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Supplementary Figure 1 | Morphology and mechanical properties of HAN. a Large-scale SEM image 

of HAN with square cell arrangement and 400 nm inter-cell spacing. b Large-scale SEM image of HAN 

with hexagonal cell arrangement and 800 nm inter-cell spacing. c The load-displacement (L-D) curves at 

the different positions of the HAN (hexagonal cell arrangement and 400 nm inter-cell spacing) with an 

indentation load of 150 μN at room temperature. The Young’s modulus of the HAN obtained from L-D 

curves are 3.22, 1.46, 1.50, 2.05 and 1.41 GPa at the positions 1 – 5, respectively. Scale bar: 8 μm (a); 4 

μm (b); 500 nm (c) 
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Supplementary Figure 2 | Electrochemical impedance of HAN@SnO2. The Nyquist plots of 

HAN@SnO2//HAN@SnO2 device.  
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Supplementary Figure 3 | Cross-sectional SEM images of HAN@SnO2@PPy and 

HAN@SnO2@MnO2 electrodes with a HAN cell depth of 25 μm. a Overall view of HAN@SnO2@PPy 

electrode and corresponding high-resolution SEM image recorded from the region marked in aI, aII and 

aIII. b Overall view of HAN@SnO2@MnO2 electrode and corresponding high-resolution SEM image 

recorded from the region marked in bI, bII and bIII. Scale bar: 5 μm (a); 1 μm (aI); 1 μm (aII); 1 μm 

(aIII); 5 μm (b); 1 μm (bI); 1 μm (bII); 1 μm (bIII)   
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Supplementary Figure 4 | Top-view and cross-sectional EDX mapping of HAN@SnO2@MnO2. a 

Top-view and b cross-sectional view. Scale bar: 250 nm (a); 1 μm (b)    
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Supplementary Figure 5 | EDX mapping of HAN@SnO2@PPy. a Top-view and b cross-sectional view. 

Scale bar: 250 nm (a); 500 nm (b)   
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Supplementary Figure 6 | Electrochemical performance of the symmetric stacked MSCs based on 

HAN-reinforced pesudocapacitive nanoelectrodes. a The CV curves, b GCD profiles and c device areal 

capacitance as a function of current densities of HAN@SnO2@MnO2//HAN@SnO2@MnO2 MSCs with 

different pore thickness. d The CV curves, e GCD profiles and f device areal capacitance as a function of 

current densities of HAN@SnO2@PPy//HAN@SnO2@PPy MSCs with different HAN cell depth. The 

electrolyte is 1.0 M Na2SO4 aqueous solution.  
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Supplementary Figure 7 | Electrochemical impedance properties comparison of symmetric 

MSCs. Warburg region of a HAN@SnO2, b HAN@SnO2@MnO2, and c HAN@SnO2@PPy 

electrodes with different pore depth of HAN. The electrolyte is 1.0 M Na2SO4 aqueous solution. 
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Supplementary Figure 8 | Electrochemical performance of HAN@SnO2@MnO2//HAN@SnO2@PPy 

asymmetric stacked MSCs. a The CV curves, b GCD profiles, c Nyquist plots and d device areal 

capacitance as a function of current densities of HAN@SnO2@MnO2//HAN@SnO2@PPy MSCs (For 

asymmetric MSCs based on positive and negative electrodes are both with 25-μm-deep cell). The 

electrolyte is 1.0 M Na2SO4 aqueous solution. 
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Supplementary Figure 9 | Cyclic performance of symmetric MSCs and morphological stability of 

HAN-based nanoelectrodes. a Cycling ability of HAN@SnO2@MnO2//HAN@SnO2@MnO2 symmetric 

MSCs and HAN@SnO2@PPy//HAN@SnO2@PPy symmetric MSCs, respectively, measured at a current 

density of 20 mA cm‒2 for 30,000 continued charge-discharge cycles. SEM images of b 

HAN@SnO2@MnO2 and c HAN@SnO2@PPy electrodes before (left) and after (right) 30,000 cycles. 

Scale bar: 400 nm (b, c) 
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Supplementary Figure 10 | Device capacity of HAN@SnO2@MnO2//HAN@SnO2@PPy 

asymmetric stacked MSCs with EMIM-TFSI electrolyte. a Device areal capacitance as a 

function of scan rates of HAN@SnO2@MnO2//HAN@SnO2@PPy MSCs. b Cycling stability test 

at 20 mA cm‒2 for 10000 times and c corresponding CV curves at 100 mV s‒1 before and after 

cycling. The positive and negative electrodes are both with 25-μm-deep HAN. 
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comparison with various MSCs reported recently. 
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Supplementary Table 1 | Performances of state-of-the-art MSCs. Device performance of HAN@SnO2@MnO2//HAN@SnO2@PPy (abbreviated as MnO2//PPy) in 

Graphene 0.7  PSSH 1.0 <1 <1 <1 11,000 ~100 1 

PG 2.0  BMIMPF6 3.0 <1 <1 <1 2,000 ~100 2 

CNTCs 20  BMIM-BF4 3.0 6 3.6 69 8,000 ~100 3 

ACF 1.5  1 M H2SO4 0.6 <1 <1 - 10,000 ~100 4 

OLC 7  1 M Et4NBF4 in PC 3.0 <1 <1 177 10,000 ~100 5 

AC 5  0.5 M H2SO4 3.0 <1 <1 20 10,000 ~100 5 

LWG 20  1.0 M TEABF4 1.0 2.5 <1 - 10,000 ~100 6 

Graphene 25  1 M H2SO4 1.0 4 <1 9 9,000 ~98 7 

PEDOT 2.4  1 M H2SO4 0.8 18.7 2 0.2 1,000 ~90 8 

CDC 4.1  2 M EMIBF4 in AN 3.0 41.8 40 30 11,000 ~100 9 

LSG/MnO2 15  1 M Na2SO4 0.9 385 60 - 10,000 100 10 

MnO2//Bi2O3 - 1 M Na2SO4 1.8 97 43.4 12.9 4,000 90 11 

MnO2//PPY 1.8  1 M Na2SO4 1.7 ~30 ~10 0.5 2,000 90 12 
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NN@MnO2 5  1 M Na2SO4 0.8 ~100 20 10 5,000 ~90 13 

Zn NSs 50  2 M ZnSO4 1.5 ~324 115 0.16 10,000 ~100 14 

rGO/IL/CP 0.3 PVA-H3PO4 3.0 27.4 32 1.05 - - 15 

MXene - PVA-H2SO4 0.5 43 0.32 0.15 14,000 ~97 16 

MHCF ~0.18 PVA-LiCl 1.8 19.8 9.49 - 5,000 96.8 17 

MXene 3.2 EMIMBF4/PVDF-HFP 3.0 42 13.9 4.5 10,000 ~100 18 

Y-Ti3C2Tx ~0.1 PVA/H2SO4 0.6 61 0.63 0.33 10,000 93.7 19 

WJM-G-SWCNTs ~23 PVA-H3PO4 1.8 1.32 0.064 20 10,000 ~100 20 

H-SiC ~16 PVA-KCl 0.8 23.6 5.2 11.2 10,000 94 21 

Cu(OH)2@FeOOH 14 EMIMBF4 1.5 58 18 - 10,000 80 22 

3D RuO2 46 0.5 M H2SO4 0.9 - 91.4 - 2,000 ~100 23 

PDMS/GF 260 0.5 M Na2SO4 1.6 592 106 16 12,000 ~100 24 

Ni-CAT MOF ~200 PVA-LiCl 1.4 15.2 4.1 7 5,000 87 25 

MnO2-ITO NWs 28 1 M Na2SO4 1.0 194 27 15 20,000 61 26 

MnO2//PPy 25 μm 1 M Na2SO4 1.6 186 66 24 30,000 ~100 This 

work MnO2//PPy 25 μm EMIM-TFSI 3.0 128 160 40 10,000 ~100 
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