## Supplementary Information for

Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors

*Lei et* al.



Supplementary Figure 1 | Morphology and mechanical properties of HAN. a Large-scale SEM image of HAN with square cell arrangement and 400 nm inter-cell spacing. **b** Large-scale SEM image of HAN with hexagonal cell arrangement and 800 nm inter-cell spacing. **c** The load-displacement (L-D) curves at the different positions of the HAN (hexagonal cell arrangement and 400 nm inter-cell spacing) with an indentation load of 150  $\mu$ N at room temperature. The Young's modulus of the HAN obtained from L-D curves are 3.22, 1.46, 1.50, 2.05 and 1.41 GPa at the positions 1 – 5, respectively. Scale bar: 8  $\mu$ m (**a**); 4  $\mu$ m (**b**); 500 nm (**c**)



Supplementary Figure 2 | Electrochemical impedance of HAN@SnO<sub>2</sub>. The Nyquist plots of HAN@SnO<sub>2</sub>//HAN@SnO<sub>2</sub> device.



Supplementary Figure 3 | Cross-sectional SEM images of HAN@SnO2@PPy and

HAN@SnO<sub>2</sub>@MnO<sub>2</sub> electrodes with a HAN cell depth of 25 μm. a Overall view of HAN@SnO<sub>2</sub>@PPy electrode and corresponding high-resolution SEM image recorded from the region marked in **aI**, **aII** and **aIII**. **b** Overall view of HAN@SnO<sub>2</sub>@MnO<sub>2</sub> electrode and corresponding high-resolution SEM image recorded from the region marked in **bI**, **bII** and **bIII**. Scale bar: 5 μm (**a**); 1 μm (**aII**); 1 μm (**aII**); 1 μm (**aII**); 1 μm (**bII**); 1 μm (**bII**); 1 μm (**bII**);



Supplementary Figure 4 | Top-view and cross-sectional EDX mapping of HAN@SnO2@MnO2. a

Top-view and **b** cross-sectional view. Scale bar: 250 nm (**a**); 1 µm (**b**)



Supplementary Figure 5 | EDX mapping of HAN@SnO2@PPy. a Top-view and b cross-sectional view.

Scale bar: 250 nm (**a**); 500 nm (**b**)



Supplementary Figure 6 | Electrochemical performance of the symmetric stacked MSCs based on HAN-reinforced pesudocapacitive nanoelectrodes. a The CV curves, b GCD profiles and c device areal capacitance as a function of current densities of HAN@SnO<sub>2</sub>@MnO<sub>2</sub>//HAN@SnO<sub>2</sub>@MnO<sub>2</sub> MSCs with different pore thickness. d The CV curves, e GCD profiles and f device areal capacitance as a function of current densities of HAN@SnO<sub>2</sub>@PPy//HAN@SnO<sub>2</sub>@PPy MSCs with different HAN cell depth. The electrolyte is 1.0 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution.



Supplementary Figure 7 | Electrochemical impedance properties comparison of symmetric MSCs. Warburg region of a HAN@SnO<sub>2</sub>, b HAN@SnO<sub>2</sub>@MnO<sub>2</sub>, and c HAN@SnO<sub>2</sub>@PPy electrodes with different pore depth of HAN. The electrolyte is 1.0 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution.



Supplementary Figure 8 | Electrochemical performance of HAN@SnO<sub>2</sub>@MnO<sub>2</sub>//HAN@SnO<sub>2</sub>@PPy asymmetric stacked MSCs. a The CV curves, b GCD profiles, c Nyquist plots and d device areal capacitance as a function of current densities of HAN@SnO<sub>2</sub>@MnO<sub>2</sub>//HAN@SnO<sub>2</sub>@PPy MSCs (For asymmetric MSCs based on positive and negative electrodes are both with 25-µm-deep cell). The electrolyte is 1.0 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution.



Supplementary Figure 9 | Cyclic performance of symmetric MSCs and morphological stability of HAN-based nanoelectrodes. a Cycling ability of HAN@SnO<sub>2</sub>@MnO<sub>2</sub>//HAN@SnO<sub>2</sub>@MnO<sub>2</sub> symmetric MSCs and HAN@SnO<sub>2</sub>@PPy//HAN@SnO<sub>2</sub>@PPy symmetric MSCs, respectively, measured at a current density of 20 mA cm<sup>-2</sup> for 30,000 continued charge-discharge cycles. SEM images of **b** HAN@SnO<sub>2</sub>@MnO<sub>2</sub> and **c** HAN@SnO<sub>2</sub>@PPy electrodes before (left) and after (right) 30,000 cycles. Scale bar: 400 nm (**b**, **c**)



Supplementary Figure 10 | Device capacity of HAN@SnO<sub>2</sub>@MnO<sub>2</sub>//HAN@SnO<sub>2</sub>@PPy asymmetric stacked MSCs with EMIM-TFSI electrolyte. a Device areal capacitance as a function of scan rates of HAN@SnO<sub>2</sub>@MnO<sub>2</sub>//HAN@SnO<sub>2</sub>@PPy MSCs. b Cycling stability test at 20 mA cm<sup>-2</sup> for 10000 times and c corresponding CV curves at 100 mV s<sup>-1</sup> before and after cycling. The positive and negative electrodes are both with 25-µm-deep HAN.

Supplementary Table 1 | Performances of state-of-the-art MSCs. Device performance of HAN@SnO2@MnO2//HAN@SnO2@PPy (abbreviated as MnO2//PPy) in

comparison with various MSCs reported recently.

| Electrode<br>material                             | Electrode<br>thickness<br>(µm) | Electrolyte                                | Potential<br>window<br>(V) | Device<br>capacitance<br>(mF cm <sup>-2</sup> ) | Device<br>energy<br>(µWh cm <sup>-2</sup> ) | Device<br>power<br>(mW cm <sup>-2</sup> ) | Cycling<br>stability | C <sub>1000</sub> /C <sub>0</sub><br>(%) | Ref. |
|---------------------------------------------------|--------------------------------|--------------------------------------------|----------------------------|-------------------------------------------------|---------------------------------------------|-------------------------------------------|----------------------|------------------------------------------|------|
| Graphene                                          | 0.7                            | PSSH                                       | 1.0                        | <1                                              | <1                                          | <1                                        | 11,000               | ~100                                     | 1    |
| PG                                                | 2.0                            | BMIMPF <sub>6</sub>                        | 3.0                        | <1                                              | <1                                          | <1                                        | 2,000                | ~100                                     | 2    |
| CNTCs                                             | 20                             | BMIM-BF <sub>4</sub>                       | 3.0                        | 6                                               | 3.6                                         | 69                                        | 8,000                | ~100                                     | 3    |
| ACF                                               | 1.5                            | 1 M H <sub>2</sub> SO <sub>4</sub>         | 0.6                        | <1                                              | <1                                          | -                                         | 10,000               | ~100                                     | 4    |
| OLC                                               | 7                              | 1 M Et <sub>4</sub> NBF <sub>4</sub> in PC | 3.0                        | <1                                              | <1                                          | 177                                       | 10,000               | ~100                                     | 5    |
| AC                                                | 5                              | 0.5 M H <sub>2</sub> SO <sub>4</sub>       | 3.0                        | <1                                              | <1                                          | 20                                        | 10,000               | ~100                                     | 5    |
| LWG                                               | 20                             | 1.0 M TEABF4                               | 1.0                        | 2.5                                             | <1                                          | -                                         | 10,000               | ~100                                     | 6    |
| Graphene                                          | 25                             | 1 M H <sub>2</sub> SO <sub>4</sub>         | 1.0                        | 4                                               | <1                                          | 9                                         | 9,000                | ~98                                      | 7    |
| PEDOT                                             | 2.4                            | 1 M H <sub>2</sub> SO <sub>4</sub>         | 0.8                        | 18.7                                            | 2                                           | 0.2                                       | 1,000                | ~90                                      | 8    |
| CDC                                               | 4.1                            | 2 M EMIBF4 in AN                           | 3.0                        | 41.8                                            | 40                                          | 30                                        | 11,000               | ~100                                     | 9    |
| LSG/MnO <sub>2</sub>                              | 15                             | 1 M Na <sub>2</sub> SO <sub>4</sub>        | 0.9                        | 385                                             | 60                                          | -                                         | 10,000               | 100                                      | 10   |
| MnO <sub>2</sub> //Bi <sub>2</sub> O <sub>3</sub> | -                              | 1 M Na <sub>2</sub> SO <sub>4</sub>        | 1.8                        | 97                                              | 43.4                                        | 12.9                                      | 4,000                | 90                                       | 11   |
| MnO <sub>2</sub> //PPY                            | 1.8                            | 1 M Na <sub>2</sub> SO <sub>4</sub>        | 1.7                        | ~30                                             | ~10                                         | 0.5                                       | 2,000                | 90                                       | 12   |

| MnO <sub>2</sub> //PPy                          | 25 μm | EMIM-TFSI                             | 3.0 | 128  | 160   | 40   | 10,000 | ~100 | work |
|-------------------------------------------------|-------|---------------------------------------|-----|------|-------|------|--------|------|------|
| MnO <sub>2</sub> //PPy                          | 25 µm | 1 M Na <sub>2</sub> SO <sub>4</sub>   | 1.6 | 186  | 66    | 24   | 30,000 | ~100 | This |
| MnO <sub>2</sub> -ITO NWs                       | 28    | 1 M Na <sub>2</sub> SO <sub>4</sub>   | 1.0 | 194  | 27    | 15   | 20,000 | 61   | 26   |
| Ni-CAT MOF                                      | ~200  | PVA-LiCl                              | 1.4 | 15.2 | 4.1   | 7    | 5,000  | 87   | 25   |
| PDMS/GF                                         | 260   | 0.5 M Na <sub>2</sub> SO <sub>4</sub> | 1.6 | 592  | 106   | 16   | 12,000 | ~100 | 24   |
| 3D RuO <sub>2</sub>                             | 46    | 0.5 M H <sub>2</sub> SO <sub>4</sub>  | 0.9 | -    | 91.4  | -    | 2,000  | ~100 | 23   |
| Cu(OH)2@FeOOH                                   | 14    | EMIMBF <sub>4</sub>                   | 1.5 | 58   | 18    | -    | 10,000 | 80   | 22   |
| H-SiC                                           | ~16   | PVA-KCl                               | 0.8 | 23.6 | 5.2   | 11.2 | 10,000 | 94   | 21   |
| WJM-G-SWCNTs                                    | ~23   | PVA-H <sub>3</sub> PO <sub>4</sub>    | 1.8 | 1.32 | 0.064 | 20   | 10,000 | ~100 | 20   |
| Y-Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> | ~0.1  | PVA/H <sub>2</sub> SO <sub>4</sub>    | 0.6 | 61   | 0.63  | 0.33 | 10,000 | 93.7 | 19   |
| MXene                                           | 3.2   | EMIMBF <sub>4</sub> /PVDF-HFP         | 3.0 | 42   | 13.9  | 4.5  | 10,000 | ~100 | 18   |
| MHCF                                            | ~0.18 | PVA-LiCl                              | 1.8 | 19.8 | 9.49  | -    | 5,000  | 96.8 | 17   |
| MXene                                           | -     | PVA-H <sub>2</sub> SO <sub>4</sub>    | 0.5 | 43   | 0.32  | 0.15 | 14,000 | ~97  | 16   |
| rGO/IL/CP                                       | 0.3   | PVA-H <sub>3</sub> PO <sub>4</sub>    | 3.0 | 27.4 | 32    | 1.05 | -      | -    | 15   |
| Zn NSs                                          | 50    | 2 M ZnSO <sub>4</sub>                 | 1.5 | ~324 | 115   | 0.16 | 10,000 | ~100 | 14   |
| NN@MnO2                                         | 5     | 1 M Na <sub>2</sub> SO <sub>4</sub>   | 0.8 | ~100 | 20    | 10   | 5,000  | ~90  | 13   |

## References

- Li, J., et al. Scalable Fabrication and Integration of Graphene Microsupercapacitors through Full Inkjet Printing. ACS Nano 11, 8249-8256 (2017).
- 2. Xiao, H., et al. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. *ACS Nano* **11**, 7284-7292 (2017).
- 3. Lin, J., et al. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. *Nano Lett.* **13**, 72-78 (2012).
- 4. Wei, L., Nitta, N. & Yushin, G. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices. *ACS Nano* 7, 6498-6506 (2013).
- 5. Pech, D., et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. *Nat. Nanotechnol.* **5**, 651-654 (2010).
- Gao, W., et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. *Nat. Nanotechnol.* 6, 496–500 (2011).
- Lin, J., et al. Laser-induced porous graphene films from commercial polymers. *Nat. Commun.* 5, 5714 (2014).
- Kurra, N., Hota, M. K. & Alshareef, H. N. Conducting polymer micro-supercapacitors for flexible energy storage and AC line-filtering. *Nano Energy* 13, 500-508 (2015).
- Huang, P., et al. On-chip and freestanding elastic carbon films for micro-supercapacitors.
  *Science* 351, 691-695 (2016).
- 10. El-Kady, M. F., et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. *Proc. Natl. Acad.*

Sci. U.S.A. 112, 4233-4238 (2015).

- Xu, H., Hu, X., Yang, H., Sun, Y., Hu, C. & Huang, Y. Flexible asymmetric microsupercapacitors based on Bi<sub>2</sub>O<sub>3</sub> and MnO<sub>2</sub> nanoflowers: larger areal mass promises higher energy density. *Adv. Energy Mater.* 5, 1401882 (2015).
- Grote, F. & Lei, Y. A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO<sub>2</sub>. *Nano Energy* 10, 63-70 (2014).
- Liu, L., Zhao, H., Wang, Y., Fang, Y., Xie, J. & Lei, Y. Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layer. *Adv. Funct. Mater.* 28, 1705107 (2018).
- 14. Zhang, P., et al. Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. *Adv. Mater.* **31**, 1806005 (2018).
- 15. Gao, J., et al. Laser-assisted multiscale fabrication of configuration-editable supercapacitors with high energy density. *ACS Nano* **13**, 7463-7470 (2019).
- Zhang, C. J., et al. Additive-free MXene inks and direct printing of micro-supercapacitors.
  *Nat. Commun.* 10, 1795 (2019).
- He, Y., et al. Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. *Mater. Horiz.* 6, 1041-1049 (2019).
- 18. Zheng, S., et al. Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. J. Mater. Chem. A 7,

9478-9485 (2019).

- Zhang, C., et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks.
  *Adv. Funct. Mater.* 28, 1705506 (2018).
- 20. Bellani, S., et al. Scalable poduction of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors. *Adv. Funct. Mater.* **29**, 1807659 (2019).
- 21. Li, W., et al. All-solid-state on-chip supercapacitors based on free-standing 4H-SiC nanowire arrays. *Adv. Energy Mater.* **9**, 1900073 (2019).
- 22. Xie, J.-Q., et al. In situ growth of Cu(OH)<sub>2</sub>@FeOOH nanotube arrays on catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-sized energy storage devices. *Energy Environ. Sci.* **12**, 194-205 (2019).
- 23. Ferris, A., Bourrier, D., Garbarino, S., Guay, D. & Pech, D. 3D Interdigitated microsupercapacitors with record areal cell capacitance. *Small* **15**, 1901224 (2019).
- Wang, Y., et al. Monolithic integration of all-in-one supercapacitor for 3D electronics. *Adv. Energy Mater.* 9, 1900037 (2019).
- Wu, H., Zhang, W., Kandambeth, S., Shekhah, O., Eddaoudi, M. & Alshareef, H. N. Conductive metal–organic frameworks selectively grown on laser-scribed graphene for electrochemical microsupercapacitors. *Adv. Energy Mater.* 9, 1900482 (2019).
- 26. Du, J., et al. High-performance pseudocapacitive microsupercapacitors with three-dimensional current collector of vertical ITO nanowire arrays. *J. Mater. Chem. A* 7, 6220-6227 (2019).