribution for these sequences could
also be due to the lower abundance of alternative isoforms
(Blencowe, 2017) and the known enrichment of lysine at splice
junctions producing miscleavages (Wang et al., 2018b) whose
scoring is penalized by Percolator (The et al., 2016). Regardless
of search engine scores, the assignment of variant peptides
demands caution and alternative explanation including mass
shifts due to post-translational modifications (PTMs) or single-
amino-acid variant polymorphisms (SAAVs). Hence, to further
evaluate the undocumented peptide matches, we considered
several additional lines of evidence.

First, we used a sequence alignment algorithm to assess
whether the identified undocumented peptides may be match-
able to RefSeq when allowing one or more mutations. We
found that the majority (70.8%) of these sequences cannot be
matched to RefSeq even with 2 mismatches; hence, the absolute
majority of identified spectra are unlikely to arise from SAAV
differing from the reference proteome or other unaccounted
for mass shifts at a single residue (Figure 4C). Second, we eval-
uated whether the spectra may be better matched to a mass-
tolerant open search for PTM (Figure 4D). We subjected the
left ventricle dataset to a comprehensive MSFragger open
search against TrEMBL, allowing a —200 to +400 Da mass shift,
followed by Percolator filtering, which identified 13,880 peptides
from 8,702 protein groups at 1% FDR. Among the spectra iden-
tified to 51 undocumented peptides in the left ventricle, 38 were
matched to a peptide using MSFragger and 14 were matched to
the same gene ID, but only one spectrum was confidently
identified at 1% FDR. The other spectra did not pass FDR cutoff
(median Percolator g, 0.15), and all spectra had considerably
higher adjusted p values than in the custom database search.
By contrast, 267 out of the 394 (67%) noncanonical isoform
sequences found in TrEMBL in the same sample were matched
to identical sequences in the open search; hence, the AS data-
base search has additional identification power for a subset of
spectra over open search.

Third, we manually inspected the fragmentation spectra of
undocumented isoform peptides. Among the undocumented
peptides are two SE junctions for myosin-binding protein C3
(MYBPC3) (RTDSHEDTGILDFSSLLK and AITQLLCETEGR),
corresponding from skipping of exon 8 and exon 22, respectively
(Figure 4E). Both sequences were identified from high-quality
spectra with large proportions of matched fragment ions at
Percolator g < 0.01. Using the SSRC algorithm to determine
the hydrophobicity coefficient of peptides de novo (Krokhin
et al., 2004), we found that the peptides also eluted at the ex-
pected retention time based on their assigned sequences (Fig-
ure 4F). However, there are also undocumented sequence
matches with unexpected retention time that are more likely to
be false positives (Data S1). We suggest that improving
sequence elution time prediction algorithms may be a useful
determinant to adjudicate the validity of sequence variants.
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Figure 4. Splice Junctions Include Peptides Undocumented in Common Databases

(A) Number of undocumented sequence candidates in each reanalyzed tissue across 5 public human proteome datasets.

(B) Distribution of Percolator FDR and posterior error probability (PEP) of noncanonical sequences that are matched to SwissProt isoforms (left) against those not
in SwissProt (middle) or TrEMBL (right).

(C) Proportion of peptide sequences that are not mappable to RefSeq, allowing 1, 2, or 3 mismatches.

(D) Comparison of —log10 Percolator PEP for 51 left ventricle peptide spectrum matches to sequences not in TrEMBL versus the results from the corresponding
spectra in a mass tolerant open search against TrEMBL.

(E) Tandem mass spectra of two identified splice junction peptides (RTDSHEDTGILDFSSLLK and AITQLLCETEGR for MYPBC3) not found in SwissProt, TrEMBL,

or RefSeq.
(F) The predicted hydrophobicity of the two undocumented sequences shows the sequence eluted at the expected retention time when the spectrum was
acquired. Inset: Z score of residuals from best-fit line.

Finally, we used targeted MS to experimentally verify a subset  quences (Table S1). PRM assays target the junction sequences
of undocumented sequence matches (Deutsch et al., 2016; Nes- by acquiring tandem mass spectra using specified accurate
vizhskii et al., 2007). Using parallel reaction monitoring (PRM) masses and retention time of the endogenous and synthetic
(Peterson et al., 2012), we co-analyzed an independent biolog-  peptides, which should share elution time and fragmentation
ical replicate human heart lysate sample with synthetic spectra patterns. To validate the method, we first set up PRM
isotope-labeled peptide standards for a subset of isoform se- assays for two known pyruvate kinase isozymes, namely, M1/2
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(PKM1 and PKM2), which arise from MXE of PKM exons 9 and 10
and whose alternate expression regulates energy metabolism in
cardiac failure (Rees et al., 2015) (Figure S2). We successfully de-
tected the endogenous junction peptides and their synthetic
standards, the a priori known sequences of the standards
providing verification for the identity of the protein isoforms in
the endogenous sample. We next assessed 12 undocumented
isoform sequences by this method, identifying all 12 synthetic
heavy peptides and 6 endogenous peptides in the whole heart
lysate (Figure S2). Aside from them being false positives, the re-
maining 6 sequences may be undetected due to a lack of exten-
sive biological fractionation and potential biological and tech-
nical differences between the validation sample and the
original dataset (ProteomeXchange: PXD006675). Although
further validation of each sequence will require extensive
follow-up experiments, overall the targeted MS data corroborate
that our method can discover bona fide undocumented peptides
in the human proteome.

Alternative Protein Isoforms Overlap with Disordered
Regions

We next asked how noncanonical isoforms may affect protein
features. Among the TrEMBL-undocumented peptides we
identified was a splice variant of MYBPC3 (Figure 4E).
MYBPC3 is a 140-kDa protein that forms an important sarco-
meric component to maintain cardiomyocyte structure and
is commonly mutated in human congenital hypertrophic
cardiomyopathy. We found an SE splice junction peptide,
RTDSHEDTGILDFSSLLK, and its sister peptide TDSHEDT-
GILDFSSLLK, both of which are repeatedly identified in
multiple tissues, including whole heart, left atrium, and left
ventricle in our reanalysis. SwissProt catalogs 2 isoform en-
tries for MYBPCS, including the canonical sequence with
1,274 residues and an isoform with 1,273 residues, in which
canonical ser408 and lys409 are replaced by a single arginine.
Neither entry matches the isoform sequence we identified,
which omits the segment SLAGGGRRIS from aa 275-284
encoded by exon 8, and corresponds instead to aa 273-274
(RT-) of the canonical sequence joined to aa 285-300
(-DSHEDTGILDFSSLLK). The noncanonical peptide had not
been observed in the peptide repositories PeptideAtlas (hous-
ing 1.4M peptides) (Deutsch et al., 2015) or MassIVE-KB
(2.3 M peptides) (Wang et al., 2018a) and had no identical
match to any sequences of any taxonomy in RefSeq by
BLASTP (Boratyn et al., 2013).

Intriguingly, this SE falls within an unusual region of local
disorder nested between two well-defined immunoglobulin (Ig)-
like protein domains. We asked whether the excised region
overlapped with structural features of interest and found that
it is statistically enriched in known phosphorylation site over
the entire protein (Fisher’s exact test p value, 0.02). Moreover,
the region spans 2 of 3 clustered phosphorylatable serines
(S275, S284, and S304) that are key regulatory sites in MYBPC3
targeted by protein kinase A (PKA) (Figure 5A). The phosphoryla-
tion of S275, S284, and S304 in MYBPC3 by PKA and other
kinases causes the MYBPC3 N-terminal domain to dissociate
from myosin heavy chain and, hence, increase cardiac cross-
bridge formation (Rosas et al., 2015). Mutagenesis replacement
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of these serines with phosphonegative mimetic alanines in ani-
mal models led to hearts with abnormal relaxation velocity but
not ejection fraction (Rosas et al., 2015), suggesting the sites
may function in diastolic regulation.

Another example of alternative isoforms overlapping with
important protein features is found in in myomesin-1 (MYOM1),
where an SE spans a region between two fibronectin type llI
domains with significantly higher sequence disorder than
the rest of the protein (Mann-Whitney p value, 3.3e-50) (Fig-
ure 5B). Other identified noncanonical sequences also showed
a preferential location in disordered regions (Data S2), such that
on a proteome scale there is a clear preference for noncanonical
isoforms to alter protein regions with heightened sequence disor-
der (Figure 5D). Taken together, the result provides evidence for
one instance where protein alternative isoform overlaps with
known regulatory PTM sites and proteome-wide enrichment in
disordered protein regions, presenting two potential mecha-
nisms through which AS may regulate proteome function.

Noncanonical Protein Isoforms Change during
Cardiomyocyte Differentiation

We next applied the workflow toward an original MS dataset we
generated to examine isoform regulation during human iPSC
differentiation into cardiomyocytes (CMs) (Figure 6A). Three
human iPSC lines underwent directed cardiac differentiation
over 14 days through an established small-molecule-based
protocol (Burridge et al., 2014; Lee et al., 2019; Kitani et al.,
2019). During the differentiation time course, we harvested cells
daily for quantitative shotgun proteomics using 10-plex stable
isotope-labeled tandem mass tags (Figure S3). The MS data files
are processed as above by using the heart-specific database
to identify cardiac-specific protein isoforms. As expected, the
iPSC differentiation protocol led to a decrease in cyclins and
an increase in cardiac-specific proteins (Figure S3), consistent
with bona fide iPSC-CM formation (Kang et al., 1997), whereas
the cardiac protein expression profile corresponded to the
course of cellular differentiation and different stages of cardiac
differentiation (Figure 6B). From 87 quantified noncanonical
protein isoforms, including 14 not in the SwissProt canonical/iso-
form, we observed diverse cell-stage-specific expression
patterns for noncanonical protein isoforms (Figure 6C), with
some isoforms preferentially expressed in iPSCs, iPSC-CM, or
intermediary cell stages (Figure 6D), and an overall enrichment
of differentially regulated isoforms in actin binding and ribosomal
processes at the pathway level (Figure 6E).

We were particularly interested in protein isoforms with
differential expression between day 7 (early CM) and day 14
(CM) stages of iPSC differentiation, as they may be implicated
in cardiogenesis and pluripotent-stem-cell-derived CM matura-
tion (Figure 6D; Data S3). For instance, alpha-actinin-4
(ACTN4) is thought to link actin to various subcellular structures.
We identified an ACTN4 isoform that is significantly elevated in
day 14 CM (log FC, 0.50; adj.P, 4.6e-4), that differs from the
canonical isoform in residues 780 to 801, and is not documented
on SwissProt. Tropomyosin alpha-1 chain (TPM1) is an actin-
binding protein that regulates cardiac muscle contraction. In
the data, we found two significantly regulated TPM1 isoforms.
The first isoform was significantly downregulated in day 14
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Figure 5. Splice Isoforms Preferentially Overlap with Disordered Protein Regions

(A) Sequence features of MYBPC3 highlighting PKA regulatory sites overlapping with the alternative region (residues skipped in the noncanonical isoform) of the
protein, and the identified junction peptide spanning the excluded region. Sequence disorder was predicted using IlUPred2a and aligned with annotated protein
domains and PTM sites on UniProt. (Right) Contingency table on the number of annotated phosphorylation sites and serine/threonine/tyrosine that are not
annotated to be phosphorylated in the excluded region versus the rest of the protein sequence.

(B) As above, for an MYOM1 SE isoform.

(C) Boxplots showing the distribution of sequence disorder in the alternative region (gold) of MYOM1 and MYBPC3 versus all residues uniquely identified by
peptide in the database search (white) and the full-length protein sequence excluding the alternative region (green). p value: Mann-Whitney test. Box: 25th-75th

percentile; whiskers: 5th-95th percentile.

(D) On a proteome scale, alternative regions are significantly associated with higher sequence disorder (blue) over the rest of the protein.

iPSC-CM versus day-7 early iPSC-CM (logFC, -0.69; adj.P,
2.0e-3) and differed from the canonical TPM1 sequence by res-
idues 189-212 by MXE, corresponding to an uncharacterized
isoform 4 (P09493-4) on SwissProt. The second isoform was
significantly upregulated (logFC, 0.73; adj.P, 3.9e-2) and differed
from the canonical TPM1 sequence by residues 41-80 by MXE,
corresponding to the TPM1 kappa isoform (P09493-6) on
SwissProt that was previously found in single-target immunobio-
logical studies to be increased in dilated cardiomyopathy pa-
tients (Rajan et al., 2010).

Two isoforms of neural cell adhesion molecule 1 (NCAM1)
were upregulated (logFC, 0.58 and 0.52; adj.P, 4.2e-3 and
7.0e-3). NCAM1 is involved in cell adhesion, ventricular wall
thickness, and cardiomyopathy. The first quantified isoform is

missing residues 354-363 compared to the canonical sequence
and, hence, corresponds to isoform 2 on SwissProt (P13591-1).
This, in turn, corresponds to N-CAM 140 isoform in the biomed-
ical literature that is known to be expressed in developing
hearts (Gordon et al., 1990). At the same time, we quantified a
second, unannotated isoform that is longer than the canonical
sequence through an insertion of aa 820-1091 of the noncanon-
ical sequence. The inserted sequence is homologous with the
mouse full-length N-CAM 180 isoform (P13595; 91.6% identity
by ClustalO). A human N-CAM 180 is characterized in single-
target cancer studies (Blaheta et al., 2004) but not documented
on human SwissProt, which likely excludes it from a number
of proteomics studies. Intriguingly, both isoforms share
similar expression profiles in iPSC-CM differentiation; thus, it is
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Figure 6. Expression of Protein Isoforms during iPSC Cardiac Differentiation
(A) Schematic for human-iPSC-directed cardiac differentiation protocol with annotated stages (iPSC, day 0; mesoderm, day 1-2; cardiac progenitor, day 3-6;

early CM, day 7-10; CM, day 11-14).

(B) UMAP projection of tandem mass tag intensity shows that total protein expression reflects differentiation stages (n = 3 biological replicates).
(C) Hierarchical clustering of noncanonical peptide expression during iPSC-CM differentiation shows diverse temporal behaviors of noncanonical isoforms in

each cluster.

(D) Heatmap of row-standardized expression of noncanonical isoforms with cell-specific expression during differentiation (n = 3 biological replicates).
(E) Volcano plot of logFC versus —log10-adjusted p values comparing protein expression between CM with (left) iPSC, (center) mesoderm, and (right) early CM.
Data points, isoforms; magenta, differentially expressed noncanonical isoforms (limma adj. p < 0.01); differentially expressed isoforms not found in SwissProt are

labeled.

possible they originate from the same full-length protein with

insertion at aa 820-1091 and deletion at 354-363.

We quantified one noncanonical isoform for PDZ and LIM
domain protein 5 (PDLIMS5) that was upregulated in day 14 CM
over day 7 early CM (logFC, 1.11; adj.P, 8.9e-4). PDLIM5 be-
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longs to the PDZ- and LIM-domain-containing protein family

and is a Z-disc component of the heart, which has been previ-

ously shown by polyclonal antibodies and gPCR to be upregu-
lated and to undergo isoform switches during embryonic-
stem-cell-CM differentiation (Konze et al., 2017). Our data



Correlation of protein- vs.

transcript-level differential expression in iPSC-CM differentiation

A .
CM vs. Early CM CM vs. Mesoderm CMvs. iPSC
6 r: 0.673 (0.4184-0.8295) 6 r:0.7357 (0.544-0.8545) 6 1:0.5707 (0.3449-0.7341) nau
sonese . sorgs2
POLIMS
. FOXP1
g o 3 EPB4IL3 3 . 3 * Fdxws
=] ﬁ GPSM1 o JPEEPS 2 Z MYH10 REEP6 -
.E 5 I SPTAN\ M‘CTNA MIA2, RTN4  NT5C2) ./(GPSIK
5 .0 o TPMI FoXPIe oo 5C2 BCMF\%PAM \6A7 ANXAS
] S RRM1 \T.G)LADAMZG cLAstW»\E\ b PNRNPM_® CaLy
S é o0 wz 0 0 FRAS1—¢ T )
‘c —Sa < Lsn::wpo .i;;ANA o 2 / ’gmcm Acma RBBP4
15 SPTAN1
g 8 E /{con ?z\ lnoc TCO/F?\;N;FV‘PUFGU }FS\SA
© 2 - BCLAF1 ~ TsicaAT  pwpca
S -3 -3{ -~ 3] -~
cwn
(=]
=2
-6 -6 -6
-2 0 2 -2 0 2 -2 0 2
B Protein log2 Ratio
6. r:0.572 (0.5088-0.6291) . 6 r:0.5707 (0.515-0.6216) 61105227 (04705—0.571.3)
A :
SZ i
E5 9
2a 90 0
)
O s s
=g o
< c
o -3 -3
-6 -6 -6

Protein log2 Ratio

Figure 7. Correlation of Isoform Differential Regulation at Transcript and Protein Levels

Scatterplots showing differential expression (logFC) of isoforms at transcript (y axis) versus protein (x axis) levels during iPSC-CM differentiation for noncanonical
junction sequences only (A) and all canonical SwissProt unique sequences (B) that were quantified in both RNA-seq and MS and found to be differentially
regulated. Protein and transcript isoform logFC show robust positive correlation (Pearson’s r, 0.57-0.74 noncanonical isoforms; 0.52-0.57 canonical). Blue line,

best-fit linear regression; red dashed line, unity.

corroborate the isoform-specific upregulation of PDLIMS in
pluripotent-stem-cell-cardiac differentiation and quantified a
differentially regulated isoform that was missing aa 98-206
from the canonical sequence. This is a shared missing region
in multiple SwissProt isoforms (Q96HC4-2, -4, -6, and -7) and
overlaps multiple PTM sites (Figure S4A). Other identified
isoforms in iPSC-CM differentiation also include alternative
regions that overlap with disordered regions and known phos-
phorylation sites, e.g., HNRPD pS80/82/83 and pT87 have
been implicated in HNRPD activity (Tolnay et al., 2002) as well
as GSPM1 pS445/469/471, indicating that the alteration of
PTM site availability may be one functional consequence of AS
during cardiac differentiation (Figures S4B and S4C).

Finally, we explored the creation of cell-type-specific data-
bases directly from the iPSC samples by acquiring deep RNA-
seq data (~100 M short reads) from iPSC-CM differentiation.
RNA-seq data at day 0 (pluripotent), 2 (mesoderm), 5 (cardiac
progenitor/early CM), and 14 (CM) of differentiation show ex-
pected decreases in pluripotent markers and increases in CM
markers (Figure S5) concomitant with the differential regulation
of genes in cardiac development and splicing (Figure S6). In
line with previous work (Liu et al., 2017), we observed a robust
correlation (Pearson’s correlation coefficient, 0.57-0.74) be-
tween transcript and protein level changes among the quantified

exon junctions (Figure 7). From the RNA-seq data, we created an
iPSC/iPSC-CM sample-specific protein database, which over-
laps only partially with human heart database and contains
cell-type-specific translated junctions (Figure S7). Among genes
with multiple quantified isoforms from the iPSC-specific data-
base, the majority show concordant expression patterns during
differentiation, but we also observed isoform-specific changes
(Figure S7). For example, an SE in the respiratory complex |
protein NDUFV3 corresponded to 2 recently described isoforms
(short and long NDUFV3) (Bridges et al., 2017), for which we
saw different expression levels in iPSC that converged during
differentiation. Taken together, the results support the applica-
bility of the method to extending isoform quantification studies
into other dynamic processes, including cellular differentiation
and development.

DISCUSSION

AS is widely implicated in development, aging, and diseases
(van den Hoogenhof et al., 2016; Lee and Rio, 2015), but a fuller
understanding requires knowing how isoforms alter protein
structure and functions (Li et al., 2017). Only a minority of
expressed transcripts have the potential to be translated
(Hao et al., 2015), whereas the rest may be removed by
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nonsense-mediated decay (NMD) or co-translational proteolysis
(Weatheritt et al., 2016). The ability to empirically detect AS
protein isoforms in a tissue is, thus, a critical step toward eluci-
dating their molecular and cellular functions.

We present here a splice-junction-centric approach to create
size-restricted databases to guide protein isoform identifica-
tions. The generation of accurate protein sequence databases
is an important step in avoiding inflation of false positives during
database search and entails finding the set of isoform peptides
that exists in a particular sample and is detectable by the
MS experimental design. Recent studies have used high-
throughput sequencing reads as a template to identify variant
protein sequences (Cifani et al., 2018; Carlyle et al., 2018; Zick-
mann and Renard, 2015; Verbruggen et al., 2019; Mertins et al.,
2016; Wang et al., 2019). Our approach builds on prior work
and is distinguished by the selection for splice junction pairs in
AS events with appreciable RNA-seq read counts. We also
enforce one translatable frame for each junction by picking the
canonical annotated frame or a frame that does not lead to
PTC during in silico translation, avoiding redundant entries
from 3- or 6-frame translation approaches (Sheynkman et al.,
2013; Zickmann and Renard, 2015; Wang and Zhang, 2013).
The custom databases here contain only 6.3%-17.0% as
many sequences as RefSeq but, nevertheless, enable the recov-
ery of noncanonical isoforms across tissues, including se-
quences not found in TrEMBL or RefSeq.

Empirical evidence on how AS rewires proteomes has
emerged slowly, with recent reports emphasizing interactomes
(Yang et al., 2016) and overall protein abundance (Liu et al.,
2017). We found that many identified isoforms differ from
canonical sequences by excluding residues that overlap with
disordered regions and phosphorylation sites. A discovered
MYBPC3 isoform differs from the canonical sequence by only
10 of 1,274 residues but is located at a crucial phosphorylation
region known to modulate diastolic functions of the heart,
suggesting a potential manner through which it can impact
protein function. The observation that most alternative exons
do not alter stable protein domains (Barbosa-Morais et al.,
2012; Buljan et al., 2012) has been cited as evidence against
their functionality (Tress et al., 2017a, 2017b). However, unstruc-
tured regions can also regulate protein function such as by
forming protein-protein interaction surfaces (Ellis et al., 2012),
governing phase separation and membraneless organelles
(Uversky, 2017; Harmon et al., 2017), and allosterically modu-
lating remote catalytic domains (Keul et al., 2018; Ferreon
et al., 2013). Taken together, our results support that on a
proteome scale AS may influence protein function by (1) rewiring
flexible regions linking stable protein domains and (2) provide a
separate PTM control mechanism by toggling the binary
presence/absence of modifiable residues. An intersection be-
tween AS and sequence disorder or PTMs has been hypothe-
sized (Zhou et al.,, 2018) and is consistent with the notion
that AS rewires protein interactomes (Yang et al., 2016; Ellis
et al., 2012).

Among uniquely mapped distinct peptide sequences, we
found that 1%-3% mapped to noncanonical isoforms per tis-
sue (Figure 2B). This proportion is consistent with most genes
having one dominant principal form but does not rule out
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spatially and temporally regulated alternative forms with biolog-
ical function. MXE is overrepresented among detectable iso-
forms in our workflow, which may be due to a bias in reading
frame conservation. Additional translated splice junctions
likely remain to be discovered as technologies continue to
develop. Some AS junction peptides now appear in multiple
custom-translated forms due to the combinatorial redundancy
in exon junctions in short-read RNA-seq, rendering them
ambiguous in protein assignment. The inability of bottom-up
proteomics to identify full-length proteins also impedes accu-
rate isoform quantification. The adoption of long-read RNA-
seq and middle-down/top-down proteomics will likely mitigate
these limitations. Finally, continued refinements in computa-
tional prediction of translated transcripts can improve isoform
identification; e.g., some PTCs near the end of the transcript
may not cause NMD, calling for better NMD prediction from
frameshift sequences.

In summary, we describe an approach to create concise
AS variant databases for protein isoform analysis. The method
is implemented in an open source software tool (https://
github.com/ed-lau/jcast) that can be applied to other RNA-
seq and MS data. Although discovered isoform peptides
will need to be validated by orthogonal approaches, the
method here may avail understanding of the biological role
of AS both in the human proteome and the proteomes of
non-human organisms where splicing remains substantially
less documented.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Biological Samples

Human whole heart tissue lysate

Novus Biologicals

NB820-59217

Chemicals, Peptides, and Recombinant Proteins

Synthetic Peptides LAPITSDPTEATAVGAVEASFK[13C(6)
15N(2)]

CLAAALIVLTESGRI[13C(6)15N(4)]
AAIAPPSPPCDITCLESFR[13C(6)15N(4)]
APHVEFLRPLTDLQVR[13C(6)15N(4)]
QCQGQAAQEAAGGGR[13C(6)15N(4)]
DSGLVGLAVCNTPHER[13C(6)15N(4)]
VGPVSAVGVTAPGK[13C(6)15N(2)]
DSEGDTPSLINWPSSK[13C(8)15N(2)]
LLGADSATVFNIQEPEEETANQIYWFK
VLDIANVLFHLEQVEHPQR[13C(6)15N(4)]

YSTGSDSASFPHTTPSMCLNPDLEGPPLELTK[13C(6)
15N(2)]

AITQLLCETEGR[13C(6)15N(4)]
RTDSHEDTGILDFSSLLK[13C(6)15N()]
ANLSSSTGNVEDSFEGFR[13C(6)15N(4)

Thermo Fisher Scientific
Standard Peptides

https://www.thermofisher.com/
us/en/home/life-science/protein-
biology/peptides-proteins/
custom-peptide-synthesis-
services.html

Deposited Data

Quantitative shotgun proteomics data on human iPSC-
cardiomyocyte differentiation

Targeted mass spectrometry data on isoform peptide
verification

RNA sequencing data on human iPSC-cardiomyocyte
differentiation

This Study

This Study

This Study

ProteomeXchange PXD013426

ProteomeXchange PXD015544

NCBI GEO GSE137920

Experimental Models: Cell Lines

Human induced pluripotent stem cells

Stanford Cardiovascular Institute
Biobank (Burridge et al., 2014;
Lee et al., 2019; Kitani et al., 2019).

N/A

Software and Algorithms

GRCh38.89

STAR v.2.5.0a

rMATS-Turbo v.0.1

limma v.3.34.3

Comet v.2017.01 rev.0

ProteoWizard msconvert v.3.0.11392
Percolator v.3.0

Ensembl

Ballouz et al., 2018

Shen et al., 2014

Ritchie et al., 2015

Eng et al., 2015

Adusumilli and Mallick, 2017
The et al., 2016

http://www.ensembl.org/
https://github.com/alexdobin/STAR
rnaseq-mats.sourceforge.net
http://bioconductor.org
http://comet-ms.sourceforge.net
http://proteowizard.sourceforge.net
http://crux.ms

MSFragger v.20171106 Kong et al., 2017 https://msfragger.nesvilab.org
Rv.3.4.4 The R Foundation https://www.r-project.org/
JCAST v.0.1.0 This study https://github.com/ed-lau/jcast
Other

RNA sequencing data on human heart

RNA sequencing data on human liver

ENCODE (ENCODE Project
Consortium, 2012)
ENCODE (ENCODE Project
Consortium, 2012)
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

RNA sequencing data on human lung

RNA sequencing data on human pancreas

RNA sequencing data on human adrenal gland

RNA sequencing data on human transverse colon

RNA sequencing data on human ovary

RNA sequencing data on human esophagus

RNA sequencing data on human testis

RNA sequencing data on human prostate

RNA sequencing data on human spleen

RNA sequencing data on human thyroid

ENCODE (ENCODE Project
Consortium, 2012)

ENCODE (ENCODE Project
Consortium, 2012)
ENCODE (ENCODE Project
Consortium, 2012)
ENCODE (ENCODE Project
Consortium, 2012)
ENCODE (ENCODE Project
Consortium, 2012)
ENCODE (ENCODE Project
Consortium, 2012)

ENCODE (ENCODE Project
Consortium, 2012)

ENCODE (ENCODE Project
Consortium, 2012)

ENCODE (ENCODE Project
Consortium, 2012)

ENCODE (ENCODE Project
Consortium, 2012)

ENCSR425RGZ ENCSR406SAW

ENCSR6711YC
ENCSR586SYA
ENCSR801MKV ENCSR754WLW

ENCSR800WIY ENCSR403SZN

ENCSR841ADZ ENCSR042GYH

ENCSR098BUF ENCSR750ETS

ENCSR029KNZ
ENCSR344MQK
ENCSR495HDM ENCSR701TST

ENCSR194HVU ENCSR900SGE

ENCSR113HQM ENCSR017ZLM

Mass spectrometry data on human heart, liver, ProteomeXchange (Kim et al., 2014) PXD000561
lung, pancreas, adrenal gland, colon, ovary,

esophagus, testis, prostate

Mass spectrometry data on human liver ProteomeXchange PXD009021
Mass spectrometry data on human testis ProteomeXchange (Sun et al., 2018) PXD009737
Mass spectrometry data on human heart ProteomeXchange (Doll et al., 2017) PXD006675
Mass spectrometry data on human heart, liver, ProteomeXchange (Wang et al., 2019) PXD010154

lung, pancreas, adrenal gland, colon, ovary,
esophagus, testis, prostate, spleen, thyroid

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources and reagents should be directed to
and will be fulfilled by the Lead Contact, Maggie P. Y. Lam (maggie.lam@cuanschutz.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human iPSC lines were acquired from publicly available cryopreserved stocks in the Stanford Cardiovascular Institute Biobank.
Human iPSCs (2 male and 1 female lines) were expanded in monolayer in GIBCO Essential 8 medium (Thermo) on a Matrigel matrix
(Corning). Human iPSC differentiation into CM was performed on three individual donor lines using an established small-molecule
Wht-activation/inhibition protocol yielding 95% pure TNNT2+ CM (Burridge et al., 2014; Lee et al., 2019; Kitani et al., 2019). Briefly,
iPSC cultures at ~90% confluence in 6-well-plates were treated with 6 pM CHIR-99021 (SelleckChem) in RPMI 1640 medium sup-
plemented with B27 supplements (Thermo Fisher Scientific) for 2 days to induce mesoderm specification, allowed to recover 1 day,
then treated with 5 uM IWR-1-endo (SelleckChem) for 2 days for cardiac specification. On day 7, the culture medium was changed to
RPMI-B27 + insulin, and the cells were glucose-starved on day 10 to day 14. Cells were harvested daily at day 0 to day 14 post-dif-
ferentiation by dissociation using TrypLE select 10x (Thermo Fisher Scientific) and pelleted by centrifugation (200 x g, ambient
temperature, 5 min).

METHOD DETAILS
Public RNA sequencing and mass spectrometry datasets

RNA sequencing datasets were retrieved from ENCODE at the following accessions: heart (ENCSR436QDU, ENCSR391VGU), liver
(ENCSR226KML, ENCSR504QMK), lung (ENCSR425RGZ, ENCSR406SAW), pancreas (ENCSR6711YC, ENCSR586SYA), adrenal
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gland (ENCSR801MKV, ENCSR754WLW), transverse colon (ENCSR800WIY, ENCSR403SZN), ovary (ENCSR841ADZ, ENCSR042-
GYH), esophagus (ENCSRO098BUF, ENCSR750ETS), testis (ENCSR029KNZ, ENCSR344MQK), prostate (ENCSR495HDM,
ENCSR701TST), spleen (ENCSR194HVU, ENCSR900SGE), and thyroid (ENCSR113HQM, ENCSR017ZLM). RNA sequencing
data from at least two biological replicates from each tissue were used. All data were 101nt paired-end total RNA sequencing gener-
ated on an lllumina Hi-Seq 2500 sequencer and passed ENCODE quality control (ENCODE Project Consortium, 2012). RNA
sequencing read [.fastq] files were manually retrieved on 2017-11-12. Proteomic datasets in Thermo [.raw] format were retrieved
from ProteomeXchange/PRIDE (Deutsch et al., 2017) at the following accessions: “A draft map of the human proteome” (ProteoeX-
change: PXD000561) (Kim et al., 2014) generated on Thermo Orbitrap Velos and Orbitrap Elite mass spectrometers with FT/FT; “Re-
gion and cell-type resolved quantitative proteomic map of the human heart and its application to atrial fibrillation” (PXD006675)
(Doll et al., 2017) generated on a Thermo Q-Exactive HF mass spectrometer; “Human testis off-line LC-MS/MS” (PXD009737)
(Sun et al., 2018) generated on a Thermo Q-Exactive HF-X mass spectrometer; “Proteomic analysis of human liver reference
material” (PXD009021) generated on a Thermo Fusion Lumos mass spectrometer in FT/FT mode; and “A deep proteome and tran-
scriptome abundance atlas of 29 healthy human tissues” (PXD10151) generated on a Thermo Q-Exactive Plus mass spectrometry
(Wang et al., 2019).

RNA data processing and database generation

To align the retrieved RNA sequencing data, we used STAR v.2.5.0a (Ballouz et al., 2018; Dobin and Gingeras, 2016) on a Linux
4.10.0-32-generic Ubuntu x86_64 workstation. We mapped .fastq sequences to Ensembl GRCh38.89 STAR indexed genomes
with Ensembl .gtf annotations (-sjdbGTFfile GRCh38.89.gtf-sjdbOverhang 100). To extract splice junctions from mapped reads
and compare splice levels across biological replicates, we used rMATS-Turbo v.0.1 (Shen et al., 2014) on the mapped bam files
with the following options (-readLength 101-anchorLength 1). We implemented a custom script written in-house in Python
v.3.6.1, which tabulates the rMATS results on AS events from each tissue and filters out ineligible splice pairs by virtue of read
count threshold or significant inter-sample differences. Junctions are filtered by the minimal excluded junction read count of all
biological replicates (rMATS SJC) for a particular junction j for a tissue t such that transcript level SJC; ; is above a detectability
threshold SJC; ;> 6;, which is estimated by a mixture Gaussian model of excluded junction read counts based on the specific
RNA sequencing dataset for the tissue. In addition, we assume that the isoform is reliably observed across multiple runs, employing
the statistical model implemented in rMATS to exclude significantly differential splice junctions at p < 0.01 (Shen et al., 2014).

The script next retrieves nucleotide sequences from each splice pair based on the recorded genomic coordinates using the En-
sembl REST web application programming interface, and attempts to identify the appropriate translation frames, transcription start
sites, and transcription end sites of each splice pair from the Ensembl GRCh38.89 annotation GTF file based on the upstream exon.
The retrieved qualifying nucleotide sequences are further translated into amino acid sequences using the annotated phase and
frame. Peptides are selected for inclusion if they fulfill one of the following sequential considerations: (i) they are translated in-frame
by the GTF-annotated translation frame in Ensembl GRCh38.89 GTF successfully without encountering a frameshift or PTC; or (i) one
of the spliced pair junctions encountered a frameshift event using the GTF-annotated frame but both are translated without PTC; (iii)
they are translated without PTC using a single translation frame different from the GTF-annotated frame; (iv) in rare occasions, one of
the two junctions but not the other encountered a PTC. Finally, all translated peptides are required to be stitchable back to the
SwissProt canonical sequences retrieved via the gene name using a 10-amino-acid overhang. Orphan peptides that are translated
but not stitchable back to SwissProt are discarded from the analysis. The translated databases used for analysis are available in
Data S4.

As the conventional method to generate de novo databases, we performed three-frame translation of assembled transcripts using
prior published workflows in the R package customProDB (Wang and Zhang, 2013). Briefly a bowtie2 index was generated for
GRCh38 as specified by the customProDB package instructions. Tophat2 (v.2.1.1) (Kim et al., 2013) was then used to analyze
identical human heart ENCODE RNA-seq data as above and stringtie (v.1.3.5) (Pertea et al., 2015) was used on the topcoat output.
The stringtie output was piped to customProDB to build a custom database, which was then used for database search as described
below.

Mass spectrometry database search and analysis
Mass spectrometry raw spectrum files were converted to open-source [.mzML] formats using ProteoWizard msconvert v.3.0.11392
(Adusumilli and Mallick, 2017) with the following options (filter “peakPicking vendor”). Database search against custom databases
were performed using the SEQUEST algorithm implemented in Comet v.2017.01 rev.0 (Eng et al., 2015) with the following options
(—peptide_mass_tolerance 10-peptide_mass_unit 2-isotope_error 2-allowed_missed_cleavage 2-num_enzyme_termini 1-frag-
ment_bin_tol 0.02). Conventional settings for other Comet parameters were used and a reverse decoy database was generated
from the custom database for each search for FDR estimation. Static cysteine carboxyamidomethylation (C +57.021464 Da; Unimod
accession #4) modification was specified. Tryptic and semi-tryptic peptides within a 10-ppm parent mass window surrounding the
candidate precursor mass were searched, allowing up to 2 miscleavage events.

Peptide spectrum match data were filtered and target and decoy sequence matches were re-ranked using the semi-supervised
learning method implemented in Percolator (The et al., 2016) in the Crux v.3.0 Macintosh binary distribution (Mcllwain et al., 2014)
with the following options (—protein T-fido-empirical-protein-q T-decoy-prefix DECOY_). Peptides with Percolator g value < 0.01
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are considered to be confidently identified. Mass tolerant open search comparison was performed using MSFragger (Kong et al.,
2017) using standard parameters with lower mass tolerance —200 Da and upper mass tolerance was +400 Da against the UniProt
TrEMBL human database (accessed 2019-02-08), followed by Percolator filtering as above.

Human iPSC RNA-seq and labeled shotgun proteomics

For RNA-seq, total cellular RNA from day 0, 2, 7, and 14 post-differentiation were extracted by 300 pL TRIzol/chloroform per ~1e6
cells, followed by solid-phase extraction using RNeasy mini columns (QIAgen) according to the manufacturer’s protocol. Purified
RNA was eluted in 50 uL of RNase-free water and the yield quantity and quality were assessed by fragment electrophoresis on
an Agilent Bioanalyzer with the RNA Integrity Number (RIN) of all samples used for sequencing above 9.0. RNA sequencing was per-
formed on an lllumina Hi-Seq 4000 instrument to acquire paired-end 150-nt reads up to a read-depth of 31.1G to 41.7G clean bases
(Novogene). The RNA sequencing data were processed identically to the public datasets above to create a custom FASTA database
containing the combined human alternative splice junctions from both day 0 and day 14 time points.

Cell lysate proteins from each daily iPSC time point (n = 3 biological replicates) were extracted by commercial RIPA or M-Per tissue
lysis buffer (Thermo Fisher Scientific) with 1x Thermo Halt protease/phosphatase inhibitor followed by brief pulses of sonication with
typically 6 pulses at 20% amplitude followed by 5 s cooldown on ice. Total protein extracts for each sample were quantified by bi-
cinchoninic acid assays and 150 ug proteins were digested on 10-kDa MWCO polyethersulfone filters (Thermo Fisher Scientific).
Samples were washed with 8 M urea, buffer-exchanged with triethylammonium bicarbonate (100 mM, 100 pL), reduced with
tris(2-carboxyethyl)phosphine (3 pL of 0.5 M, mM, 55 °C, 30 min) and alkylated with iodoacetamide (7.5 pL of 375 mM, ambient
temperature, 30 min). Proteins were digested on-filter (16 hr, 37°C) with sequencing-grade modified trypsin (50:1, Pierce Trypsin
Protease, MS Grade). Proteolytic digests were labeled with 10-plex tandem mass tags (Thermo Fisher Scientific) at ambient temper-
ature with 600 rpm shaking for 2 hr. Label assignment was randomized using a random number generator. Labeling was quenched
with 5% hydroxylamine following manufacturer’s protocol.

Liquid chromatography-tandem mass spectrometry was performed on peptides fractionated into 6 fractions using pH-10
reversed-phase spin columns (Thermo Pierce). Second-dimension liquid chromatography was performed using a single Easy-
nLC 1000 nanoflow ultrahigh-pressure liquid chromatography (UPLC) system on an EasySpray C18 column (PepMap, 3-um particle,
100-A pore; 75 um x 150 mm; Thermo Fisher Scientific) in 120-min in a pH-2 reversed-phase gradient. The nano-UPLC was run at 300
nL/min with the gradient of 0 to 105 min, 0 to 40%B, 105 to 110 min, 40 to 70%B, 110 to 115 min, 70 to 100%B, hold for 5 min, with
solvent B being 80% v/v acetonitrile and 0.1% v/v formic acid. Mass spectrometry was performed using a Q-Exactive HF high-res-
olution Orbitrap mass spectrometer (Thermo Fisher Scientific) coupled to the nano-UPLC by an EasySpray interface. Typical MS1
survey scan was acquired at 60,000 resolving power in positive polarity in profile mode from 300 to 1650 m/z, lock mass, dynamic
exclusion of 30 s, maximum injection time of 20 msec, and automatic gain control target of 3e6. MS2 scans were acquired on the top
15 ions with monoisotopic peak selection at 60,000 resolution, automatic gain control target of 2e5, maximum injection time of
110 ms, and isolation window of 1.4 m/z, with typical normalized collision-induced dissociation energy of 32 or stepped normalized
collision-induced dissociation energy (NCE) of 27, 30, and 32.

Parallel reaction monitoring targeted mass spectrometry

For targeted mass spectrometry, 200 pg of adult whole normal human heart tissue lysate (Novus Biologicals NB820-59217) was di-
gested with 5 pg trypsin as described above and pre-fractionated into 10 fractions using pH-10 reversed-phase spin columns
(Thermo Pierce). A total of ~3 ng pre-digest equivalent/~1.5 pg estimated actual heart lysate endogenous peptides from each frac-
tion was co-injected with ~1 pmol total of crude unmodified synthetic peptides labeled with heavy N terminus lysine or arginine
(Thermo Fisher Scientific) (Figure S5). Targeted mass spectrometry data were acquired on a Q-Exactive HF high-resolution Orbitrap
mass spectrometer (Thermo Fisher Scientific) in parallel reaction monitoring data acquisition mode with the following instrument
settings: AGC target 2.0e+5 for PRM, NCE 24 and 27; maximum IT 110 msec; loop count of 10; isolation window 1.2 to 1.4 m/z, isola-
tion window offset 0.5 to 0.6 m/z; resolution (MS1 and PRM) 60,000. The LC gradient used was 0 to 75 min: 0% to 40%B; 75 to 80 min:
40% to 70% B; 80 to 85 min: 70 to 100% B; 85 to 90 min: 100% B hold; at 300 nL/min. Target ion accurate mass and retention time
acquisition table is in Figure S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

To quantify peptide intensity in the iPSC data, tandem mass tag intensity was corrected by the isotope contamination matrix
supplied by the manufacturer, tag intensity in each 10-plex experiment was column normalized, row-normalized by two pooled
reference tags per experimental block, then normalized by trimmed means of m values in edgeR (Robinson and Oshlack, 2010)
and log-transformed for across-sample comparison. Non-unique peptides as well as peptides confidently identified at fewer than
three independent tandem mass tag experiment blocks were discarded. Statistical analysis of differential expression was performed
using the moderated t test and empirical Bayes model in limma (v.3.34.3) in R/Bioconductor (v.3.6) (Ritchie et al., 2015) using discrete
developmental stages as factors. Proteins with limma adjusted P value (FDR) < 0.01 in each comparison are considered to show
evidence for statistically significant differential regulation.
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Data statistical analysis and visualization were performed in R v.3.4.4 (2018-03-15 release) or above on x86_64-apple-dar-
win15.6.0 (64-bit) with the aid of Bioconductor v.3.6 (Huber et al., 2015), and MSnbase v.2.4.2 (Gatto and Lilley, 2012). Gene
Ontology terms were used for protein functional annotations (The Gene Ontology Consortium, 2017). Protein sequence features
were retrieved from UniProt (The UniProt Consortium, 2018). Protein sequence disorder prediction was performed using IUPred2A
(Mészaros et al., 2018). Fisher’s exact test was used to assess enrichment in phosphorylation sites in isoform excluded regions
and in the enrichment of Gene Ontology terms in quantified proteins. Sequence occurrence of identified peptide sequences in Uni-
Prot SwissProt or TrEMBL human (9606) sequences (retrieved 2019-02-08) (The UniProt Consortium, 2018) or RefSeq (retrieved
2019-02-07) (Pruitt et al., 2014) with 0 or more mismatch tolerance were assessed using the BioStrings v.3.7.0 package. Dimension
reduction of human iPSC tandem mass tag data was performed using the uniform manifold approximation and projection (UMAP)
method as described (Becht et al., 2019).

DATA AND CODE AVAILABILITY

Mass spectrometry data on human iPSCs and human whole heart lysate have been deposited to the ProteomeXchange Consortium
via the PRIDE partner repository with the dataset identifiers ProteomeXchange: PXD013426 (human iPSC shotgun proteomics) and
PXD015544 (human heart targeted mass spectrometry). RNA sequencing data have been deposited to NCBI GEO (GEO:
GSE137920). Public RNA-seq and mass spectrometry data used in this study are available on ENCODE and ProteomeXchange.
The Python software and source code for translation of AS sequences and generation of custom databases is available at https://
github.com/ed-lau/jcast.
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Read count of skipped junction from RNA-seq mapped alternative splicing events
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Figure S1. Construction and benchmarking of custom protein sequence databases. Related to Figure 1 and Figure 2.

A. Density scatter plot showing the distribution of log2 read counts in the skipped junction read counts of all identified
alternative splicing events in replicate RNA-seq data. B. Line chart showing cumulative proportion of identified peptides for
junction-based (blue) methods vs. three-frame translation of transcripts (red), both methods analyzing identical RNA-seq and
proteomics data. Panels show identification of peptide sequences not found in (left) TTEMBL, (middle) RefSeq, or (right)
RefSeq following 1 mismatch allowance left ventricle proteomics data (PXD006675). Compared to conventional three-frame
translation of transcripts identified in RNA-seq data, junction-based translation of tissue-specific databases contain more
precise peptides as reflected by consistently greater proportions of identifiable peptides at 0 to 10% false discovery rate (FDR).
FDR is determined by Percolator g-value in decoy database search. C. Specificity of peptide identification in a left ventricle
tissue dataset (PXD006675) when searched against custom databases generated using RNA-seq data derived from the heart or



11 other mismatched human tissues. The heart databases supported the identification of average number of total peptide
sequences (left) but greater number of non-canonical isoform junction peptides (middle) and peptide sequence candidates
(right) at 1% FDR, corroborating the translated junctions are specific to the tissue investigated.
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Figure S2. Targeted mass spectrometry validation of junction peptides. Related to Figure 4, Table S1, and STAR Methods.

A. Two junction peptides from the pyruvate kinase M1/M2 (PKM) isozymes known to be detectable in the heart at the protein
level were used as positive controls to optimize the targeted validation experiments. The endogenous (light) peptides were

readily re-identified in human whole heart tissue lysate in the PRM validation experiment alongside their heavy-labeled
synthetic peptide counterpart with comparable fragmentation patterns in FT/FT MS2. B. MS/MS fragmentation spectra



acquired in parallel reaction monitoring (PRM) mass spectrometry of selected endogenous (left) and co-injected heavy-labeled
synthetic (right) peptides in the validation experiment in an independent biological sample (see Table S1). In addition to being
confidently re-identified under identical data analysis workflows, four of the endogenous peptides (MYOM1, TENX, SVIL,
RYR?2) showed excellent agreement with heavy synthetic standards upon manual inspection whereas two (NDUAS, MYBPC3)
showed possible matches. On the mass spectra, red peaks denote matches to peptide ion fragments of the assigned peptide.
Peak labels: fragment m/z, fragment b- or y- ion match at +1 or +2 charge; : water loss; *: ammonium loss; upper right: parent
ion m/z. Peptide fragment mass values were calculated from peptide sequences with cysteine carbamidomethyl modification.
Spectrum peak labels in the figure were generated automatically using the MSnbase package on R/Bioconductor.
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Figure S3. Tandem mass tag labeling of iPSC proteins. Related to Figure 6.

A. Isotope cross-contamination matrix for calculating actual channel intensity from observed tag intensity in tandem mass tag
(TMT) data. B. Randomized sample assignment and internal references for TMT channels. Labels denote time point (days)
post differentiation or pooled internal reference (Ref). Fill color denotes discretized differentiation stages. C. Distribution of
unnormalized (upper) and column- and trimmed mean of M value (TMM)- normalized (lower) TMT intensity for each channel
in each experimental block used for differential expression analysis. D. (Top) Directed differentiation of human iPSCs into
cardiomyocytes from day 0 to day 14 is associated with a decrease in cell cycle proteins including cyclin-dependent kinases 2
and 8 and cyclin K. (Bottom) Increases in cardiomyocyte-specific proteins including myosin heavy chain 6 and 7 as well as
cardiac muscle alpha actin, consistent with cardiomyocyte differentiation. Taken together, the proteomic changes in cell
proliferation and cardiomyocyte markers are consistent with transcript-level changes and known processes during iPSC-CM
differentiation.
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Figure S4. Sequence features of iPSC-CM protein isoforms. Related to Figure 5 and Figure 6.

Sequence features of A PDZ and LIM domain protein 5 (PDLIMS), B heterogeneous nuclear ribonucleoprotein D (HNRPD)
and C G-protein-signaling modulator 1 (GPSM1) showing known phosphorylation sites overlapping with the alternative
region (residues skipped in the non-canonical isoform) of the protein, and the identified junction peptide spanning the excluded
region. Sequence disorder, annotated protein domains and phosphorylation sites were derived as in Figure 5. (Right)
Contingency table on the number of annotated phosphorylation sites and serine/threonine/tyrosine (pS/T/Y) that are not
annotated to be phosphorylated in the alternative region vs. the rest of the protein sequence (constant region).
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Figure S5. Transcriptome profiles of iPSC-CM differentiation. Related to Figure 6 and Figure 7.

RNA-seq data during iPSC-CM differentiation show expected changes in gene expression profiles including genes involved in
cardiac development and splicing. A. Deep short-read RNA sequencing data were acquired (105M to 144M reads) in three
technical replicates each at four specific developmental time points during iPSC-CM differentiation, corresponding to
pluripotent (d0), mesoderm (d2), early cardiomyocyte (d7), and cardiomyocyte (d14) cell stages. B. Principal component
analysis showing expected clustering of sample transcriptomic profiles by differentiation stages. X-axis: PC1 (29% explained
variance); Y-axis: PC2 (25% explained variance). C. RNA-seq data showing an expected increase in the expression of
cardiomyocyte markers (MYH6, MYH7, TNNT3) concomitant with decreased expression of pluripotency markers (NANOG,
POUSF1, SOX2) during each stage of iPSC-CM differentiation. D. Volcano plots (log2 fold change vs. —log10 adjusted P)
showing differential expression of genes involved in heart development (top; GO:0007507) and RNA splicing (bottom;
G0:0008380) during each stage of iPSC-CM differentiation. Genes belonging to highlighted biological processes are in purple,
other genes not in the highlighted categories are colored in grey.
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Figure S6. Differential transcript exon usages in iPSC-CM differentiation. Related to Figure 6 and Figure 7.
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Top enriched Gene Ontology (GO) biological processes among genes with A. significant differential exon usage (rMATS false
discovery rate (FDR) < 0.01) and B. significant differential gene expression (limma FDR adjusted P < 0.01) when comparing

multiple stages of iPSC-CM differentiation. X-axis: —log10 P value of GO term enrichment (Fisher’s exact test); y-axis:

GO

biological process (BP) terms enriched in differentially regulated gene in each analysis; color: fold-enrichment over
background (all quantified genes or exons); size of data points: number of genes in the foreground annotated with each GO BP

term.
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Figure S7. Human iPSC specific isoform sequence database. Related to Figure 7 and STAR Methods.

A. Experimental schema. Deep RNA sequencing data were generated from day 0 and day 14 iPSC and iPSC-cardiomyocytes,
respectively. Cell specific databases are used to re-process the time-course tandem mass tag data. B-C. The cell-specific
databases show partial overlaps with the human heart-specific databases in database entries (B) and tryptic peptides (C) (6 to
30 amino acids, allowing one miscleavages). D-E. Isoforms from the same gene may show concordant (D) or discordant (E)
expression patterns during cardiomyocyte differentiation. Trendline and shaded areas show local regression (loess) and
bootstrap uncertainty regions.



Gene
Name

PKM1/2
PKM1/2
MYOM1
TTN
MYH11
NDUAS
TENX
SVIL
PALLD
RYR2
PCBP2
MYBPC3
MYBPC3
PDLIS

Junction

Peptide

Sequence

Heavy Modification

LAPITSDPTEATAVGAVEASFK
CLAAALIVLTESGR[13 )
AAIAPPSPPCDITCLESFR[13C(¢

APHVEFLRPLTDLQVR[13C(6)15!
QCQGQAAQEAAGGGR([13C(6)15

DSGLVGLAVCNTPHER(13(
VGPVSAVGVTAPGK[13C(6)15
DSEGDTPSLINWPSSK|13¢

VLDIANVLFHLEQVEHPQR

AITQLLCETEGR([13C(6)15N(4)]
RTDSHEDTGILDFSSLLK][13(

ANLSSSTGNVEDSFEGFR[13C(6)15N (4

LLGADSATVFNIQEPEEETANQIYWFK

3C(6 )]
YSTGSDSASFPHTTPSMCLNPDLEGPPLELTK| 13C (¢

Novel
Sequence
in this
Study

000000000000 XX

Targeted
Light
Endogenous
(m/z,2)

725.7109, 3+
737.4084, 2+
701.3397, 3+
473.5192, 4+
744.8341, 2+
862.9229, 2+
619.8588, 2+
866.9049, 2+
1038.5083, 3+
565.0577, 4+
1150.5341, 3+
695.8534, 2+
678.6761, 3+
958.4347, 2+

Targeted
Heavy
Synthetic
(m/z,2)

728.3823, 3+
T42.4125,2+
704.6758, 3+
476.0213, 4+
749.8382, 2+
867.9270, 2+
623.8659, 2+
870.9120, 2+
1041.1797, 3+
567.5597, 4+
1153.2055, 3+
700.8576, 2+
681.3475, 3+
963.9388, 2+

PRM Data
Acquisition
RT Window
(min)

52.5—-59.5
55.0—55.0
42.0—-55.0
40.0—48.0
19.5-255
34.5—-42.5
31.5—-38.0
44.5—51.5
60.0—69.0
57.0—65.0
50.0—58.0
36.0—44.0
48.0—55.0
40.0—47.0

Heavy
Peptide ID
in PRM
(q<0.01)

Light
Peptide ID
in PRM
(q<0.01)

XoexX00000000000

MS2
Spectrum
Manual
Check

XXeoeeo®

XoXXexXeoe0

Table S1. Methods table for targeted parallel reaction monitoring. Related to Figure 4, Figure S2, and STAR Methods.

Targeted parallel reaction monitoring (PRM) mass spectrometry data were acquired for 14 selected isoform junction peptides

from 2 known and 12 candidate undocumented peptide sequences. Out of the 12 undocumented sequences, 10 were tentatively

found in the independent human whole heart tissue lysate by PRM using a Crux/percolator search (q < 0.01 threshold) that

allows for optional heavy isotope labels ([13C(6)15N(2)] for peptides ending with lysine; [13C(6)15N(4)] for peptides ending

with arginine) in the synthetic peptides. Out of the 10 sequences, 6 showed excellent (4; green) to tentative (2; yellow)
fragmentation spectrum matches to the synthetic peptide upon manual inspection (see Figure S2).
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