Glucose-6-phosphate upregulates Txnip expression by interacting with MondoA

Xue-Yun Zhang^{1,2}, Tao Fu^{1,2}, Qian He^{1,2}, Xiang Gao^{1,2*} and Yan Luo^{1,2*}

- 1. Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China;
- 2. Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Hangzhou, China

*Correspondence to Yan Luo: luoyan2011@zju.edu.cn or Xiang Gao: gaoxiang@u.nus.edu

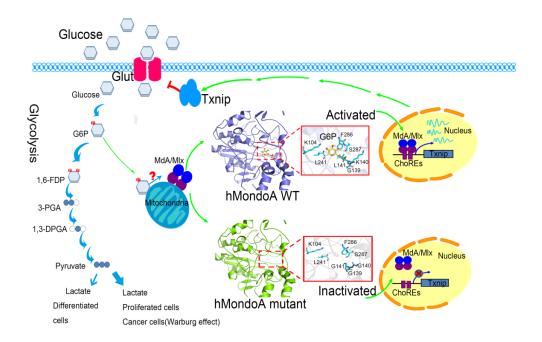


Figure S1 Schematic diagram for the expression of Txnip. G6P as an intermediate of glycolysis activated MondoA and induced the expression of Txnip by binding to hMondoA 139-141GKL.

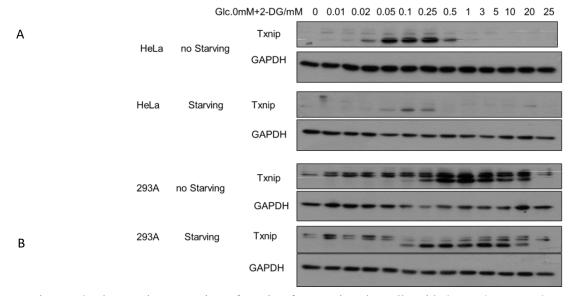


Figure S2 Changes in expression of Txnip after treating the cells with 2-DG 0 mM to 25 mM. (A)HeLa; (B) 293A.

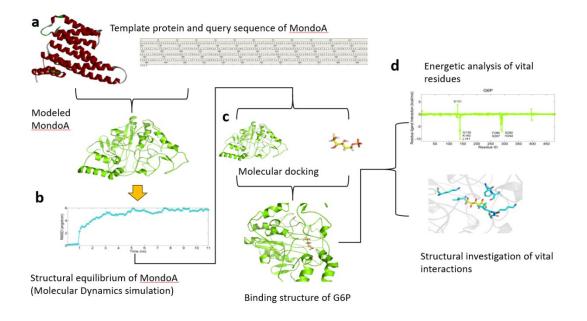


Figure S3 MondoA three-dimensional model modeling process demonstration. a) The Molecular Mechanics/Generalized Born Surface Area approach (MM/GBSA) was used for the binding free energy calculation and decomposition; b) Molecular Mechanics Minimization and Molecular Dynamics (MD) Simulation; c) Establishment of 3D model and flow chart of small molecule docking. MondoA three-dimensional model constructed by homology modeling; d) Deviation statistics (RMSD) for molecular dynamics optimization of the MondoA three-dimensional structural model after modeling.