Supplementary Figure 1
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Supplementary Fig. 1 Growth characteristics of CSCs of DU145 and LNCaP. In vitro
growth curve of CSCs and respective parent cells of DU145 (a) and LNCaP (b) were
determined by MTS assay. Seeding density was 10,000 cells per well of 48-well plates
(n=3). "p < 0.05; “*p < 0.01; "**p < 0.001.



Supplementary Figure 2
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Supplementary Fig. 2 Immunofluorescence of basal, luminal, and neuroendocrine markers in
prostate CSCs and parent cells. CSCs and parent cells were cultured on coverslips in DMEM +
10% FBS overnight, and stained for CK5, CK8, and SYP with specific antibodies.



Supplementary Figure 3

a Expression of basal, luminal, and neuroendocrine markers in CSC cultures
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Supplementary Fig. 3 In vitro and in vivo differentiation of prostate CSCs. a CSC spheres of PC3 were
seeded on cover slips and cultured in DMEM + 10% FSB for 4 days, and immunofluorescence
staining was performed with specific antibodies. Scale bar: 100 um. b Relative AR levels between
prostate CSCs and respective parent cells. mRNA levels were determined by gRT-PCR and
normalized to parent cells (n=3). ¢ Relative AR levels between CSCs and CSC-derived tumors (n=3).
d, Relative AR levels between PC3 and PC3-derived tumors (n=3)."**P < 0.001; ns, not significant.



Supplementary Figure 4
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Supplementary Fig. 4 Expression of previously reported cell surface markers of prostate cancer
stemness in CSCs and respective parent cells. Percentage of positive cells were determined by Flow
cytometry analysis (n=4). "p < 0.05; “p < 0.01; “"P < 0.001; ns, not significant.



Supplementary Figure 5
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Supplementary Fig. 5 ANG and PLXNB2 levels in PC3 cells and CSCs. a, b mRNA and
protein levels of ANG (a) and PLXNB2 (b). mRNA levels were determined by qRT-PCR
and normalized to PC3 cells (n=3). Protein levels were determined by immunoblotting. c
PLXNB2 protein level analyzed by flow cytometry with mAb17. Relative expression level
was quantified by geometric mean, as calculated by Flowlo (n=3). "p < 0.01; *"p <

0.001.



Supplementary Figure 6
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Supplementary Fig. 6 Uncropped immunoblots of ANG and PLXNB2 shown in Fig. 3b,
3¢, and Supplementary Fig. 5a and 5b.



Supplementary Figure 7
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Supplementary Fig. 7 Effect of ANG and PLXNB2 knockdown on CSC proliferation and tumor
growth. a, b In vitro growth curves of ANG (a) and PLXNB2 (b) knockdown CSCs. Cells were seeded
in 24-well plates (15,000 per well) and cultured in DMEM + 10% FBS (n=3). ¢ In vivo growth of ANG
and PLXNB2 knockdown CSCs. One hundred CSCs were subcutaneously inoculated into NSG mice,
and xenograft tumors were excised and weighed 7 weeks post inoculation (n=7). d IHC of Ki-67 in
xenograft tumors generated from control and ANG or PLXNB2 knockdown CSCs. Scale bar: 10 um.
Percent of Ki67 positive cells were counted in 5 microscopic areas with a total cell number >1,000.
e Spheroid invasion of control and ANG or PLXNB2 knockdown CSCs. CSCs invaded into the matrix
were recorded for 2 days. The invasive area was defined as that of the maximum cell dispersal. f
Sphere formation of PC3 parent and sorted PLXNB2hiehCD49fhishALDHhigh cells. *p < 0.05; “p < 0.01;

* %k
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p < 0.001; ns, not significant.



Supplementary Figure 8

a ANG and PLXNB2 mAb inhibit colony formation of LNCaP CSCs
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Supplementary Fig. 8 Effect of ANG and PLXNB2 mAbs on CSCs and parent cells. a, b Colony formation
of CSCs from DU145 (a) and LNCaP (b) in the presence of 30 pug/ml isotype IgG, 26-2F or mAb17, 1 pg/
ml ANG (n=3). Scale bar: 500 um. ¢ Protein synthesis in PC3 parent cells treated with 30 pg/ml of
isotype 1gG, 26-2F, or mAb17 for 24 h, determined by OP-Puro incorporation followed by flow
cytometry. Geometric means were calculated and normalized to isotype IgG control (n=3). d
Proliferation of PC3 parent cells in the presence of 30 pug/ml of isotype 1gG, 26-2F, or mAb17. e In vitro
proliferation of PC3 parent cells in the presence of 30 pg/ml isotype 1gG or mAb17 (n=3). *p < 0.05; **p <
0.01, ™"p < 0.001.



Supplementary Figure 9
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Supplementary Fig. 9 PLXNB2 mAb sensitizes CSC tumors to DTX. a, b Observed and theoretical
inhibition of combinatorial treatment of 10 mg/kg DTX + 4.8 mg/kg mAb17 (a) or 30 mg/kg DTX + 4.8
mg/kg mAb17 (b) on CSC tumor growth. Theoretical values were calculated by adding the percent of
inhibition observed in groups treated with mAb17 and DTX individually. Actual values were the percent
of inhibition observed from the group treated with mAb and DTX together. ¢ IHC staining of CK5, CK18,
and SYP in CSC tumor tissues treated with PBS or mAb17 (n=3). Scale bar: 200 um. d IHC of cleaved
PARP and cleaved Caspase 6 in CSC tumor tissues from mice treated with PBS, 30 mg/kg DTX, and 30
mg/kg DTX + 4.8 mg/kg mAb17 (n=3). Scale bar: 100 um.



Supplementary Figure 10
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Supplementary Fig. 10 Stress granule localization of ANG in CSCs. Cells were seeded on

coverslip, cultured in DMDM + 10% FBS overnight, fixed, and stained for ANG and PABP by
immunofluorescence. Scale bar: 50 um.
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Supplementary Figure 11
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Supplementary Fig. 11 Uncropped gels for small RNA and Northern blots of tiRNA and
3’-end fragment of of 55 rRNA shown in Fig. 7.



Supplementary Figure 12
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Supplementary Fig. 12 Secondary structure of 55 rRNA. ANG cleavage sites are denoted with
red dots.
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Supplementary Fig. 13 Uncropped gel of small RNA, Northern blot of 3’-end
fragment of of 55 RNA, and immunoblots of Bcl-2, Parp-1, and AIF shown in Fig. 9.



Supplementary Table 1. Sequences of 55 rRNA fragments in CSCs

Clone No. Occurrence  Sequences (5’ to 3’)

19 1 ACCACCCTGAACGCGCCCGATCTCGTCTGATCTCGGAAGCT

1-17 1 ATACCACCCTGAACGCGCCCGATCTCGT

1-20 1 GTCTACGGCCATACCACCCTGAACGCGCCCGATCTCGTCTGATCTCGGAAG
1-41 2 CTCGGAAGCTAAGCAGGGTCGGGCCTGGTT

1-43 1 ATACCACCCTGAACGCGCCCGATCTCGTCTG

1-47 1 GTCTACGGCCATACCACCCTGAACGCGCCCGATCTCGTCTGAT

2-1 3 GTCTACGGCCATACCACCCTGAACGCGCCCGATCTCGTCTG

2-2 4 GTCTACGGCCATACCACCCTGAACGCGCCCGATCTCGTCTGATCTCGG
2-4 2 GTCTACGGCCATACCACCCTGAACGCGCCCGATCTCGTCTGATCTCG
3-83 1 GTCTACGGCCATACCACCCTGAACGCGCCCGATCTCGTCTG

3-81 2 GTCTACGGCCATACCACCCTGAACGCGCCCGATCTCGTCTGATCTCGG
3-15 1 GTCTACGGCCATACCACCCTGAACGCGCCCGATCTCGTCTGATCTCG

3-11

ATACCACCCTGAACGC




Supplementary Table 2. Sequences of qRT-PCR primers

Genes Forward (5’ to 3’) Reverse (5’ to 3')

CK5 CAAGGTTGATGCACTGATGG TCAGCGATGATGCTATCCAG
CK8 AATGAATGGGGTGAGCTGGAG CCTGATGGACATGGTAGAGGC
CK14 GGCCTGCTGAGATCAAAGAC GTCCACTGTGGCTGTGAGAA
CK18 GAGATCGAGGCTCTCAAGGA CTGAGATTTGGGGGCATCTA
CK19 TTTGAGACGGAACAGGCTCT AGCTCTTCCTTCAGGCCTTC
GSTP1 GAGGACCTCCGCTGCAAATA CAGCAGGGTCTCAAAAGGCT
p63 CCTGACCCTTACATCCAGCG CTCTGGGACATGGTGGATCG
CHGA GTCGGGGTATATAAGCGGGG CGTCTGTCGGTCGATCCTC

SYP TTGTGCCAACAAGACCGAGA GCCTGAAGGGGTACTCGAAC
GAPDH GGAAGGTGAAGGTCGGAGTCA GTCATTGATGGCAACAATATCCACT
GPI AGGCTGCTGCCACATAAGGT CCAAGGCTCCAAGCATGAAT
CLDN4 GAGAAACTGGTCAGGAGGA ACCGTGAGTCAGGAGATAAA
SOX2 GAGAGAAAGAAGAGGAGAGAGA GCCGCCGATGATTGTTAT

KLF4 CGCCTTGCTGATTGTCTATT GCCGAGATCCTTCTTCTTTG
BMP7 CTAACCAAGTGTCCCGATTT GAGGCTGAGTGCATACTATTT
MUC1 GGAGACACAGTTCAATCAGTAT TGGGCAGAGAAAGGAAATG
ITGA2 CTGTGGCTGTCTTGTTTCT CCAAATCATCTCAGGATCTACC
DNMT1 CTACTTCCTCGAGGCCTATAA TGCCCTTCCCTTTGTTTC

Cyclin D1 AGCTCCTGTGCTGCGAAGTGGAAAC AGTGTTCAATGAAATCGTGCGGGGT
GATA3 ACCACAACCACACTCTGGAGGA TCGGTTTCTGGTCTGGA GCCT
BCL-2 GTGGATGACTGAGTACCTGAAC GCCAGGAGAAATCAAACAGAGG
BCL2L1 GCTACCGGGCCGATGAA GATTCTGAAGGGAGAGAAAGAGC
XIAP CCTGCAGGATTGCCTTCCTAA TGATGTCTGCAGGTACACAAGT
BAX GCCCTTTTGCTTCAGGGTTT TGAGACACTCGCTCAGCTTC
BAK1 GCAGGCTGATCCCGTCC CTGCGGAAAACCTCCTCTGT
BAD CTTGGGCCCAGAGCATGT TCTGCAGAGCTGGAGTCTTCC
TP53 CAGTCTTGAGCACATGGGAGG GGCGACTGTCCAGCTTTGT

MYC CGGTTTTCGGGGCTTTATCTAAC AGTTTCGTGGATGCGGCAAG

5S rRNA GGCCATACCACCCTGAACGC CAGCACCCGGTATTCCCAGG

AR TCGGAAAGGTCTGGTTGGTG ACAGAACACAGGTGTGCCAA
PLXNB2 TGGTTCCTGCTGTAGCCATC GATGTCTCCGTGCTTCCTGA




