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SUMMARY

Recent discoveries have implicated the gut micro-
biome in the progression and severity of Parkinson’s
disease; however, how gut bacteria affect such
neurodegenerative disorders remains unclear. Here,
we report that the Bacillus subtilis probiotic strain
PXN21 inhibits a-synuclein aggregation and clears
preformed aggregates in an established Caenorhab-
ditis elegans model of synucleinopathy. This protec-
tion is seen in young and aging animals and is partly
mediated by DAF-16. Multiple B. subtilis strains
trigger the protective effect via both spores and
vegetative cells, partly due to a biofilm formation in
the gut of the worms and the release of bacterial me-
tabolites. We identify several host metabolic path-
ways differentially regulated in response to probiotic
exposure, including sphingolipid metabolism. We
further demonstrate functional roles of the sphingoli-
pidmetabolism genes lagr-1, asm-3, and sptl-3 in the
anti-aggregation effect. Our findings provide a basis
for exploring the disease-modifying potential of
B. subtilis as a dietary supplement.

INTRODUCTION

Protein misfolding and aggregation are key pathological features

observed in numerous neurodegenerative diseases, including

Alzheimer’s and Parkinson’s disease (PD) (Ross and Poirier,

2004). PD is one of the most prevalent neurodegenerative disor-

ders (Pringsheim et al., 2014) and is currently incurable. It is char-

acterized by the progressive loss of dopaminergic neurons in the

Substantia Nigra area of the brain, leading to the development of

progressive motor and non-motor symptoms (Poewe et al.,

2017). Central to the condition is the accumulation of a-synuclein

(a-syn) aggregates in Lewy bodies (Spillantini et al., 1998), and

the extent of this accumulation correlates with disease severity
Cell
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(Stefanis, 2012). a-syn acquires neurotoxic properties when

protein monomers progressively combine to form insoluble am-

yloid fibrils via oligomeric intermediates (Poewe et al., 2017).

Although Lewy bodies contain mostly fibrillar forms of a-syn,

oligomeric intermediates are also toxic and play a central

role in PD pathogenesis (Winner et al., 2011). Despite recent

progress toward identifying disease-modifying interventions

(Savitt and Jankovic, 2019), only symptomatic treatments are

available (Fahn, 2015). Thus, therapeutic strategies directed at

inhibiting or reversing a-syn aggregation present a clear oppor-

tunity for disease-modifying interventions for PD and other

synucleinopathies.

Although PD is primarily considered to be a central nervous

system disease, there is clear evidence for an involvement of

peripheral signals, particularly from the gastrointestinal tract

and the gut microbiota, in PD progression. This is supported

by observations that PD symptoms and a-syn pathology begin

in peripheral tissues, particularly the intestine, and as the disease

progresses, a-syn aggregates gradually spread to multiple

brain regions (Braak et al., 2003; Rietdijk et al., 2017). Recently,

the human gut microbiome has emerged as an important player

influencing PD (Scheperjans, 2016). Gut bacteria can affect

brain function by producing metabolites that enter the blood-

stream, eliciting immune responses in the host or modulating

neuronal function (Chow et al., 2010; Fung et al., 2017). Preclin-

ical evidence suggests that the gut microbiota and intestinal

permeability modulate behavior, mood, and neuropsychiatric

disorders (Clapp et al., 2017). Likewise, a large number of recent

studies investigating microbiota in patients with PD found

notable differences compared to healthy controls (reviewed by

Boertien et al., 2019), which correlated with clinical features

(Li et al., 2017; Minato et al., 2017; Scheperjans et al., 2015).

Remarkably, faecal transplants from PD patients exacerbate

symptoms in a mouse model of PD, demonstrating that differ-

ences in microbiota are not merely a result of the disease, but

also impact its progression (Sampson et al., 2016).

Human microbiota consist of trillions of microorganisms and

over 1,000 bacterial species (Lloyd-Price et al., 2016), posing a

challenge for understanding the effects of individual species. In
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the bacterivore Caenorhabditis elegans, the gut microbiota can

be precisely controlled, making it a powerful model for studying

the effects of gut bacteria on physiological processes at a single

species-single gene level (Cabreiro and Gems, 2013). Further-

more, C. elegans has proven to be a valuable model for studying

molecular mechanisms of PD and protein aggregation. Overex-

pression of human a-syn in C. elegans results in the formation

of aggregates that progressively become amyloid-like (Kaminski

Schierle et al., 2011; van Ham et al., 2008), and work in

C. elegansmodels has identified conservedgenetic andchemical

modifiers of a-syn toxicity (B€uttner et al., 2013; Hamamichi et al.,

2008;Kautuet al., 2013;Knight et al., 2014;Kuwaharaet al., 2008;

Pujols et al., 2018; Qiao et al., 2008; Roodveldt et al., 2009; Ruan

et al., 2010; van Ham et al., 2008; Zhang et al., 2017). Here, we

used a C. elegans model of synucleinopathy to investigate the

effects of gut bacteria on a-syn aggregation.

We report that the probiotic bacterium Bacillus subtilis PXN21

(Colenutt and Cutting, 2014), when fed to C. elegans, inhibits,

delays, and reverses a-syn aggregation. We characterize these

protective effects in both young and old nematodes and investi-

gate the contributions of known lifespan-extending pathways.

We further show that B. subtilis extracts are able to partially

recapitulate the protective effect of live bacteria, indicating that

a bacterial metabolite is actively involved. From analysis of

gene expression profiles, we find that the protective effect of

B. subtilis against a-syn aggregation is mediated through alter-

ations in the sphingolipid metabolism pathway. Our findings

contribute to the current understanding of how gut bacteria

interact with the host to influence physiology in remote tissues,

and they will motivate further explorations of the probiotic

B. subtilis as a diet-based intervention for PD.

RESULTS

B. subtilis Inhibits and Reverses a-Syn Aggregation in a
C. elegans Model of Synucleinopathy
To assess the effect of gut bacteria on a-syn aggregation, we

used an established C. elegans model (strain NL5901), express-

ing human a-syn fused to yellow fluorescent protein (YFP) and

driven by a muscle-specific promoter (Punc-54::a-syn::YFP)

(van Ham et al., 2008). We fed these worms with different bacte-

rial diets and assessed a-syn aggregation in day 1 adult animals

(72 h post hatching). Among the bacterial species tested was the

B. subtilis strain PXN21 (Colenutt and Cutting, 2014), isolated

from the commercially available probiotic product Bio-Kult (by

ADM Protexin).

On a regular C. elegans laboratory diet, comprising the non-

pathogenic strain of Escherichia coli OP50 (Brenner, 1974),

a-syn-expressing animals formed aggregates that can be visual-

ized by fluorescence microscopy (van Ham et al., 2008) (Figures

1A and 1B). In contrast, animals fed on B. subtilis strain PXN21

showed a nearly complete absence of aggregates at the day 1

adult stage (Figures 1A and 1B). This striking difference in aggre-

gation was not caused by lower expression levels of a-syn in

PXN21-fed animals, as unc-54 and a-syn transcript levels were

upregulated in day 1 adult animals fed withB. subtilis (Figure 1C).

Consistently, there were higher levels of a-syn protein in animals

fed on the probiotic (Figures 1D and S1A).
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We next tested whether a B. subtilis diet could also clear

already-formed aggregates. We grew nematodes on E. coli until

the fourth larval (L4) stage when aggregates are evident, then

shifted them to aB. subtilis PXN21 diet (Figure 1E) and quantified

a-syn aggregation 1 and 3 days later. Most of the aggregates

present at the L4 stage cleared 1 day after switching diets,

whereas the average size of the foci remained unaffected (Fig-

ures 1F, 1G, S1B, and S1C). The clearance of aggregates was

not due to reduced levels of a-syn expression (Figures S1D–

S1F). Notably, the reduced aggregation levels after the switch

to B. subtilis persisted for longer, compared to animals grown

continuously on this diet from the first larval (L1) stage (Fig-

ure 1G). Similar results were obtained in experiments where

the food switch happened on the first day of adulthood (Figures

S1G and S1H). We further investigated a-syn native forms using

non-denaturing gel electrophoresis. Whereas high molecular

mass a-syn forms were detected in extracts from worms ingest-

ing either diet, lower molecular weight species that go down to a

submonomeric form were primarily detected with the B. subtilis

diet (Figure 1H). This indicates alterations of a-syn forms,

possibly through cleavage or degradation, by this dietary

condition.

B. subtilis Protection Is Effective throughout C. elegans
Aging
To assess the effects of a B. subtilis diet on a-syn aggregation in

aging, we followed animals fed on E. coli OP50 or B. subtilis

PXN21 until day 13 of adulthood (corresponding to day 16 of

the worm’s life). We assessed aging animals under two different

feeding conditions: (1) grown continuously on the specified diet

for their entire life or (2) grown on E. coli until the L4 stage and

then shifted to a B. subtilis diet.

When C. elegans were grown continuously on E. coli after

hatching, aggregates were observed as early as the second

larval (L2) stage (data not shown) and progressively increased

in number up to day 3 of adulthood (Figure 2A). In contrast, in

animals continuously grown on B. subtilis PXN21, there was a

near-complete absence of aggregation until day 1 of adulthood,

followed by a delayed increase in the number of foci up to day 5

and a subsequent decline. The maximum number of aggregates

reached in animals fed with B. subtilis was far lower than that

observed on the E. coli diet, indicating that B. subtilis does not

simply delay aggregate formation.

In the second feeding condition, when worms were switched

from the E. coli to the B. subtilis diet at the L4 stage, aggregation

dropped rapidly, reaching a very low, steady level until day 13 of

adulthood (Figure 2B). To test whether the reduction of aggrega-

tion had an impact on the fitness of a-syn-expressing animals,

we performed locomotion assays in a liquid medium. The loco-

motion fitness of C. elegans was significantly improved after

the switch to the B. subtilis diet, compared to animals continu-

ously fed on E. coli, for a time interval that mirrored the time of

reduced aggregation (Figure 2C). We conclude that the most

striking effect on aggregation is conferred during continuous

growth on B. subtilis, with nearly no foci in day 1 of adulthood,

whereas the most long-lasting effect is achieved after switching

to a B. subtilis diet, with aggregation levels remaining low

throughout mid- and late adulthood.



Figure 1. B. subtilis PXN21 Inhibits and Reverses a-Syn Aggregation in the C. elegans Model NL5901 (Punc-54::a-syn::YFP)

(A) Representative fluorescent images of a-syn aggregates (foci) in the head of day 1 adult worms fed on E. coliOP50 or B. subtilis PXN21. Higher magnifications

of the highlighted regions are shown.

(B) Quantification of a-syn aggregates larger than 1 mm2 per animal in the head region of day 1 adult worms fed on the indicated diet. ****p < 0.0001; n = 25 worms

per condition.

(C) Expression levels by qRT-PCR of unc-54 and a-syn transcripts in day 1 adult worms normalized to the E. coli diet. Expression level of each gene in worms fed

with E. coli was taken as 1. *p = 0.0245, **p = 0.0029, n = 3 per condition, with three technical replicates each (N represents a population of �4,000 worms).

(D) SDS-PAGE of a-syn transgenic and wild-type (control column) day 1 adult worms grown on the two diets. Arrow and arrow with * indicate a-syn monomeric

and sub-monomeric forms, respectively.

(E) Assay strategy for the food-switch experiment. L1, first larval stage; L4, fourth larval stage; d1ad, adult day 1; d3ad, adult day 3.

(F) Fluorescent images of a-syn aggregates of representative L4 (left) and day 1 adult (upper right) worms grown on E. coli or 24 h after the switch toB. subtilis diet

(lower right).

(G) Average number of a-syn aggregates before and after the worm switching. ****p < 0.0001 versus E. coli; a versus b, ****p < 0.0001; n = 25 worms per time point

per condition.

(H) Immunoblotting of native a-syn conformations of transgenic andwild-type young adult worms. Arrowwith * indicates a-syn sub-monomeric form. Data shown

are mean ± SEM from one representative experiment out of three with similar results.
The B. subtilis diet inhibits aggregation during aging without

reducing the expression of a-syn, compared to the E. coli diet

(Figures 2D and 2E). The decline in aggregation in older E. coli-

fed worms correlates with the age-dependent decrease in the

expression of the unc-54 promoter (Budovskaya et al., 2008)

and, consequently, in a-syn protein levels (Figures 2D and 2E).

Remarkably, this decrease is more pronounced in aging worms

fed on E. coli (Figure 2E), in agreement with previous reports

showing a differential diet-dependent regulation of unc-54

expression (Sánchez-Blanco et al., 2016). Thus, B. subtilis in-

hibits aggregation in agingworms despite the consistently higher

levels of a-syn in this diet relative to E. coli.

The Protective Effect against a-Syn Aggregation Is a
General Property of B. subtilis Species
Previous studies report stress resistance and longevity benefits

for wild-type animals grown on various laboratory B. subtilis

strains (Donato et al., 2017; Garsin et al., 2003; Gusarov et al.,

2013; Smolentseva et al., 2017). We therefore asked whether
the observed effect on a-syn aggregation is unique to PXN21

or if it is shared among other strains of the B. subtilis species.

We tested a panel of laboratory B. subtilis strains, including

168 (Zeigler et al., 2008), JH642 (Smith et al., 2014), and the un-

domesticated strain NCIB 3610 (Branda et al., 2001). All strains

showed similar effects on a-syn aggregation to the probiotic

strain PXN21 following the continuous or food-switching regime

(Figures 2F and 2G), indicating that the anti-aggregation effect is

a general property of the B. subtilis species. Furthermore, all

tested B. subtilis strains extended the lifespan of a-syn-express-

ing transgenic animals (Figure 2H; Table S1).

B. subtilisBiofilm Formation andNitric Oxide Production
Protect from a-Syn Aggregation in Aging
B. subtilis was previously shown to increase lifespan and stress

tolerance in C. elegans via several partly co-dependent mecha-

nisms: the formation of a biofilm, a three-dimensional bacterial

community embedded in a self-produced extracellular matrix

(Branda et al., 2005), in the gut of day 7 adult worms (Donato
Cell Reports 30, 367–380, January 14, 2020 369



Figure 2. B. subtilis Protection against

a-Syn Aggregation Is Effective throughout

C. elegans Aging and Is Triggered by

Different Strains

(A and B) Time course of a-syn aggregation in

worms continuously grown on the annotated diet

from larval stage L1 (A) or after food switching at

the L4 (B). ****p < 0.0001, ***p = 0.0002. Data

shown are mean ± SEM, n = 25 worms per time

point per condition.

(C and D) Immunoblotting analysis (C) and quan-

tification (D) of a-syn versus b-tubulin levels of

protein extracts from day 1 to day 10 adult worms

grown on the annotated diet from the L1 (left and

middle) or L4 stage (right). Datawere normalized to

a-syn/b-tubulin levels of day 1 adults worms fed

with E. coli.

(E) Locomotion analysis (thrashing rate) of worms

after the food switching at L4 from E. coli to

B. subtilis PXN21. *p = 0.0152, **p = 0.0072, ****p <

0.0001. Mean values ± SEM, n = 50 worms per

condition from two independent experiments are

shown

(F and G). Time course of a-syn aggregation in

worms continuously grown (F) or after the food

switching at L4 (G) onto B. subtilis strains 168,

JH642, NCIB 3610, and PXN21. Black asterisks

indicate comparison with E. coli; green asterisks

denote comparison of PXN21 with NCIB 3610;

****p < 0.0001, ***p < 0.001, **p < 0.01. Data

shown are mean ± SEM, n = 25 worms per time

point per condition.

(H) Longevity of a-syn worms fed on mixed lawns

of the different B. subtilis strains shown in (F).

****p < 0.0001, all strains versus E. coli. n R 200

worms per condition from three independent ex-

periments. Data shown are mean ± SEM from one

representative experiment out of three with similar

results, unless stated otherwise.
et al., 2017; Smolentseva et al., 2017); the production of nitric

oxide (NO) (Gusarov et al., 2013); and the secretion of colony-

stimulating factor (CSF) quorum-sensing pentapeptide (Donato

et al., 2017). We first confirmed that the yet-uncharacterized

B. subtilis strain PXN21 was very proficient at forming a hydro-

phobic biofilm under standard conditions, similar to the well-

characterized B. subtilis NCIB 3610 (Figure S2A).

To explore whether any of the above bacterial pathways regu-

lating lifespan and stress resistance in C. elegans were also

responsible for reducing a-syn aggregation in our model, we

applied the food-switching approach with B. subtilis NCBI

3610 alongside the biofilm-deficient derivatives Deps(A-O),

DbslA, and DtasA (Figure S2A). Each of these strains lacks a

different extracellular matrix component essential for biofilm

formation: Deps(A-O) is defective in exopolysaccharide forma-

tion (Branda et al., 2001); DtasA lacks protein fibers (Romero

et al., 2010); and DbslA is deficient in forming the hydrophobic

surface layer that surrounds the biofilm (Hobley et al., 2013; Ko-

bayashi and Iwano, 2012). We found no effect of biofilm muta-

tions on aggregation in the early days of adulthood (Figures 3A

and S2B). In contrast, after day 5 of adulthood, when biofilms

form in the gut of the nematodes, a-syn aggregation progres-

sively increased when animals were fed the DtasA strain, but
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not the Deps(A-O) or DbslA deletion strains (Figures 3A and

S2B). The triple-mutant strain combining all three biofilm dele-

tions (Deps(A-O), DtasA, and DbslA) did not further increase

aggregation. We conclude that the biofilm matrix protein TasA

supports the ability of B. subtilis to protect against a-syn aggre-

gation later in adulthood.

Similar to the DtasA biofilm-deficient strain, deletion strains

for DphrC, defective in the production of the quorum-sensing

pentapeptide CSF, and Dnos, defective in NO production, also

showed an increase in aggregates later in adulthood but not in

earlier stages when compared to the wild-type strain (Figures

3B and S2C). These results are in agreement with previous

reports that NO and CSF production is increased by an order

of magnitude under biofilm-forming conditions (Donato et al.,

2017).

Given that the DphrC and Dnos deletion results implicate CSF

and NO in the prolonged protective effect of B. subtilis against

a-syn aggregation, we asked whether exogenous supplementa-

tion of these metabolites in the absence of biofilm could exert

a protective effect earlier in adulthood. Whereas animals grown

on E. coli supplemented with CSF showed no changes in aggre-

gation under the tested conditions (data not shown), NO directly

supplied to the worm’s diet induced a significant reduction of



Figure 3. Biofilm Formation and Active Me-

tabolites Contribute to the B. subtilis Effect

(A) Time course of a-syn aggregation of worms fed

with E. coli or switched from E. coli to B. subtilis

wild-isolate NCBI3610 and its isogenic-biofilm

mutant derivatives: Deps(A-O), DbslA, DtasA, and

the triple mutant. Black asterisks show compari-

sons versus E. coli; green asterisks indicate the

differences between B. subtilis NCIB 3610 and its

isogenic mutants; ****p < 0.0001; n R 25 worms

per time point per condition.

(B) Time course of a-syn aggregation of worms fed

with E. coli or switched from E. coli to B. subtilis

wild isolate NCBI3610 or its nitric oxide (NO) and

quorum-sensing peptide (CSF)-deficient mutants

DnosA and DphrC, respectively.; ****p < 0.0001,

**p = 0.0054/0.0098, ***p < 0.001; n R 25 worms

per time point per condition.

(C) Quantification of a-syn aggregates of worms

grown from the L1 on E. coli supplemented with

vehicle (water) or NO donor MAHMA NONOate.

****p < 0.0001, **p < 0. 01; n = 25 worms per time

point per condition.

(D) Quantification of a-syn aggregates in the head

of day 1 adult worms fed with either alive or

UV+antibiotic-killed B. subtilis PXN21 cells. Un-

paired t test; n = 25 worms per condition.

(E and F) Quantification of a-syn aggregates of day

1 adult worms grown from the L1 on E. coli sup-

plemented with crude extracts from the superna-

tant (SN) (E) or pelleted cells (cells) (F) of PXN21

cultures (vehicle: ethyl acetate). ****p < 0.0001, ***p = 0.0001; SN, n = 60 worms per condition from three independent experiments; cells, n = 30 worms per

condition from two independent experiments. Data shown are mean ± SEM from one representative experiment out of three with similar results, unless stated

otherwise. ns, no significant differences.
aggregation on day 3 of adulthood (Figure 3C). In summary,

biofilm-associated bacterial pathways/metabolites responsible

for lifespan extension are required for keeping aggregation

levels low during aging; however, they do not explain the strong

protection observed in early adults.

A Bacterial Metabolite from B. subtilis Inhibits a-Syn
Aggregation in Early Adults
Stress resistance and longevity effects induced by B. subtilis in

C. elegans were shown to require live bacteria colonizing the

nematode’s gut (Donato et al., 2017; Garsin et al., 2003; Gusarov

et al., 2013; Smolentseva et al., 2017). In our case, these mech-

anisms seem to be relevant only for the effect of B. subtilis

against a-syn aggregation in late adulthood and cannot explain

the strong protection seen in early adulthood, when no biofilm

is present and only insufficient levels of NO are likely available

from ingested B. subtilis. To address whether the effects of

B. subtilis in early adulthood required live bacteria, we fed

a-syn-expressing worms dead B. subtilis, killed by a combina-

tion of UV and antibiotics. Surprisingly, dead B. subtilis were

as protective as live bacteria at day 1 of adulthood (Figure 3D).

We next considered whether we could recapitulate the

protective effect in the absence of bacteria by supplementing

the worms’ diet with B. subtilis extracts. Nematodes grown

from the L1 on an E. coli diet supplemented with B. subtilis crude

extracts from either the supernatant or pelleted vegetative cells

showed a 17%–21% and 21%–33% reduction in aggregation,
respectively (Figures 3E and 3F). Therefore, the effect of

B. subtilis on a-syn aggregation in early adults is partially

mediated by the action of an active and stable bacterial metab-

olite, unlike the short-lived NO, associated with the suppression

of aggregation later in life.

B. subtilis Spores and Vegetative Cells Both Protect
against a-Syn Aggregation
Bacterial metabolic state is affected by environmental conditions

and can strongly influence bacteria-host interactions. B. subtilis

can exist in two distinct metabolic states: (1) as metabolically

active, dividing vegetative cells in nutrient-rich conditions, and

(2) as dormant, environmentally resistant spores in nutrient-

poor or hostile environments (Nicholson and Setlow, 1990). Un-

der our regular experimental conditions, B. subtilis forms lawns

that contain a mix of spores and vegetative cells (Figure S3A).

Both forms were previously shown to confer longevity and

stress-resistance benefits in C. elegans via distinct mechanisms

(Donato et al., 2017; Gusarov et al., 2013; Sánchez-Blanco et al.,

2016; Smolentseva et al., 2017).

To determine whether the effect of B. subtilis PXN21 on a-syn

aggregation depends on the presence of either spores or vege-

tative cells, we used selective media to acquire pure cultures of

each state (see Method Details and Figure S3A). We found that

both B. subtilis vegetative cells and spores fully prevented

aggregation in day 1 adult worms, similar to the mixed lawns

(Figures 4A and 4B), and both reversed preformed aggregates
Cell Reports 30, 367–380, January 14, 2020 371



Figure 4. B. subtilis Spores and Vegetative Cells Both Protect against a-Syn Aggregation

(A) Representative fluorescent images of the head region of day 1 adult worms fed on E. coli or B. subtilis PXN21 vegetative cells or pure-spore cultures. Higher

magnifications of the highlighted regions are shown. NGM, nematode regular growth media; NGM + arginine (+ arg) to inhibit sporulation; NGM no peptone, (-

pep) to prevent spore germination.

(B) Quantification of a-syn aggregates of day 1 adults worms fed with the different diets. ***p < 0.001; n = 25 worms per condition.

(C) Average number of a-syn aggregates of worms before and after the switching, from E. coli to B. subtilis lawn of mixed cells, vegetative cells or spores only.

****p < 0.0001 indicates comparison of each diet versus its respective E. coli control; a versus b, ****p < 0.0001; n = 25 worms per time point per condition.

(D) Average number of a-syn aggregates of worms fed with E. coli, B. subtilis PXN21, B. subtilis 168 strain, or the sporulation mutant 168 DSpoIIE. ****p < 0.0001;

n = 25 per time point per condition.

(E and F) Time course of a-syn aggregation inworms grown from the L1 (E) or shifted at the L4 stage (F) toE. coli orB. subtilis vegetative cells. ****p < 0.0001, n = 25

worms per time point per condition. Data shown aremean ±SEM from one representative experiment out of threewith similar results, unless stated otherwise. ns,

no significant differences.
(Figures 4C and S3B). The reduced aggregation on the vegeta-

tive cell diet was not due to lower a-syn expression (Figures

S3C–S3E).

We corroborated the protective effect of B. subtilis vegetative

cells in early adulthood using the strain 168 carrying a deletion in

the spoIIE gene, required for sporulation (York et al., 1992). a-syn

expressing animals grown on vegetative cells of 168 DspoIIE

strain showed similar levels of aggregation, compared to those

grown on vegetative cells of the wild-type B. subtilis strain 168

(Figures 4D and S3F).

Finally, we assessed the effect of vegetative cells of

B. subtilis PXN21 on a-syn aggregation during aging. Worms

grown continuously on vegetative cells showed a general

delay in the formation of aggregates, but the number of aggre-

gates eventually reached a maximum comparable to that of

worms fed on E. coli (Figure 4E). In contrast, when worms

were shifted at the L4 stage from E. coli to a B. subtilis lawn

of vegetative cells, the aggregation levels remained low until

late in adulthood (Figure 4F), similar to those of a mixed

lawn diet (Figure 2B).

As both vegetative cells and spores are protective, we next

investigated whether they protect through similar or different

mechanisms, focusing first on the known lifespan-extending
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pathways, dietary restriction (DR), and the insulin-like signaling

(ILS) pathway.

Spores Induce DR and Vegetative Cells Protect via a DR-
Independent Mechanism
We first considered that DR may underlie the specific protec-

tive effects of spores against aggregation, as C. elegans is

virtually unable to digest spores (Laaberki and Dworkin,

2008) (Figures 5A and S4A). A B. subtilis spores-only diet

poorly sustained growth, inducing severe signs of DR, which

is reflected by a strong delay in development to adulthood

by 5–7 days and a significantly smaller size in adult worms,

compared to those grown on E. coli (Figure S4B). Worms

grown on mixed B. subtilis lawns showed mild DR, manifested

by a slight developmental delay and smaller body size

compared to those grown on E. coli (Figures 5A–5C, S4B,

and S4C). In contrast, worms fed only with vegetative cells

did not show any signs of DR (Figures 5A–5C, S4B, and

S4C). In addition, only small brood size differences between

the two diets were observed, which disappeared in the food-

switching condition (Figures S4D–S4G). This rules out diet ef-

fects on fecundity as a contributing factor to the reduction of

aggregation.



Figure 5. B. subtilis Reduces a-Syn Aggregation through Dietary-Restriction-Dependent and Independent Mechanisms

(A) Fluorescent images of a-syn worms fed on transgenic NCIB 3610 B. subtilis expressing amyE::Phyper-spank-mKate2. Spores resistant to digestion can be

seen in the entire gut in red (left); vegetative cells are present only before the pharyngeal grinder (right).

(B and C) Developmental stage at 48 h (B) and body size at 72 h (C) of a-syn-expressing worms grown on E. coli or B. subtilismixed-cell lawns or vegetative cells.

***p = 0.0007, ****p < 0.0001; n R 80 worms for developmental stage and n R 80 worms for body length per condition from three independent experiments.

(D) Normalized pha-4 expression levels by qRT-PCR in young adult worms grown on the different diet conditions. pha-4 expression level in worms fed with E. coli

was taken as 1. **p = 0.0059; n = 3 samples per condition, with three technical replicates each (each sample consisting of �4,000 worms).

(E) Quantification of a-syn aggregates in day 1 adult worms fed on E. coli,B. subtilis, or a 1:1mixture (B. subtilis:E. coli). ****p < 0.0001; n = 25worms per condition.

(F) Quantification of a-syn aggregates per animal of wild-type or eat-2(ad456)worms grown on E. coli or B. subtilismixed-cell lawn. ****p < 0.0001; n = 75 worms

per time point per condition from three independent experiments.

(G) Normalized pha-4 expression levels by qRT-PCR of young adult wild-type or eat-2(ad456)worms grown on the diet conditions shown in (F). **p = 0.0096, n = 3

samples per condition, with three technical replicates each (each sample consisting of �4,000 worms).

(H) Quantification of a-syn aggregates of day 1 adult worms fed on low concentrations of freshly alive or UV-killed E. coli. ****p < 0.0001, n = 25 worms per

condition.

(I) Average a-syn aggregates of worms before and after L4 switching to E. coli, B. subtilis mixed lawns, or UV-killed E. coli 48 h after seeding. L4, larval stage 4;

d1ad, day 1 adult; d3ad, day 3 adult. ****p < 0.0001 comparison versus E. coli; a versus b, ns for E. coli to UV-killed E. coli versus E. coli versus, ****p < 0.0001 for

E. coli to B. subtilis versus E. coli; n = 25 worms per time point per condition. Data shown are mean ± SEM from one representative experiment out of three with

similar results, unless stated otherwise. ns, no significant differences.
We confirmed that B. subtilis mixed lawns induced a state of

DR using the marker pha-4, an ortholog of the FoxA transcription

factors (Panowski et al., 2007): there was a significant increase in

pha-4 levels in animals fed on mixed B. subtilis lawns, but not on

vegetative cells, compared to animals grown on E. coli (Fig-

ure 5D). Furthermore, when we supplemented B. subtilis mixed

lawns with E. coli at a 1:1 ratio, we saw a strong protection

against a-syn aggregation (Figure 5E) in the absence of pha-4

upregulation (Figure 5D). These results suggest that DR is not

responsible for the anti-aggregation effect of vegetative cells,

but it may have an effect when animals are fed on spore-rich

lawns.

DR was previously shown to suppress proteotoxicity in animal

models of polyglutamine and amyloid beta aggregation (Steink-

raus et al., 2008), to modify adverse effects of a-syn on the

autonomic nervous system in mice (Griffioen et al., 2013), and

to alleviate a-syn toxicity in yeast (Guedes et al., 2017). However,

to our knowledge, no direct evidence exists that DR can inhibit

a-syn aggregation in animal models. We therefore tested

whether loss of function of the nicotinic acetylcholine receptor
subunit eat-2, a genetic mimetic of dietary restriction due to

reduced food uptake (Lakowski and Hekimi, 1998; McKay

et al., 2004), was able to suppress a-syn aggregate formation.

Indeed, eat-2(ad456) animals grown on E. coli showed less ag-

gregation in day 1 and day 3 adults, compared to wild-type ani-

mals grown on E. coli (Figure 5F). However, this reduction was

much weaker than the one seen in worms grown on B. subtilis

mixed lawns. In addition, a B. subtilis diet further decreased

the number of aggregates of eat-2 mutants (Figure 5F), without

further increasing pha-4 expression levels (Figure 5G). Similar

effects were obtained with a B. subtilis vegetative cell diet (Fig-

ures S4H and S4I).

We further confirmed that DR is able to inhibit a-syn aggrega-

tion by feeding worms with limited amounts of E. coli killed

by UV, a known experimental way to induce DR in C. elegans

(Greer et al., 2007) (Figures 5H, S4J, and S4K). However, shifting

worms fed ad libitum on E. coli until the L4 stage (or until day 1 of

adulthood) to a DR-inducing UV-killed E. coli condition did not

clear preformed aggregates (Figures 5I and S4L), even though

it inhibited the formation of new aggregates like the probiotic
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diet (Figure 5I). Therefore, DR per se does not fully reproduce the

sum of B. subtilis effects, which include both inhibition and the

clearance of aggregates.

Together, these results reveal that DR has a protective role

against a-syn aggregation, and it may underlie part of the protec-

tive effect triggered by B. subtilis spores. However, vegetative

cells inhibit and dissolve a-syn aggregates through a DR-inde-

pendent mechanism.

DAF-16 Contributes to the Protection of B. subtilis Later
in Adulthood
A C. elegans lifespan extension by B. subtilis was previously

linked to the downregulation of the evolutionarily conserved

ILS pathway (Donato et al., 2017). Decreased signaling of the

insulin growth factor (IGF) receptor DAF-2 (Kenyon et al., 1993;

Kimura et al., 1997) extends lifespan by activating two down-

stream transcription factors, DAF-16/FOXO (Lin et al., 1997;

Ogg et al., 1997) and HSF-1 (Hsu et al., 2003). A reduced ILS

also protects worms from stress conditions such as toxic protein

aggregation of polyglutamine stretches (Hsu et al., 2003; Morley

et al., 2002), amyloid beta (Cohen et al., 2006), and a-syn (Knight

et al., 2014). To determine whether the ILS pathway plays a

role in theB. subtilis-triggered protection against a-syn aggrega-

tion, we used daf-2(e1370) mutant worms with inhibited ILS

signaling (Gems et al., 1998). The daf-2(e1370) a-syn-expressing

animals grown on E. coli showed a strong suppression of aggre-

gates in day 1 and day 3 adults compared to wild-type animals

(Figure 6A), confirming previous reports (Knight et al., 2014).

However, the daf-2 protective effect was significantly less

pronounced than that seen in B. subtilis PXN21-fed wild-

type worms, and the B. subtilis diet further reduced aggregation

levels of daf-2(e1370) animals (Figure 6A). The additive effect

between the B. subtilis diet and daf-2 downregulation indicates

that B. subtilis acts through an ILS-independent pathway.

To further investigate the role of the ILS pathway, we analyzed

the role of DAF-16/FOXO transcription factor and found that

the daf-16(mu86) loss-of-function mutation (Lin et al., 1997) fully

abrogated the daf-2(e1370) protective effect on E. coli (Fig-

ure 6B). In contrast, daf-16(mu86) did not affect the efficiency

of a B. subtilismixed diet to inhibit aggregation (Figure 6B). Simi-

larly, no increase in aggregation levels was observed in day 1

adults in daf-16 mutant worms fed with B. subtilis vegetative

cells (Figure 6C). However, in day 3 adult worms fed on vegeta-

tive cells, loss of DAF-16 function led to a faster increase in

the number of aggregates (Figure 6C), indicating that the later

protection triggered by the vegetative cell diet relies partially

on the activity of DAF-16. The hsf-1(sy441) mutation, which in-

hibits the second major transcription factor downstream of

DAF-2, did not increase aggregation levels when grown on any

B. subtilis diet (Figure 6D).

In conclusion, the effect of B. subtilis on a-syn aggregation is

independent of the ILS pathway in early adults. However, the

protective effect later in adulthood induced by vegetative

B. subtilis cells is mediated in part by the action of DAF-16.

Thus, our results further indicate that B. subtilis spores and

vegetative cells act redundantly through distinct protective

mechanisms, with spores acting likely via PHA-4/DR and vege-

tative cells via DAF-16.
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B. subtilis Inhibits a-Syn Aggregation by Altering
Sphingolipid Metabolism in the Host
To uncover the host response pathways that are modified by

B. subtilis to induce the protective effect, we performed

comparative global transcriptomics analysis (RNA sequencing

[RNA-seq]) to compare young adult animals fed on two

different diets: E. coli OP50 and B. subtilis PXN21 mixed state

(Figure 7A). In addition, since the mixture of E. coli and

B. subtilis retained much of the anti-aggregation effect but

did not induce DR (see Figure 5E), we included this condition

in the transcriptomics experiment to reveal DR-independent

protective mechanisms.

We found that 6,510 genes were differentially expressed by

1.5-fold change or higher in animals fed with B. subtilis

compared to those fed E. coli (false discovery rate [FDR] <

0.05, p value < 0.05) (Table S2). A summary of the top 50 most

differentially expressed genes between B. subtilis- and E. coli-

fed animals, ranked by lowest FDR, is shown in Figure 7B. Sam-

ple clustering showed that the mix of both bacteria exhibited a

gene expression profile closer to that of animals fed on E. coli

than on B. subtilis (Figure S5A). In agreement with this, only

2,291 genes were found to be differentially expressed in this

case (Figure 7C; Table S3). Of these, 343 genes were commonly

upregulated and 359 downregulated in both animals fed with

B. subtilis and the mixture of the two bacteria, compared to

E. coli (Figure 7C; Tables S4 and S5). The RNaseq results

were validated by randomly selecting 10 upregulated and

downregulated genes and testing the level of expression by

qRT-PCR (Figures S5B and S5C). As expected, pha-4 was

significantly upregulated (1.35-fold change) only in animals fed

on B. subtilis, compared with those fed on E. coli (Figure S5D),

but showed no differences in animals fed on the mix of the

two bacteria versus E. coli. No other DR-related transcription

factors were differentially regulated at the transcript level in the

different diets (Figure S5D).

Previous genome-wide screens on C. elegans models have

identified modifiers of a-syn aggregation (Hamamichi et al.,

2008; Knight et al., 2014; van Ham et al., 2008). We intersected

our transcriptomics datasets with these lists and found that a

number of known suppressors of aggregation were upregulated

by the B. subtilis diet (Table S6), indicating that B. subtilis may

impart its effects on a-syn through the activation of multiple pro-

tective pathways.

Next, we performed a Gene Ontology (GO) term analysis of

gene sets affected by the two bacterial diets and found that

708 and 506 biological process (BP) terms were differentially

regulated by B. subtilis and by the mix of the two bacteria,

respectively (Table S7). The summaries of the 50 most signif-

icant non-redundant upregulated GO terms in B. subtilis and

the mix versus E. coli, processed by REduce & VIsualize

Gene Ontology (REVIGO), are shown (Figures 7D and S5E).

Among the top upregulated biological pathways by

B. subtilis PXN21 are immune system processes, protein

localization, redox processes, general metabolism, and, in

particular, lipid metabolism. An expanded analysis of lipid-

related terms revealed that several lipid-metabolism-related

processes are significantly upregulated in both B. subtilis

and the mixed diet, compared to E. coli (Figure 7E).



Figure 6. DAF-16 Contributes to the Protection of B. subtilis in Aging

(A) Quantification of a-syn aggregates in the head of wild-type or daf-2(e1370)worms grown on E. coli or B. subtilis PXN21 mixed-cell lawn. ****p < 0.0001, ***p <

0.001, **p < 0. 01; n R 25 per time point per condition.

(B) Average a-syn aggregates in wild-type, daf-2(e1370), daf-16(mu86), and daf-2;daf-16(mu86) double-mutant worms grown on E. coli or B. subtilis PXN21

mixed-cell lawn (spore-rich). ****p < 0.0001, *p = 0.0358; n R 25 per time point per condition.

(C) Average a-syn aggregates in wild-type and daf-2;daf-16(mu86) worms grown on E. coli or vegetative B. subtilis PXN21 lawn. ****p < 0.0001; n = 25 per time

point per condition.

(D) Average a-syn aggregates in wild-type and hsf-1(sy441)mutant worms grown on E. coli or mixed-cell B. subtilis PXN21 lawns or vegetative-only diet (+ arg).

****p < 0.0001; n = 25 per time point per condition. Data shown are mean ± SEM from one representative experiment out of three with similar results, unless stated

otherwise. ns, no significant differences.
We focused on a specific pathway branch of lipid metabolism,

the sphingolipid metabolism pathway, as it has been proposed

to modify a-syn pathology in PD (Alecu and Bennett, 2019; Gal-

vagnion, 2017; Lin et al., 2019; Plotegher et al., 2019). Ceramide

lipid metabolism is the central hub of the sphingolipid metabolic

pathway and was upregulated by both B. subtilis and mixed

diets, with a p value <0.001 (Figures 7E and S5F). Genes in this

pathway that are upregulated by B. subtilis (Figure S5F; Table

S8) include lagr-1, a C. elegans ortholog of human ceramide

synthase CERS1 (Deng et al., 2008; Jiang et al., 1998), and

asm-3 (Kim and Sun, 2012), an ortholog of human acid sphingo-

myelinase, SMPD1, which hydrolyses sphingomyelin to cer-

amide. Among the downregulated genes, we identified sptl-3,

an ortholog of human SPTLC2, a serine palmitoyltransferase

that catalyzes the first and rate-limiting step of the ceramide

de novo biosynthesis pathway (Miyake et al., 1995).

To address the functional significance of the altered expres-

sion of ceramide pathway genes by B. subtilis, we used loss-

of-function mutations of lagr-1, asm-3, and sptl-3. Loss of the

upregulated genes lagr-1 or asm-3 increased the number of

aggregates in worms continuously grown on B. subtilis (Figures

7F–7I). Conversely, disruption of sptl-3, which was downregu-

lated by B. subtilis, reduced aggregation on the E. coli diet

compared to wild-type worms (Figure 7J).

Sphingolipid metabolism genes were previously reported to

be regulated downstream of eat-2-induced DR (Calvert et al.,

2016). Our data indicate that several of the sphingolipid meta-

bolism genes are regulated also in the B. subtilis feeding

condition that does not induce DR. Thus, we conclude that

both DR-dependent and DR-independent effects of the

B. subtilis diet converge on sphingolipid metabolism. In light of

our findings, we propose that alterations in sphingolipid meta-

bolism triggered by the B. subtilis diet result in a reduction of

a-syn aggregation in C. elegans.
DISCUSSION

The accumulation of misfolded a-syn into pathological aggre-

gates plays a central role in the pathogenesis of PD and other

synucleinopathies (Alafuzoff and Hartikainen, 2017). Significant

effort has been invested into finding ways to suppress the forma-

tion or enhance the clearance of toxic a-syn aggregates as a

treatment for PD (Savitt and Jankovic, 2019), though no such

therapies are available yet. Previous studies suggest that the

presence of distinct groups of bacteria in the gut microbiome

modulate PD pathology (Minato et al., 2017; Sampson et al.,

2016; Scheperjans et al., 2015). However, deciphering the pre-

cise effect of individual bacterial species remains challenging.

In this study, we show that B. subtilis PXN21, a probiotic strain

that is available for human consumption, both inhibits aggrega-

tion and efficiently removes preformed aggregates in a

C. elegans model with ectopic expression of human a-syn.

It was previously reported that biofilm formation and NO

production by B. subtilis confers C. elegans with stress resis-

tance and enhanced longevity (Donato et al., 2017; Smolentseva

et al., 2017). Our results reveal that while these pathways

contribute to the suppression of a-syn later in life, the protective

effect seen earlier in life is independent of these mechanisms. In

young adults, the probiotic acts independently of gut coloniza-

tion and triggers its protective effects partly via the production

of bacterial metabolites other than NO.

We provide evidence that distinct metabolic states of the

bacteria affect the physiology of the host as well as a-syn aggre-

gation in different ways. B. subtilis spores, which are resistant

to digestion and are metabolically inert, induce DR. DR condi-

tions are known to activate the lysosomal autophagy pathway

(Levine and Kroemer, 2008), one of the main systems of a-syn

clearance in cells (Poewe et al., 2017). We find that DR is an

effective mechanism to inhibit the accumulation of a-syn in
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Figure 7. B. subtilis Protects against a-Syn Aggregation by Changing the Sphingolipid Metabolism in the Host

(A) Assay strategy for the comparative transcriptomics experiment.

(B) Heatmap showing the top 50most differentially expressed genes by false discovery rate (FDR) between E. coli andB. subtilisPXN21 or E. coli andB. subtilis:E.

coli mix. A fold change R 1.5, p < 0.05, and FDR < 0.05 were considered for statistical significance.

(C) Venn diagrams showing the overlap between the statistically significant upregulated and downregulated genes inB. subtilisPXN21 versus themix ofB. subtilis

and E. coli diet.

(D) Summary of the top 50 statistically significant non-redundant BP GO terms of B. subtilis PXN21 versus E. coli by log10 p value.

(E) Lipid-metabolism-related BP GO terms upregulated by B. subtilis PXN21 and the mix versus E. coli diets by log10 p value. Commonly upregulated lipid GO

terms (top), B. subtilis exclusive (middle), and exclusive for the mix of B. subtilis and E. coli diet (bottom) are shown. Gray indicates processes not differentially

regulated.

(F–J) Average a-syn aggregates of wild-type or mutant animals for sphingolipid metabolism genes: lagr-1(gk331) fed from the L1 with B. subtilis PXN21 mixed

lawn diet (F) or vegetative cells (G); asm-3(ok1744)mutant animals fed from the L1 with B. subtilis PXN21 mixed lawn diet (H) or vegetative cells (I); sptl-3(ok1927)

mutant animals fed from the L1 with B. subtilis PXN21 mixed lawn diet (J), compared to E. coli. ****p < 0.0001, **p < 0.01, *p < 0.01; ns, no significant differences.

Mean values ± SEM, n = 50 worms per time point per condition from two independent experiments are shown.
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C. elegans and is therefore a likely partial mechanism of action of

B. subtilis spores. In contrast, B. subtilis vegetative cells protect

via a DR-independent mechanism that partly depends on the ac-

tion of DAF-16 in older animals. Downregulation of the ILS

pathway, although implicated in the lifespan-extending effects

of B. subtilis, is not required for the early protection against

a-syn. Therefore, the anti-aggregation properties of B. subtilis

remain, to a large extent, distinct from its anti-aging effects.

Our transcriptomics analysis revealed that part of the probiot-

ic’s effect is mediated by alterations in the sphingolipid meta-

bolism pathway, particularly the regulation of the enzymes

LAGR-1/CERS1 (ceramide synthase), ASM-3/SMPD1 (acid

sphingomyelinase), and SPTL-3/SPTLC2 (serine palmitoyltrans-

ferase). Previous studies suggest that an imbalance of lipids,

including ceramides and sphingolipid intermediates, may

contribute to the pathology of PD. For example, reduced levels

of ceramides occur selectively in brain regions affected by PD

pathology (Abbott et al., 2014). Several genetic risk loci in PD

affect ceramide metabolism and cellular sphingolipid content

(Ferrazza et al., 2016; Gan-Or et al., 2013; Henry et al., 2015;

Lin et al., 2019; Plotegher et al., 2019), including mutations in

ASM-3/SMPD1 (Foo et al., 2013; Gan-Or et al., 2015, 2013; Ylö-

nen et al., 2017) and GBA (the lysosomal glucocerebrosidase).

Furthermore, ASM-3/SMPD1 deficiency in cell-based models

was shown to lead to a-syn accumulation (Alcalay et al., 2019),

whereas inhibition of the Drosophila melanogaster ortholog of

SPTL-3/SPTLC2 was found to suppress a-syn-associated

neurodegenerative phenotypes (Lin et al., 2018). Furthermore,

direct interactions between a-syn and lipids are known to modu-

late the aggregation propensity of this protein both in vitro and

in vivo (Galvagnion, 2017). We propose that the B. subtilis probi-

otic diet in the C. elegans model alters the lipid composition of

the cell, directly affecting a-syn aggregation. Our data further

demonstrate that a simple dietary intervention can concurrently

affect several branches of the sphingolipid pathway, to beneficial

effect.

PD is typified by the presence of intraneuronal a-syn aggrega-

tion and dopaminergic degeneration (Poewe et al., 2017). Our

current study is based on an established C. elegans model that

expresses human a-syn in muscle cells, which allows us to

assess aggregation in vivo. The effects of B. subtilis on the ner-

vous system, as well as its efficacy in mouse models of PD, pre-

sent promising avenues of future investigation. The prospect of

B. subtilis modifying a-syn aggregation in humans could open

exciting possibilities for diet-based, disease-modifying interven-

tions through the manipulation of microbiome composition in the

gastrointestinal tract or the development of drug therapies

based on protective bacterial metabolites.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal antibody anti-a-synuclein BD Biosciences Cat# 610786; RRID: AB_398107

Mouse monoclonal anti-b-actin Sigma-Aldrich Cat# A5441; RRID: AB_476744

Mouse monoclonal anti-b-Tubulin Sigma-Aldrich Cat# T4026; RRID: AB_477577

Rabbit Polyclonal Anti-Mouse Agilent Cat# P0260; RRID: AB_2636929

Bacterial and Virus Strains

E. coli: OP50 CGC RRID:WB-STRAIN:OP50

B. subtilis: probiotic PXN21 Bio-Kult by ADM-Protexin N/A

B. subtilis: NCIB 3610 Marburg, undomesticated BGSC BGSCID: 3A1

B. subtilis: NRS2097 NCIB 3610 DbslA::cmlR Nicola Stanley-Wall (Ostrowski et al.,2011) N/A

B. subtilis: NRS2415 NCIB 3610 DtasA::spcR Nicola Stanley-Wall (Ostrowski et al.,2011) N/A

B. subtilis: NRS2450 NCIB 3610 Deps(A-O)::tetR Nicola Stanley-Wall (Ostrowski et al.,2011) N/A

B. subtilis: NRS2543 NCIB 3610 Deps(A-O)::tetR

DtasA::spcR DbslA::cmlR

Nicola Stanley-Wall (Ostrowski et al.,2011) N/A

B. subtilis: NCIB 3610 amyE Phyper-spank-

mKate2::spcR

Ákos T. Kovács (van Gestel et al., 2014) N/A

B. subtilis: NRS5852 NCIB 3610 amyE::Phyper-

spank-mKate2::spcR

Nicola Stanley-Wall N/A

B. subtilis: NRS6296 NCIB 3610 DnosA::kanR Nicola Stanley-Wall N/A

B. subtilis: NRS6297 NCIB 3610, DphrC::kanR Nicola Stanley-Wall N/A

B. subtilis:168 trpC2; DspoIIE::kanR Addgene-BGSC (Koo et al.,2017) Cat# 1000000115

BGSCID: BKK00640

B. subtilis:168 trpC2; DnosA::kanR Addgene-BGSC (Koo et al.,2017) BGSCID: BKK07630

B. subtilis: JH642 BGSC BGSCID: 1A96

Bacteriophage: Bacillus phage SPP1 Anne Moir (University of Sheffield) N/A

Chemicals, Peptides, and Recombinant Proteins

Agar Formedium Cat# AGA02

Select Agar Thermo Fisher Scientific Cat#30391023

Bacto peptone BD Biosciences Cat# 211677

Sodium Hypochlorite solution (4.00-4.99%) Honeywell Cat# 239305

Ca(NO3)2 Sigma-Aldrich Cat# C1396

CaCl2 Sigma-Aldrich Cat# 449709

Coomassie Brilliant Blue G-250 Thermo Fisher Scientific Cat# 20279

Schaeffer and Fulton Spore Stain Solution A Sigma-Aldrich Cat# 90903

Schaeffer and Fulton Spore Stain Solution B Sigma-Aldrich Cat# 39955

Dichloromethane (DCM) Thermo Fisher Scientific Cat# 402152

Nutrient broth No 3 Sigma-Aldrich Cat# 70149

Dried Milk Powder Marvel N/A

Dithiothreitol (DTT) GE Healthcare Cat# 17-1318-01

Ethanol ACROS Organics Cat# AC615095000

Ethyl acetate Sigma-Aldrich Cat# 319902

EDTA Sigma-Aldrich Cat# 798681

FeCl3 Sigma-Aldrich Cat# 451649

FeSO4 Sigma-Aldrich Cat# 450278

L-glutamic acid monosodium salt monohydrate Sigma-Aldrich Cat# 49621

(Continued on next page)
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Glycerol R 99.5% Thermo Fisher Scientific Cat# BP229-1

HEPES sodium salt Sigma-Aldrich Cat# H7006

Hydrogen peroxide solution Sigma-Aldrich Cat# 216763

Kanamycin Sulfate Corning Cat# 61-176-RG

KCl Sigma-Aldrich Cat# P9541

KH2PO4 ACROS Organics Cat# AC424200025

K2HPO4 ACROS Organics Cat# AC424190025

L-Arginine Alfa Aesar Cat# A15738

Levamisole Hydrochloride MP Biomedicals Cat# 155228

Luminol 97% Sigma-Aldrich Cat# 123072

Luria-Bertani (LB) broth Sigma-Aldrich Cat# L3022

Lysozyme Thermo Fisher Scientific Cat# 89833

MgCl2 Sigma-Aldrich Cat# M8266

MnCl2 Sigma-Aldrich Cat# 244589

MOPS Sigma-Aldrich Cat# M1254

Na2HPO4 ACROS Organics Cat#AC204851000

NaCl Thermo Fisher Scientific Cat# BP358-1

NaF Sigma-Aldrich Cat# S7920

NaOH Thermo Fisher Scientific Cat# S612-3

NativePAGE 4-16% Bis-Tris-gels Thermo Fisher Scientific Cat# BN1002BOX

NativePAGE 20x Running buffer Thermo Fisher Scientific Cat# BN2001

Nitrocellulose membrane 0.2 mm Biorad Cat# 1620112

MAHMA NONOate (NO donor) Sigma-Aldrich Cat# M1555

NuPAGE 4-12% Bis-Tris-gels Invitrogen Cat# NP0322PK2

PageRuler Protein Ladder, 10 to 250 kDa Thermo Fisher Scientific Cat# 26620

PBS Sigma-Aldrich Cat# P4417

P-Coumaric acid Sigma-Aldrich Cat# C9008

Penicillin Streptomycin GIBCO Cat# 15070063

PFA Sigma-Aldrich Cat#

Protease Inhibitor Mix GE Healthcare Cat# 80-6501-23

Proteinase K BioVision Cat# 9211-5

Thiamine hydrochloride Sigma-Aldrich Cat# T4625

Triton X-100 MP Biomedicals Cat# 807423

TWEEN� 20 Sigma-Aldrich Cat# P1379

ZnCl2 Sigma-Aldrich Cat# 229997

Critical Commercial Assays

OneTaq� 2X Master Mix with Standard Buffer New England Biolabs (NEB) Cat# M0482S

GoTaq� G2 Green Master Mix Promega Cat#M782A

QIAquick PCR Purification Kit QIAGEN Cat#28104

Qubit RNA BR kit Thermo Fisher Scientific Cat# Q10210

Quick Start Bradford Protein Assay Kit Bio-Rad Cat# 5000201

Quick-RNA Microprep Kit ZYMO Research Cat# R1050

Q5 High-Fidelity 2X Master Mix NEB Cat# M0492S

SuperScript IV First-Strand Synthesis System Thermo Fisher Scientific Cat# 18091050

TruSeq Stranded mRNA kit Illumina Cat# 20020594

LightCycler� 480 SYBR Green I master Roche Cat# 04707516001

Zymoclean Gel DNA Recovery Kit ZYMO Research Cat# D4001

Deposited Data

C. elegans RNA-Seq reads (fastq files) This study ArrayExpress: E-MTAB-8164

(Continued on next page)
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Experimental Models: Organisms/Strains

C. elegans: N2 Bristol CGC CGCRRID:WB-STRAIN:N2

C. elegans: NL5901 pkIs2386[Punc-

54::a-synuclein::YFP + unc-119(+)]

Ellen Nollen (van Ham et al., 2008) RRID:WB-STRAIN:NL5901

C. elegans: MDH586 daf-2(e1370) III; pkIs2386 This study N/A

C. elegans: MDH585 daf-16(mu86) I; pkIs2386 This study N/A

C. elegans: MDH587 hsf-1(sy441) I; pkIs2386 This study N/A

C. elegans: MDH657 daf-2(e1370) III; daf-16(mu86) I;

pkIs2386

This study N/A

C. elegans: MDH611 eat-2(ad465) II; pkIs2386 This study N/A

C. elegans: MDH711 lagr-1(gk331) I, pkIs2386 This study N/A

C. elegans: MDH724 asm-3(ok1744) IV; pkIs2386 This study N/A

C. elegans: MDH725 sptl-3(ok1927) II; pkIs2386 This study N/A

Oligonucleotides

For information regarding oligonucleotide sequences

used in this study please refer to Table S9

This study Table S9

Software and Algorithms

Cutadapt version cutadapt-1.9.dev2 Martin, 2011 https://cutadapt.readthedocs.io/

en/stable/

EdgeR package version 3.16.5 Lun et al., 2016; Robinson et al., 2010 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

FeatureCounts package version 1.5.3 Liao et al., 2014 http://subread.sourceforge.net

Fiji Schindelin et al., 2012 http://fiji.sc/

GraphPad Prism GraphPad Software, La Jolla

California USA

https://www.graphpad.com

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

Limma package version 3.30.13 of Bioconductor Ritchie et al., 2015 https://bioconductor.org/packages/

release/bioc/html/limma.html

Multiple Experiment Viewer version 4.9.0_r2731 Howe et al., 2010 http://mev.tm4.org/

OASIS 2 Han et al., 2016; Oncotarget 11269 https://sbi.postech.ac.kr/oasis2/

Pathview package version 1.24.0 of Bioconductor. Luo and Brouwer, 2013 https://bioconductor.org/packages/

release/bioc/html/pathview.html

Pheatmap package (R package version 1.0.8.) Kolde, 2015 https://rdrr.io/cran/pheatmap/

Photoshop CC Adobe Systems Inc. https://www.adobe.com/Photoshop

Primer3Plus Untergasser et al., 2007 http://bioinfo.ut.ee/primer3/

R-3.5.1 R Core Team https://www.r-project.org/

SnapGene SnapGene software from GSL Biotech https://www.snapgene.com/

STAR version 2.5.2b Dobin et al., 2013 http://code.google.com/p/rna-star/

Illustrator CC Adobe Systems Inc. https://www.adobe.com/products/

illustrator

WormLab tracking platform MBF Bioscience, Williston, VT USA https://www.mbfbioscience.com/

wormlab
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Maria

Doitsidou (maria.doitsidou@ed.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nematode and bacterial strains
All bacterial and nematode strains used and generated in this study can be found in the Key Resources Table.
Cell Reports 30, 367–380.e1–e7, January 14, 2020 e3

mailto:maria.doitsidou@ed.ac.uk
https://cutadapt.readthedocs.io/en/stable/
https://cutadapt.readthedocs.io/en/stable/
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
http://subread.sourceforge.net
http://fiji.sc/
https://www.graphpad.com
https://imagej.nih.gov/ij/
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
http://mev.tm4.org/
https://sbi.postech.ac.kr/oasis2/
https://bioconductor.org/packages/release/bioc/html/pathview.html
https://bioconductor.org/packages/release/bioc/html/pathview.html
https://rdrr.io/cran/pheatmap/
https://www.adobe.com/Photoshop
http://bioinfo.ut.ee/primer3/
https://www.r-project.org/
https://www.snapgene.com/
http://code.google.com/p/rna-star/
https://www.adobe.com/products/illustrator
https://www.adobe.com/products/illustrator
https://www.mbfbioscience.com/wormlab
https://www.mbfbioscience.com/wormlab


C. elegans NL5901 pkIs2386[Punc-54::a-synuclein::YFP + unc-119(+)] was kindly provided by Ellen Nollen. C. elegans N2 and all

the mutant strains used for the generation of the different pkIs2386 derived strains were obtained from the Caenorhabditis Genetics

Center (CGC) (https://cgc.umn.edu) and the Million Mutant collection (Thompson et al., 2013).

Strains obtained from the CGC are: CB1370 daf-2(e1370), CF1038 daf-16(mu86), PS3551 hsf-1(sy441), DA465 eat-2(ad465),

VC747 lagr-1(gk331), RB1579 sptl-3(ok1927), RB1487 asm-3(ok1744).

The molecular identity of these alleles is as follows: daf-2(e1370) (Gems et al., 1998) is a missense reference allele, daf-16(mu86)

(Lin et al., 1997) and lagr-1(gk331) (Deng et al., 2008) are deletion, loss of function alleles. eat-2(ad456) (Lakowski and Hekimi, 1998)

and hsf1(sy441) (Hajdu-Cronin et al., 2004) are nonsense alleles. asm-3(ok1744) is a complex substitution allele removing most of the

last 7 exons, sptl-3(ok1927) is a deletion removing exons 5 to 9.

The following strains were generated in this study: MDH586 daf-2(e1370) III; pkIs2386, MDH585 daf-16(mu86) I; pkIs2386,

MDH587 hsf-1(sy441) I; pkIs2386, MDH657 daf-2(e1370) III; daf-16(mu86) I; pkIs2386, MDH614 daf-2(gk390525) III; pkIs2386,

MDH611 eat-2(ad465) II; pkIs2386, MDH711 lagr-1(gk331) I, pkIs2386, MDH725 sptl-3(ok1927) II; pkIs2386, MDH724 asm-

3(ok1744) IV; pkIs2386.

Several bacterial strains were used in this study, E. coli OP50 was obtained from the CGC. The B. subtilis PXN21 strain (Colenutt

and Cutting, 2014) was isolated from Bio-Kult Advanced Multi-Strain Formulation dietary supplement (https://www.bio-kult.com,

ADM-Protexin) and genotyped using universal 16S rRNA primers (Lane, 1991) (See Table S9 for primers). The wild-type undomes-

ticated B. subtilis NCIB 3610 and the laboratory 168 and JH64102 strains were obtained from the Bacillus Genetic Stock Center

(BGSC) (http://www.bgsc.org). 168-based deletion strain DspoIIE was obtained from Addgene (www.addgene.org) as part of the

B. subtilis Single Gene Deletion Library with Kanamycin resistance (Koo et al., 2017). The NCIB 3610 deficient derivatives strains

DtasA::cml, DbslA::spc, Deps(A-O)::tet, Dnos::kan and DphrC::kan and the triple DbslA::spc; eps(A-O)::tet; tasA::::cml, were ob-

tained from the Nicola Stanley-Wall lab. SPP1 phage transductions were used to introduce DNA into B. subtilis NCIB 3610 strains

from 168 derivatives (Verhamme et al., 2007). Drug resistance cassettes are indicated as follows: cml, chloramphenicol resistance;

kan, kanamycin resistance; erm, erythromycin resistance; tet, tetracycline resistance and spc, spectinomycin resistance.

METHOD DETAILS

C. elegans growth conditions
Nematodes were handled according to standard practices (Brenner, 1974; Stiernagle, 2006). Worm strains were grown on NGM

plates for experiments with mixed spores and vegetative cells, NGM plus 0.5 mM of arginine for experiments with vegetative cells

(to avoid sporulation), or NGM without peptone for experiments with spores only (to avoid germination). All strains were grown at

20�C unless otherwise indicated. Worms were synchronized by the alkaline hypochlorite method (Stiernagle, 2006) and left nutating

overnight to hatch in M9 supplemented with kanamycin 50 mg/ mL (Sigma) and 1x antibiotic-antimycotic (Thermo Fisher Scientific).

For the continuous feeding regime, synchronized L1 worms were plated, grown until day 1 adults, and then transferred to new plates

every two days. For the food switch experiments, worms were grown on E. coli OP50 until L4 stage, then shifted to a new diet and

transferred to new plates every two days thereafter.

Bacterial growth conditions
Bacterial cultures were grown until an OD600 of 1 in Luria-Bertani (LB) media at 37�C with agitation (220 rpm). 330 mL of a 2x concen-

trated culture were seeded on 55mm unvented NGMplates. Seeded plates were left to dry and grow for 3 days at room temperature

for experiments with mixed spores and vegetative cells, or overnight for experiments with vegetative cells only. To obtain spore-pure

bacterial cultures, PXN21 B. subtilis bacteria were grown in Schaeffer’s sporulation medium (SSM) as previously described (Donato

et al., 2017) (containing per liter: 8 g of Difco Bacto-nutrient broth, 10mL of 10%w/v KCl, 10mL of 1.2%w/vMgSO4$7H2O,�1.50mL

of 1MNaOH up to pH 7.6, 1.0mL of 1MCa(NO3)2, 1.0mL of 0.010MMnCl2, and 1.0mL of 1mMFeSO4). Briefly, bacteria were grown

in SSM medium at 37 �C for 48 h. The culture was heat-treated for 20 min at 80 �C to kill vegetative cells and then spun down. To

obtain pure spores, the heat-treated pelleted cells was treated three times with lysozyme (25 mg/mL; for 30 min at 37 �C), washed

each time with cold deionised water and centrifuged until the culture consisted of only phase-bright spores. The efficiency of the

purification was tested by the Schaeffer Fulton staining method.

Characterization of biofilm formation by B. subtilis strains
B. subtilis biofilms were grown on MSgg medium (5 mM potassium phosphate and 100 mM MOPS at pH 7.0 supplemented with

2 mM MgCl2, 700 mM CaCl2, 50 mM MnCl2, 50 mM FeCl3, 1 mM ZnCl2, 2 mM thiamine, 0.5% glycerol, 0.5% glutamate) (Branda

et al., 2001) solidified with 1.5% select agar (Invitrogen) at 30�C at the indicated time points. To set up a biofilm, a 3 mL aliquot of

LB medium was inoculated with an individual colony taken from an overnight plate and grown at 37�C to an OD600 of 1. Then

5 mL of the culture was placed onto an MSgg plate which was incubated at 30�C for morphology and hydrophobicity studies. Images

of colony biofilms were recorded using a Leica MZ16FA stereomicroscope. Biofilm hydrophobicity was determined by placing a 5 ml

droplet of water on the upper surface of biofilms that had been grown for 48 hours at 30�C (Hobley et al., 2013). The water droplet was

allowed to equilibrate for 5 minutes prior to imaging using a ThetaLite TL100 optical tensiometer (Biolin Scientific).
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Experiments with killed bacteria
For dietary restriction (DR) with killed E. coliOP50 experiments, bacterial cultures were grown as previously described until an OD600

of 1. DRwas induced by seeding 200 mL of a 1x concentrated culture on 55mm unvented NGM plate and the same amount but twice

concentrated (2x final) was used for normal growth conditions. E. coli culture was completely spread in the plates and left to dry and

grow for 24 h or 48 h. Bacteria were killed by UV irradiation (Watson et al., 2014) (254 nm, 5 J/cm2), using a UV crosslinker (CL 508,

Cleaver Scientific).

For the experiments with killed B. subtilis PXN21, bacterial cultures were grown as previously described until an OD600 of 1 to have

only vegetative cells present. 200 mL of a 2x concentrated culture were completely spread on 55 cmunventedNGM+0.5mMarginine

plate and left to dry and grow for only 24h. Bacteria were killed by a combination of UV irradiation (254 nm, 5 J/cm2) and antibiotics

treatment (200 mg/mL kanamycin and 1mg/mL carbenicillin) for 3h before transferring the worms onto them (Smolentseva et al.,

2017). In all the conditions, the efficiency of the killing protocol was tested by sampling and streaking the killed bacteria in LB

agar plates and incubated overnight at 37�C.

Experiments with bacterial extracts
B. subtilis PXN21was inoculated from a fresh colony into 1 L of LB and left to grow at 37�C and 220 rpm for 48 h. Under this condition,

the cultures of this strain are very saturated and reach a final OD600 of 4-5. Bacteria were pelleted at 14000 rpm for 30 min at 4�C and

the supernatant was separated from the pellet. The supernatant was consecutively filtered twice with 0.45 mm and 0.22 mm vacuum

cellulose acetate filters to completely get rid of the cells. The pellet was washed twice with 250 mL of cold water and then once with

60% cold ethanol, centrifuged each time at 5000 rpm and 4�C and resuspended with vortex. The final clean pellet was resuspended

in 100 mL of PBS and the bacteria were killed with 3 flash freeze-thaw cycles with liquid nitrogen/water bath at 60�C, followed by 1 h

of incubationwith lysozyme (25 mg/mL) on ice. Cells were finally disrupted by sonication using 5 cycles of 30 s at 20Hz (MSESoniprep

150), with incubation on ice for 30 s between cycles to avoid overheating. For both the supernatant and the cell lysate, 3 sequential

organic extractions with 1:2 ratio of supernatant to diclorometane (DCM) and 1:10 of cell lysate and DCM were performed, respec-

tively. The organic phases were dried separately to fully remove the DCM using an EZ-2 Elite personal evaporator (GeneVac), in the

very low BP mode. The evaporator was maintained at 40�C throughout the process and 15 mL glass tubes rinsed clean with DCM

were used for concentrating the organic phase. The final dry extracts were resuspended in 1mL of ethyl acetate with vortex and kept

it at �80�C afterward. Since we started with 1L of material, both extracts were considered to be 1000x concentrated. Appropriate

dilutions from the concentrated stock were prepared in ethyl acetate, mixed in a glass falcon tube with 100 ml of water and spread on

the top of E. coli seeded 35 mm plates. Ethyl acetate alone was added to E. coli as a vehicle-only control.

Nitric Oxide (NO) experiments
Freshly prepared NGM agar plates were placed open in a tissue culture hood for 30 min to dry and facilitate rapid absorption. Next,

50 mL of 2x OD600 = 1 bacterial culture was spread atop the plate, and then a freshly prepared solution of 200 mMNO donor MAHMA

NONOate (Sigma) in water was applied to NGM agar plates to achieve a final concentration of 2 mM, and 4 mM. Immediately after-

ward, �70 synchronized L1s worms were quickly transferred to the plate.

This protocol was shown to be efficient to extend C. elegans lifespan, even though MAHMA NONOate has a very short half-life at

pH 6 (�1 min) (Gusarov et al., 2013). For control experiments, the NO donor was substituted with an equal amount of distilled water.

For measurements of the effect of NO on a-synuclein aggregation, worms weremoved to freshly prepared NO plates every day start-

ing from L1 and scored at day 1 and 3 of adulthood.

Quantification of aggregation
NL5901 pkIs2386[Punc-54::a-synuclein::YFP + unc-119(+)] worms were anaesthetized using 50 mM Levamisole (Sigma) and high

magnification (40x objective) z stack images of the head region were obtained by using a Zeiss Axio imager 2 microscope. Fluores-

cent spots bigger than 1 mm2, present in the region between the tip of head and the end of the pharyngeal bulb, were quantifiedmanu-

ally, assisted by the Fiji analyze particle function applied to maximum intensity projections of the z stacks. To do so, background

subtraction (rolling ball radius of 10 pixels) and adjustment of the threshold (automatic) were applied to the images before the analysis

of the number of particles. The total area of the aggregates was extracted from the particle analysis with Fiji and themean aggregates

size per diet was simply calculated considering the total number of aggregates in the corresponding area. 72 hours after plating of

the L1s was counted as day 1 adult. At least 25 worms were quantified per time point per condition. Each experiment was performed

in triplicate, unless stated otherwise.

Locomotion analysis
Thrashing assays were performed as described before (Pujols et al., 2018), with somemodifications.C. elegansNL5901wormswere

synchronized as described above and were cultured at 20�C on E. coli OP50 strain until they reached L4 developmental stage. They

were then either remained on OP50 diet or transferred to B. subtilis PXN21 (regular 3 days seeded protocol). Thrashing was assayed

on days 1, 3, 5, 7 and 10 of adulthood. 5 animals were placed in a 40 ml drop of M9 buffer on an unseeded plate. Movies of thrashing

worms were recorded for 3 min using the WormLab tracking platform (MBF Biosciences) at 7.5 frames/second. Waves per minute

were obtained by analyzing the last minute of each video (allowing the animals to recover for 120 s after picking them into the drop).
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Average frequencies were determined every 0.4 s. Experiments were performed in duplicate. 10 videos per condition and 5 animals

per video were analyzed (a total of 100 worms per condition).

Lifespan assays
Lifespan assays were performed at 20�C as previously described with modifications (Greer et al., 2007). Briefly, 200-250 synchro-

nized L1s were placed on to corresponding food conditions and were, starting at d1Ad, transferred every 2 days onto fresh food

and assessed for survival. Worms that failed to respond to the transfer process and repeated gentle prodding were declared

dead and removed. Individuals that were missing or needed to be removed due to internal hatching were marked as censored.

Experiments were performed in triplicate.

Quantification of life-traits
To determine developmental growth rates, 40-65 worms were mounted on a 3%w/v agarose pad in a drop of 50 mM levamisole and

their developmental stages were assessed under compoundmicroscope (DIC, 40Xmagnification) at exactly 48 h, 60 h, and 72 h after

the synchronized L1s were placed on food. Individuals were staged as early L4, late L4, or adult by using the 9 stages of vulva devel-

opment as reference points as described before (Mok et al., 2015). Stages L4.1 to L4.4 were considered as early L4, L4.5 to L4.9

considered as late L4 and young adult category was based on a fully formed vulva. For size measurements, worms were photo-

graphed at 10x and the images analyzed using Fiji (ImageJ). A segmented line was drawn along the center line of each the worm,

quantified with the measure function, and then calibrated based on the scale bar. To assess the egg-laying rate and brood size,

L4 worms were singled on to 10 separate plates per condition and transferred every 24 hours on to fresh plates until day 5 adult.

The numbers of progeny resulting from each day of egg-laying were counted 2 days later.

Immunoblot analysis
Day 1 adult worms (�4000) were rinsedwithM9 + 0.01%Triton X-100, washed 3 times to remove bacteria, pelleted and resuspended

in 400 mL of HEPES-based detergent buffer (50 mM HEPES pH 8, 0.2% v/v Triton x 100, 150 mM NaCl, 10 mM NaF, 5 mM DTT) + 1x

Protease Inhibitor Mix (GE Healthcare 80-6501-23). Worms were centrifuged at 14000 rpm for 1 min, flash freeze-thawed 5 times

with liquid nitrogen/water bath at 80�C and kept at �80�C. Worm pellets were disrupted mechanically using a TissueLyser II

(QIAGEN) for 4 cycles of 40 s at 30 Hz, with 200ul of 0.7mm zirconia beads (Biospec). The lysates were centrifuged at 14000 rpm

for 1 min and total amount of protein was quantified by Bradford assay (Bio-Rad). NuPAGE (4%–12%) Bis-Tris-gels (Invitrogen)

were used to analyze a-synuclein (from 3 mg total protein) and b-actin (from 20 mg total protein) under denaturing conditions as

previously described (Landré et al., 2017). Following transfer to nitrocellulose (PALL), membranes intended for a-synuclein analysis

were fixed for 10 min using 4% PFA and washed 3 times with PBS containing 0.1% v/v tween-20 prior to blocking. The immunoblots

were probed using anti-a-synuclein monoclonal antibody (BD Biosciences) 1:2000 and anti-b-actin (Sigma) 1:500 with appropriate

HRP-labeled secondary antibodies (DAKO) at 1:2000. Bound antibodies where detected using ECL.

For the blots corresponding to the time course experiments, 50 worms (in duplicates) from day 1, day 3, day 5, day 7 and day 10

adults in the different diets were manually picked into 50 ml of M9 + 0.01% Triton X-100, washed 3 times to remove bacteria and re-

suspended in 4xLDS sample buffer supplemented with 10mMdithiothreitol. Worms were flash freeze on dry ice, sonicated at 4�C for

10 cycles of 40 s at intensity II (Bioruptor� Plus) and boiled at 95�C for 10 min. The lysates were centrifuged at 14000 rpm for 1 min

and around 2.5 ul of samples from day 1 adults to day 10 adults were loaded in NuPAGE (4%–12%) Bis-Tris-gels (Invitrogen) and

transfer to nitrocellulose (PALL). Membranes were probed with 1:6000 of anti-b-tubulin monoclonal antibody (Sigma) to adjust the

volumes manually. Tubulin was specifically selected for these blots because of the higher sensitivity versus actin for samples with

low protein content. A second blot was performed by using the previously adjusted volumes for the samples and probed with

both 1:6000 of the anti-b-tubulin antibody and 1:2000 of the anti-a-synuclein antibody.

Native protein analysis was carried out using NativePAGE 4%–16% Bis-Tris-gels (Invitrogen) loaded with 30 mg total protein in 1x

NativePAGE sample buffer (Invitrogen) containing 0.5% w/v Coomassie Brilliant Blue G-250 per lane. The gel was run at 150V for 2

hours in 1x NativePAGE running buffer (minus G-250; Invitrogen). Proteins where subsequently transferred to nitrocellulose and

a-synuclein was detected as described above.

Nematode RNA Sequencing
2000 young adult worms (approximately 50-55h after plating of the L1s) grown on E. coli OP50, B. subtilis PXN21 or a 1:1 mix of

E. coli: B. subtilis, were collected and washed three times with M9 + 0.01% Triton X-100 buffer. The pellet was resuspended in

400 ml of RNA Lysis buffer (Quick-RNA Microprep Kit, Zymo Research) and worms were mechanically disrupted as previously

described and kept at �80�C. Total RNA was extracted from the samples according to the manufacturer’s instructions. Three inde-

pendent biological replicates were used for each experimental condition.

RNA samples were sent to Edinburgh Genomics for QC check and sequencing. Briefly, quality check of the samples was

performed using Qubit with the broad range RNA kit (Thermo Fisher Scientific) and Tapestation 4200 with the RNA Screentape

for eukaryotic RNA analysis (Agilent). Libraries were prepared from 5 mg of total RNA using the TruSeq Stranded mRNA kit (Illumina),

and then validated. Samples were pooled to create 9 multiplexed DNA libraries, which were paired-end sequenced on an Illumina

HiSeq 4000 platform. At least 290M + 290M 75 nt PE reads were obtained (one lane).
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Sequence reads were trimmed using Cutadapt (version cutadapt-1.9.dev2; Martin, 2011) for quality at the 30 end using a quality

threshold of 30 and for adaptor sequences of the TruSeq stranded mRNA kit (AGATCGGAAGAGC), with a minimum length of 50.

After trimming, reads were aligned against the C. elegans (WBcel235_ens8) genome from Ensembl release 84 with STAR) (version

2.5.2b; Dobin et al., 2013) with default parameters, except for specifying paired-end reads and the option ‘‘–outSAMtype BAM

Unsorted.’’ Count tables for the different feature levels were obtained from bam files using the featureCounts (Liao et al., 2014) pack-

age version 1.5.3 with custom R scripts. Strandness was set to ‘reverse’ and a minimum alignment quality of 10 was specified. Gene

names and other fields were derived from input annotation and added to the count/expression matrices. Count tables at the gene

level presented a good correlation overall between replicates and samples.

Differential gene expression analysis was conducted for 17,708 genes whose expression was above a minimum ‘‘counts per

million’’ (CPM) threshold level (CPM 0.1) in at least three samples. Differential gene expression was estimated using the edgeR pack-

age (Lun et al., 2016; Robinson et al., 2010) version 3.16.5 and resulting p values were adjusted using a false discovery rate (FDR)

criterion. Geneswith p values lower than 0.05, FDR values lower than 0.05 and a log2 fold change > 0.58were considered to be differ-

entially expressed. Heatmaps were generated using R with the pheatmap package (Kolde, 2015) (R package version 1.0.8.) or MeV

(Multiple Experiment Viewer) version 4.9.0_r2731 (Howe et al., 2010).

Differential gene set analysis was carried out with the ROAST method (Wu et al., 2010) from the Limma package (version 3.30.13;

Ritchie et al., 2015) of Bioconductor, using the samemodels and contrasts as used in differential expression. The following gene sets

were used: Gene Ontology Biological Process, Molecular Function and Cellular Component downloaded from Ensembl version 91

(Ashburner et al., 2000; Subramanian et al., 2005); Reactome Pathways (Croft et al., 2014) (Reactome, downloaded January 2018).

ROAST was executed using 9,999 rotations (randomizations). Each gene set was annotated with those genes individually differential

(in the same direction as indicated for the gene set) to an unadjusted p value of 0.05. KEGG pathways were visualized utilizing the

pathview package (Luo and Brouwer, 2013) version 1.24.0 of Bioconductor.

Reverse transcription and quantitative real-time PCR (qRT-PCR)
For quantitative real time PCR, 3 mg of total RNA and poly-T(V) (20 nt long) and random hexamers (6 nt long) were used for cDNA

synthesis using SuperScript III Reverse Transcriptase (Thermo Fisher Scientific) and following manufacturer’s instructions. Quanti-

tative PCR analyses were performed with 1:50 dilutions of the cDNAs using LightCycler 480 SYBR Green I Master mix and a Light-

Cycler 480 II (Roche), following manufacturer’s instructions. Expression of all the genes was normalized to the geometric mean of

cdc-42 and F25B5.5 references genes. Expression of these genes was not variable between E. coli and B. subtilis in the RNaseq

results. Data was analyzed by using the standard curve method and normalized to E. coli or E. coli arginine samples, respectively.

For primer sequences see Table S9, all the primers were ordered from Sigma.

QUANTIFICATION AND STATISTICAL ANALYSIS

All assays were performed in triplicate, unless stated otherwise. Graphs and statistical analysis were performed using Graphpad

Prism 7. Data shown are presented as mean ± SEM. Statistical significance was calculated by unpaired t test, one-way or two-

way ANOVA and Bonferroni multiple comparisons post hoc test, with p < 0.05 considered statistically significant. Statistical signif-

icance levels are denoted as follows: ****p < 0.0001; ***p < 0.001; **p < 0.01 and *p < 0.05. All statistical tests were two tailed where

applicable.

For the expression levels by qRT-PCR, 3 independent biological samples with technical triplicates were analyzed by using two-way

ANOVA with Bonferroni’s post hoc test of logNRQ.

ImageJ and Fiji were used to quantify the number and size of the aggregates as described above.

For the lifespan assay, Kaplan-Meier survival curves were generated using the statistical analysis software Graphpad Prism 7.

Comparisons were made using the Log-rank (Mantel-Cox) test in both Graphpad Prism 7 and the online survival analysis tool OASIS

2 (Han et al., 2016).

For the immunoblots, quantification of the signals was performed using the gel analysis function of ImageJ and a-synuclein inten-

sity was normalized against b-actin/tubulin signals.

Locomotor analysis was performed using WormLab tracking platform and software (MBF Biosciences).

DATA AND CODE AVAILABILITY

The accession number for the C. elegans RNA sequencing data reported in this paper is ArrayExpress: E-MTAB-8164.

The authors declare that all data supporting the findings of this study are available within the article and its Supplementary Infor-

mation files or upon request.

Code is also available either online where indicated or upon request.
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Figure S1 | B. subtilis PNX21 strain prevents and reverses α-synuclein aggregation in the C. elegans 

model NL5901 (Punc-54::α-syn::YFP). Related to Figure 1. (A) Normalised protein levels of α-syn vs 

β-actin signals shown in Fig. 1D.  (B) Quantification of α-syn aggregates larger than 1 μm2 per animal in 

the head region for the food-switching experiment (food switch at L4, see Fig. 1G). Most of the 

reversibility effect is reached 24 h after shifting to a B. subtilis PXN21 diet. ****P<0.0001 vs E. coli; a 

vs b, ****P<0.0001; n=25 worms per time point per condition. (C) Quantification of the total area of all 

aggregates larger than 1 μm2 and the mean aggregates size per animal in the head region shown in Fig. 

1G. (D) Expression levels by qRT-PCR of unc-54 and α-syn transcripts from day 1 adult worms on E. 

coli or 24 h after switching to B. subtilis PXN21 mixed lawns, normalized to the E. coli diet. Expression 

level of each gene in E. coli was taken as 1. ***P<0.0004; n=3 per condition, with 3 technical replicates 

each (n represents a population of ~4000 worms). (E) SDS/PAGE from α-syn transgenic and wild type 

day 1 adult worms before and after the food-switching (food switch at L4, see Fig. 1G). Arrow with * 

indicates α-syn monomeric isoform. (F) Normalised protein levels of α-syn vs β-actin signals shown in E. 

(G, H) Quantification of α-syn aggregates in worms before and after food-switching at day 1 adult, from 

E. coli to B. subtilis PXN21. Aggregates progressively clear at 24 h, 48 h and 72 h after shifting to a B. 

subtilis PXN21 diet (H). ****P<0.0001 vs E. coli (G); *P=0.015, ****P<0.0001 (H); n=25 worms per 

time point per condition. Data shown are mean ± SEM from one representative experiment out of three 

with similar results, unless stated otherwise. ns: no significant differences. 

 



 
 

Figure S2 | Biofilm formation and active metabolites contribute to the B. subtilis effect. Related to 

Figure 3.  (A) Biofilm formation ability of B. subtilis PXN21 with respect to other well characterized B. 

subtilis NCIB 3160 strains. In the upper panels, representative B. subtilis strains in solid MSgg biofilm-

inducing medium are shown. PXN21 is able to form highly complex and elaborate biofilm structures 

similar to the undomesticated NCIB 3610. These structures are severely disrupted in the isogenic NCIB 

3610 deletion strains ΔtasA, ΔbslA, and Δesp(A-O). Hydrophobicity tests (an important assessment of 

biofilm function), performed by adding a drop of water on top of the biofilm structure, are shown for each 

strain on the lower panels of each image and quantified on the table (bottom left). Biofilms with contact 

angles above 90° are consider hydrophobic. Scale bars=0.5 cm. Mean ± SEM, n=25 biofilm/strain from 5 

independent experiments are shown. (B) Average α-syn aggregation of worms fed with E. coli or 

switched from E. coli to B. subtilis wild isolate NCBI 3610 or its matrix biofilm-deficient derivatives, 

ΔtasA, ΔbslA, Δeps(A-O) and the triple mutant (see Fig. 3A). ****P<0.0001, **P=0.0049; n≥25 worms 

per time point per condition. (C) Average α-syn aggregation in worms fed with either E. coli, switched 

from E. coli to B. subtilis NCBI 3610, or the NO and CSF deficient derivatives ΔnosA and ΔphrC, 

respectively (see Fig. 3B). ****P<0.0001, **P<0.01 and ***P=0.0001; n≥25 worms per time point per 

condition. Data shown are mean ± SEM from one representative experiment out of three with similar 

results, unless stated otherwise. ns: no significant differences. 

  



 
Figure S3 | B. subtilis spores and vegetative cells both protect against α-synuclein aggregation. 

Related to Figure 4. (A) Phenotypes of B. subtilis PXN21 tested in this work. Upper panels show 

Schaeffer Fulton staining of B. subtilis in different growing conditions. Scale bars=50 µm. In regular 

NGM medium and 3 days after seeding, B. subtilis forms a mix of spores (blue spheres) and vegetative 

cells (pink rods, left). In NGM supplemented with arginine (+ arg) and only 24 h after seeding, vegetative 

cells are predominant (middle). The spore-only condition is achieved by using a minimal NGM medium 

without peptone (- pep) and a short drying time (24 h) to prevent germination (upper right). Day 1 adult 

α-syn transgenic worms (fed from L1) with their corresponding diets are shown at the bottom. (B) 

Quantification of α-syn aggregates per animal in the head region for the food-switching experiment from 

E. coli to different B. subtilis PXN21 diets (see Fig. 4C). Most of the reversibility effect is reached only 

24 h after shifting to any of the B. subtilis diets. ****P<0.0001; n=25 worms per time point per condition. 

(C) Expression levels by qRT-PCR of unc-54 and α-syn transcripts from day 1 adult worms grown 

continuously on E. coli or B. subtilis PXN21 vegetative cells and after the switching to B. subtilis 

vegetative cells. Expression level of each gene was normalised to E. coli levels, which was taken as 1. 

n=3 per condition, with 3 technical replicates each (n represents a population of ~4000 worms). (D) 

SDS/PAGE from α-syn transgenic and wild type day 1 adult worms fed on a vegetative B. subtilis diet 

from L1 or L4, compared to E. coli (food switch at L4, expression levels shown in D). Arrow with * 

indicates α-syn monomeric isoform. (E) Normalised quantification of protein levels of α-syn vs β-actin 

signals shown in D. (F) Average number of α-syn aggregates in worms grown on E. coli, B. subtilis 

PNX21, B. subtilis 168, and its derivative ΔspoIIE. As shown in Fig. 4D for pure vegetative cells, in 

mixed lawns, wild type and ΔspoIIE B. subtilis 168 strains both protect from α-syn aggregation similarly 

to the PXN21 strain. n=50 worms per time point per condition. Data shown are mean ± SEM from one 

representative experiment out of three with similar results, unless stated otherwise. ns: no significant 

differences. 



  
 

Figure S4 | B. subtilis reduces α-synuclein aggregation through dietary restriction dependent and 

independent mechanisms. Related to Figure 5. (A) Undigested spores visible in the gut of day 1 adult 

α-syn transgenic worms fed on B. subtilis PXN21 mixed cell-lawns (Nomarski images). (B) Day 1 adult 

worms grown on a B. subtilis PNX21 spores-only diet from L1 larval stage show severe signs of DR 

(strong developmental delay, very few eggs, and small size) (right) in comparison with animals fed on a 

mixed (left) or vegetative exclusive diet (middle). (C) Developmental stage at 60 h of α-syn-expressing 

worms grown on E. coli or B. subtilis mixed-cell lawns or vegetative cells (nearly 100% of worms have 

reached adult stage by 60 h). n≥100 worms per condition from two biological replicates are shown. (D-G) 

Quantification of brood size from L4 stage by day (D, F), or as total number (E, G), of worms fed with 

the different diets. (D, F) *P=0.0113, **P=0.0019, ****P<0.0001. (E, G) ***P=0.0009, ****P=0.0001. 

n≥34 worms per condition from two biological replicates are shown. (H) Average number of α-syn 

aggregates in wild type or eat-2(ad456) worms grown on E. coli or vegetative B. subtilis lawns. Note that 

eat-2 mutant worms grown on E. coli supplemented with arginine no longer show reduced levels of 

aggregation in day 1 adults compared to wild type. ****P<0.0001; n=50 worms per time point per 

condition from two biological replicates are shown. (I) pha-4 expression levels quantified by qRT-PCR 

and normalized to E. coli levels of worms grown on the diet conditions shown in H. eat-2 or wild type 

worms grown on arginine supplemented plates show no pha-4 upregulation in either bacterial diet 

compared to E. coli. The pha-4 expression level in worms fed with E. coli was taken as 1. n=3 per 

condition, with 3 technical replicates each (n represents a population of ~4000 worms). (J) Quantification 

of α-syn aggregates in day 1 adult worms fed on 2x concentrated, alive or UV-killed E. coli, 48h after 

seeding. ****P<0.0001; n=25 worms per condition. (K) Quantification of α-syn aggregates in day 1 adult 

worms fed on different concentrations of alive or UV-killed E. coli, 24 h after seeding. ****P<0.0001, 



n≥15 worms per condition. Worms grown on 2x concentrated UV-killed E. coli show no further reduction 

in aggregation compared to the diluted UV-killed, indicating that the protective effect of the less 

concentrated UV-killed E. coli is not due to reduced pathogenicity but due to dietary restriction. (L) 

Average α-syn aggregates of worms before and after day 1 adult switching to regular or dietary restriction 

inducing conditions. ****P<0.0001 indicates comparison of each diet vs its respective E. coli control; a 

vs b, **P=0.0026 for E. coli to UV-killed E. coli vs E. coli; ****P=0.0001 for E. coli to B. subtilis vs E. 

coli; n=25 worms per time point per condition. Data shown are mean ± SEM from one representative 

experiment out of three with similar results, unless stated otherwise. ns: no significant differences. 
 
 
  



 
Figure S5 | B. subtilis protects against α-synuclein aggregation by changing the sphingolipid 

metabolism in the host. Related to Figure 7. (A) Heatmap showing the hierarchical clustering of 

samples by normalised expression values for all samples, generated by pheatmap. The 1:1 mixture of B. 

subtilis PXN21: E. coli OP50 shows a gene expression profile closer to E. coli than B. subtilis. (B, C) 

Normalised log2 fold-change expression levels of 10 random upregulated (B) and downregulated (C) 

genes from the RNAseq by qRT-PCR from α-syn-expressing young adult worms (approx. 50-52 h after 

hatching). Expression level of each gene in worms fed with E. coli was taken as 1. Dashed lines indicate 

the 1.5-fold change threshold (log2 FC 0.58 and -0.58). *P<0.05, **P<0.01 and **P<0.001; n=3 per 

condition, with 3 technical replicates each (n represents a population of ~4000 worms). (D) Normalised 

expression levels, as quantified by qRT-PCR, for a selection of dietary restriction transcription factors 

from young adult worms. Expression level of each gene in worms fed with E. coli was taken as 1. The 

bottom table shows the extracted values from the RNAseq analysis. **P=0.034; n=3 per condition, with 3 



technical replicates each (n represents a population of ~4000 worms). (E) Summary of the top 50 non-

redundant BP GO terms of B. subtilis:E. coli mix vs E. coli by log10 P value. (F) Visualization of B. 

subtilis and B. subtilis: E. coli mix vs E. coli beta scores over the sphingolipid pathway generated by 

Pathview. The left and right portions of a gene box represent B. subtilis and B. subtilis:E. coli beta scores, 

respectively. Red indicates a positive beta score, blue indicates a negative beta score, and grey marks 

genes that are neither positively nor negatively selected. White gene boxes correspond to genes that have 

not been found in the C. elegans genome. Data shown are mean ± SEM from one representative 

experiment out of three with similar results, unless stated otherwise. ns: no significant differences. 

  



Table S9. | Oligonucleotides used in this study. Related to the STAR Methods. 
 

PCR genotyping of C. elegans mutants 
Primer name Primer sequence 
daf16(mu86) Fw1 TCCGTCACAATCTGTCTCTTCA 
daf16(mu86) Rv1 AAGTGTCGAGTGAAGGGAGC 
daf16(mu86) Fw2 CGACAAGACAGGCGGTATCC 
daf16(mu86) Rv2 TATCCTCTTCTTGGCTCCGC 
daf2(e1370) Fw GAGTCGCTCAAGTTTTGCCAT 
daf2(e1370) Rv CTCGACGTTCTCAACATCCG 
hsf-1(sy441) Fw CCGCAACAAGACTATTCGGG 
hsf-1(sy441) Rw ACAAATCCTCGGCTCCATCA 
eat-2(ad465) Fw TATGACCCAGTAGAACGGCC 
eat-2(ad465) Rv TGGAAGTAGTTGGTGGAGGG 
lagr-1(gk331) Fw AGGTGTCGGAGGTCGATG 
lagr-1(gk331) Rv AGTACCCGAATCGTTCTGG 
sptl-3(ok1927) Fw1 AGGTTCTACAACATGGGTGG 
sptl-3(ok1927) Rv1 GTTCCAGCAGAGTATCGACG 
sptl-3(ok1927) Fw2 CTTCTCGCATCGATCTGGAG 
sptl-3(ok1927) Rv2 TTGGGCTAACTCCACACAAC 
asm-3(ok1744) Fw1 ACGACCCGGAGATTAGTAGG 
asm-3(ok1744) Fw1 GACTTCGCGCGTAATTGAAG 
asm-3(ok1744) Fw2 TGTGGACCCCATCAATTGTG 
asm-3(ok1744) Rv2 GGGACACGGTGTGGTATAAC 
  

PCR genotyping of bacterial mutants 
Primer name Primer sequence 
Universal16S-27Fseq-Fw AGAGTTTGATCMTGGCTCAG 
Universal16S-907Rseq-Rv CCGTCAATTCMTTTRAGTTT 
UP2-B. subtilis 168 library Fw GAGGGAGGAAAGGCAGGA 
UP3-B. subtilis 168 library-Rv CGCCGTATCTGTGCTCTC 
SpoIIE-B. subtilis 168 Fw CGAAGATTTCTTTGGTATTG 
SpoIIE-B. subtilis 168 Rv AATGTCCGTTGTTCACATTCA 
tasA-B. subtilis NCIB3610 Fw1 GGAAACAGATACAAAGGACAGC 
tasA-B. subtilis NCIB3610 Rv1 CATCGAGACGGCCCAGTATATG 
tasA-B. subtilis NCIB3610 Rv2 TCTTCTGGAGATGTATTGCTGC 
eps(A-O)-B. subtilis NCIB3610 Fw TCATTAACAGAAAGGGGCGC 
eps(A-O)-B. subtilis NCIB3610 Rv1 AACACTAGTGCAGGACCAG 
eps(A-O)-B. subtilis NCIB3610 Rv2 TTCCGAAGCCTTCGCCTC 
bslA- B. subtilis NCIB3610 Fw GTAAAGCAGAAAACGCCTGG 
bslA- B. subtilis NCIB3610 Rv1 GTTCCCCCGTTCGTGTTTG 
bslA- B. subtilis NCIB3610 Rv2 TCTGTGTTGTACGCAAGGC 
phrC-B. subtilis NCIB3610 Fw TCGAACGATGTTTCCAGTAC 
phrC-B. subtilis NCIB3610 Rv CTTGATCATTGTGGGAACTGC 
nosA-B. subtilis NCIB3610 Fw GTTTTCCAGGAAGTTGCAGA 
nosA-B. subtilis NCIB3610 Rv TGGCGGTTTCAATATGGTGA 



   

Quantitative real time PCR (qRT-PCR)   
Primer name Primer sequence 
cdc-42 Fw CTGCTGGACAGGAAGATTACG 
cdc-42 Rv CTCGGACATTCTCGAATGAAG  
F25B5.5 Fw GAAAGCAGTGTTCGACAATTCG 
F25B5.5 Rv CCTATGAGTTGCGCTTTCAATG 
unc-54 Fw  AAGACCCAGAAGAAGCAGGTTG 
unc-54 Rv GATCGCATCTTTGAGAGGGAGT 
alfasyn Fw ATGTAGGCTCCAAAACCAAGGA 
alfasyn Rv TGCTCCTCCAACATTTGTCACT 
pha-4 Fw CGGCTGTTAATCACAGTCAACC 
pha-4 Rv GGTAAGGAGACGCGTATTGACC 
sir-2.1 Fw GTTCGTCTTGCTCATCAAATGC 
sir-2.1 Rv GCTCGTTGCAAGTCCAGATGTA 
aak-2 Fw GAGGCGAGTATTGAGAAAATGG 
aak-2 Rv AGTCTGGGAAAGCTTAGCTCCT 
acs-17 Fw GTAGAGGCATTGCAAAAGGAGT 
acs-17 Fw TTCTTTTGAGCTTCAAGGCTTC 
asp-6 Fw GATTCGGACCATCATGGATTCT 
asp-6 Rv CGAATCCCATTCTCTTGTTTCC 
C28H8.5 Fw CCGAATCAAGTGAAGTTTAGGC 
C28H8.5 Rv TCACGGAACATAATTCGAACAG 
cpt-3 Fw GTACAATAGCCCGTTCCTTGAC 
cpt-3 Rv CAATGGAGTTTGTCATGTTTGG 
ctl1-3 Fw CGACTGGAGATGTTGATCGTTA 
ctl1-3 Rv AGCACTTTCTCCCAGAACTGAC 
cyp-34A7 Fw GACGAGGAAACGTTCAAAAATC 
cyp-34A7 Rv TCAAATACAGCTCAGCTTTTGC 
F56H6.9 Fw CATGCAGCTATCTCTGGGTAGA 
F56H6.9 Rv TGCACAATATGTTTTCCTGTCC 
lagr-1 Fw GACAATCGTGAATGGGACACAA 
lagr-1 Rv GTTCTTCGGTTTAAGATGGCAC 
T25B9.2 Fw GCTGGATCTTCAAATGGTTATCCGC 
T25B9.2 Rv CAATACTAAACACAGCCGCTGTA 
acdh-2 Fw GGATCAAAATGGGGAATCAGTA 
acdh-2 Rv GATCTCGATCCACAATGAAACA 
acs-11 Fw GATATTAAGGCTTGGTGCAAGG 
acs-11 Rv CACTTTTCCAGTCACTGTCAGC 
gpd-3 Fw CACACTTTGTCAAGCTCGTCTC 
gpd-3 Rv TAGGCCTTGGTAGCAATGTAGG 
R09H3.3 Fw  CAACTCTCAGCCATCGTACCAC 
R09H3.3 Rv GTCGGTTTCCTGTTGGTCTCTC 
sdz-35 Fw ACGAAACAATCCAACAAAATCC 
sdz-35 Rv TATCCTCCTCCAACTTTTCCAA 
sod-3 Fw ACCTTCAAAGGAGCTGATGGAC 



sod-3 Rv AGCCTTGAACCGCAATAGTGAT 
ugt-44 Fw AGATTTGGAAAACCACATGGAC 
ugt-44 Rv GCTCTTAGAACCTTCGAAACGA 
ver-4 Fw  ACGTTCACACAAAAATCGGATG 
ver-4 Rv  TCAAATACAGCTCAGCTTTTGC 
W03F11.1 Fw CAACGTAGCTGCGGAGAAG 
W03F11.1 Rv TTAACCTCATTTGGTGGGTAGG 
hcf-1 Fw ATTGCTGCAAGAAATGAAAAGG 
hcf-1 Rv AAACGAGCTCTCTTTTGCTGAC 
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