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SUMMARY

cis-Regulatory communication is crucial in
mammalian development and is thought to be
restricted by the spatial partitioning of the genome
in topologically associating domains (TADs). Here,
we discovered that the Xist locus is regulated by
sequences in the neighboring TAD. In particular,
the promoter of the noncoding RNA Linx (LinxP)
acts as a long-range silencer and influences the
choice of X chromosome to be inactivated. This
is independent of Linx transcription and indepen-
dent of any effect on Tsix, the antisense regulator
of Xist that shares the same TAD as Linx. Unlike
Tsix, LinxP is well conserved across mammals,
suggesting an ancestral mechanism for random
monoallelic Xist regulation. When introduced in
the same TAD as Xist, LinxP switches from a
silencer to an enhancer. Our study uncovers an un-
suspected regulatory axis for X chromosome inac-
tivation and a class of cis-regulatory effects that
may exploit TAD partitioning to modulate develop-
mental decisions.
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INTRODUCTION

Expression of most X-linked genes in placental mammals is

equalized in XX and XY individuals through X chromosome inac-

tivation (XCI). This involves transcriptional silencing of one of

the two X chromosomes during female development (Lyon,

1961). In mice, XCI is triggered by upregulation of the long non-

coding RNA (lncRNA) Xist, which is conserved across placental

mammals and is expressed in female somatic cells from either

the paternal or maternal inactive X chromosome (reviewed in

Galupa and Heard, 2018). Embryonic XCI can be recapitulated

ex vivo in differentiating mouse embryonic stem cells (mESCs).

These represent a powerful system to study the regulatory

mechanisms of XCI, since Xist transcription is repressed in

the pluripotent, undifferentiated state, while upon differentia-

tion, Xist is robustly upregulated from one X chromosome in

XX mESCs.

How the initial choice to inactivate one of two X chromosomes

is made remains an open question. Aminimal regulatory network

has recently been proposed (Mutzel et al., 2019), but the under-

lying molecular actors and mechanisms remain unknown. In

mice, several genetic loci influence Xist expression in cis,

including the elusive X-controlling element (Xce) (Cattanach

and Papworth, 1981) as well as several control elements within

the X-inactivation center (Xic) (for review, see Galupa and Heard,
rs. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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2015). These include Tsix, the antisense repressor of Xist, and its

enhancer, Xite; deleting either of these loci skews XCI entirely or

partially, respectively, in favor of themutant allele (Lee, 2000; Lee

and Lu, 1999; Ogawa and Lee, 2003; Sado et al., 2001). Tsix

function seems to be mouse specific (Migeon et al., 2001,

2002), and both Tsix and Xite are poorly conserved across

placental mammals (Galupa and Heard, 2018), suggesting that

other cis-regulatory elements are probably implicated in the

regulation of choice across mammals.

The set of genomic elements that participate in Xist cis regula-

tion at the onset of random XCI is still unknown. The longest

single-copy transgenes tested (�460 kb), including Xist, Tsix,

and Xite, failed to induce Xist upregulation in differentiating

female mESCs (Heard et al., 1999), suggesting that further cis

regulators exist. Chromosome conformation analysis of the

murine Xic (Nora et al., 2012) revealed that the Xist/Tsix locus

lies at the boundary between two topologically associating

domains (TADs), which in total span �850 kb (Figure 1A). TADs

spatially partition mammalian genomes (Dixon et al., 2012;

Nora et al., 2012) and represent a structural scale of chromo-

somes at which functional properties such as transcriptional

co-regulation and promoter-enhancer communication are

maximized (Zhan et al., 2017). The boundary at the Xist/Tsix lo-

cus, which is conserved in mouse and human (Galupa and

Heard, 2018), seems to partition two different cis-regulatory

landscapes (van Bemmel et al., 2019; Nora et al., 2012). Genes

within each of the two Xic-TADs show opposite functions

in the regulation of Xist as well as opposite transcriptional

behaviors during mESC differentiation (Nora et al., 2012). The

‘‘Xist-TAD’’ (�550 kb) contains the Xist promoter and some of

its known positive regulators, such as Ftx (Furlan et al., 2018),

which all become upregulated during differentiation; this

domain has probably evolved as a hub of positive regulators of

Xist. On the other hand, the ‘‘Tsix-TAD’’ (�300 kb) includes loci

that seem to have evolved as negative cis regulators of Xist to

modulate XCI choice, such as the Tsix promoter and Xite; genes

within this TAD are downregulated during differentiation (Nora

et al., 2012).

Previous transgenic studies in vivo defined an interval within

the Tsix-TAD that seems important for Tsix expression in cis

(Figure 1B; see figure legend); this region excludes Xite and the
Figure 1. The Tsix-TAD Harbors Important Elements for Both Tsix and

(A) Topological organization of the Xic; the Xist/Tsix locus lies at the boundary be

(B) Targeting strategy for deleting the �245-kb region included in the transgene T

the inner cell mass of mouse blastocysts (Nora et al., 2012); both transgenes inc

(C) Gene expression analysis during differentiation. Data are normalized to wild-ty

for each genotype.

(D) RNA FISH for Huwe1 (X-linked gene) and Xist (exonic probe) on mESCs differe

and represents an average from two independent clones (SD = 0.07%). Scale ba

(E) Cross used for analysis of RNA allelic ratios in female hybrid embryos. The ta

(F and G) RNA allelic ratios for Xist (F) and Atp7a (G), an X-linked gene. Each black

using the Mann-Whitney test (****p < 0.0001). Reverse cross shown in Figure S1

(H) Schematic representation of the XGTC female line (129/Cast), which harbor

mCherry replacing Tsix exon-1. We generated D245 kb on the Cast allele.

(I and J) Cytometry profiles of mCherry (I) and EGFP (J) at day 0 and day 2 of

(normalized to wild-type day 0) or (J) percentage of EGFP-positive cells, based on

replicates.D245-kb data represent an average of two independent clones, five exp

two-tailed t test (**p < 0.01; ***p < 0.001; ****p < 0.0001).
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Tsix promoter, but harbors a poorly characterized lncRNA locus,

Linx, the in vivo expression of which is restricted to cells that will

undergo random XCI (Nora et al., 2012). Linx binds pluripotency

factors such as Nanog and Oct4, and its expression in mESCs

is downregulated during differentiation (Nora et al., 2012). The

patterns of expression of Linx in mESCs and during develop-

ment, together with the fact that it shares the same TAD as

Tsix, led to the suggestion that Linx might be a regulator of

Tsix (Giorgetti et al., 2014; Nora et al., 2012). However, the role

of Linx in the regulation of XCI was not so far addressed.

Here, we genetically dissect the contribution of the Tsix-TAD

as well as different elements within it, in particular of the

Linx locus, to the regulation of Tsix and Xist during random

XCI. Our results reveal that the cis-regulatory landscape of

Xist is not restricted to its own TAD but includes elements

located in the adjacent TAD. We find that the Tsix-TAD is impor-

tant for Tsix regulation as expected but that it is also critical for

regulating Xist in a Tsix-independent manner. We show that

this occurs, at least in part, via the Linx locus, which harbors

cis-regulatory elements that modulate Xist expression and

XCI choice; this Xist-regulatory action of Linx is not via the non-

coding Linx transcript. Instead, we define a cis-regulatory DNA

element, which unlike Tsix is conserved across placental

mammals.

RESULTS

The Tsix-TAD Regulates Xist Expression and XCI
Independently of Tsix
To determine whether the Tsix-TAD harbors essential elements

for endogenous Tsix and Xist regulation, we deleted a 245-kb re-

gion encompassing all the loci within the Tsix-TAD except Xite

and Tsix (Figure 1B). This deletion does not seem to disrupt the

TAD boundary or the Xist-TAD (Figure S1A). Transcriptional

profiling of both control and D245-kb male mESCs during differ-

entiation revealed that Xist expression, which is normally very

low in male mESCs, was aberrantly upregulated in the mutants

upon differentiation (10-fold after 2 days of differentiation; Fig-

ure 1C). This was associated with Xist cloud formation in �6%

of mutant male cells, which is not observed in wild-type male

mESCs (Figure 1D). Concomitantly, Xite and Tsix expression
Xist Regulation

tween two TADs.

g53, but not in Tg80 (Heard et al., 1999). Tg53, but not Tg80, expresses Tsix in

lude the Xite element.

pe day 0 for each gene, and represents the average of two biological replicates

ntiated to day 1.5. Percentage of cells with Xist RNA accumulation is indicated

r, 2 mm.

ble summarizes the number of embryos collected.

dot corresponds to a single female embryo. Statistical analysis was performed

F.

s a double knockin on the Cast allele, with EGFP replacing Xist exon-1 and

differentiation. On the right, (I) median fluorescence intensity (FI) of mCherry

illustrated threshold. Wild-type data represent an average of five experimental

erimental replicates for each. Statistical analysis was performed using a paired
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Figure 2. The Linx Locus Harbors cis-Regulatory Elements that Control XCI Choice

(A) ATAC-seq data for the Tsix-TAD region in differentiating XXmESCs. For each time point, results of peak calling are represented by graymarks below the data.

Green marks depict differential peak analysis. Identical results were found for day 0 versus day 2 and day 1 versus day 2 (p < 0.01) within the region of interest,

while no differential peaks were found for day 0 versus day 1. Gray box highlights the promoter of Linx, the only differential peak within the D245-kb region.

Normalized data are shown for one replicate (second replicate in Figure S2A); peak analysis was performed on both replicates. See STAR Methods for more

details.

(B) The Linx locus and its chromatin features (see STAR Methods for sources of datasets represented). The position of introns and exons is based on Nora et al.

(2012) and mESC RNA Scripture (Guttman et al., 2010). Targeted region LinxP (�2 kb) is indicated.

(legend continued on next page)

Molecular Cell 77, 352–367, January 16, 2020 355



were reduced (Figure 1C). Expression levels of markers for plu-

ripotency, differentiation, and proliferation were not affected

(Figures S1B–S1D). Therefore, the D245-kb region contains ele-

ments that repress Xist and/or activate Xite and Tsix, either

directly or indirectly.

To understand whether the 245-kb deletion affects random

XCI, we analyzed heterozygous D245-kb female ESCs (Fig-

ure S1E) and postimplantation embryos derived from polymor-

phic mouse strains (Figure 1E). Allelic ratio analyses showed

that the presence of the D245-kb region skews Xist expression

in favor of the mutant allele (0.88 versus 0.56, p < 0.001; Figures

1F and S1F) and triggers preferential inactivation in cis, as

evaluated by the expression of an X-linked gene, Atp7a (Figures

1G and S1F). Early differentiating female mESCs also displayed

preferential expression of Xist from the D245-kb allele (Fig-

ure S1E). We conclude that this 245-kb region is critical for con-

trolling Xist upregulation and choice during the initiation of

random XCI (see also the notes in the Figure S1 legend).

We next assessed whether the D245-kb allele affects Xist

expression via dysregulation of its antisense repressor Tsix

(Lee and Lu, 1999; Lee et al., 1999; Luikenhuis et al., 2001; Stav-

ropoulos et al., 2001). For this, we used a system that uncouples

Tsix and Xist regulation; in the Xist-GFP/Tsix-mCherry (XGTC)

female mESC line (Loos et al., 2016), Tsix and Xist are both

truncated on the same chromosome and unable to repress

each other. Tsix transcription is prematurely truncated, so

it does not repress the Xist promoter in cis, and Xist transcrip-

tion is also prematurely truncated, so there is no Xist RNA to

silence Tsix expression in cis. It is still possible, however, to

monitor the activity of the Tsix and Xist thanks to fluorescent

reporters cloned downstream of each promoter. The other X

chromosome in this line remains unmodified. We deleted the

245-kb region on the Xist-GFP/Tsix-mCherry allele in this

female mESC line (Figure 1H). We found that mCherry (Tsix)

levels were markedly reduced in D245-kb XGTC cells

compared to controls, before and after differentiation (Figure 1I).

The D245-kb allele thus influences Tsix expression, and this

is not a result of aberrant Xist activation and Xist RNA silencing

(absent in this system). However, we found that GFP (Xist)

levels were also affected, with a significantly higher proportion

of cells upregulating GFP from theD245-kb allele upon differen-

tiation (66% versus 38%; p < 0.001) (Figure 1J). Given the

absence of Tsix/Xist mutual regulation in this cell line, Xist

upregulation cannot be a result of Tsix downregulation. These

results indicate that the Tsix-TAD contains not only regulators

of Tsix but also elements that repress Xist independently of
(C) Allelic quantification of Xist RNA by pyrosequencing at day 4 of differentiation. N

ratios are shown from one or the other allele, depending on themutant clone that is

(six biological replicates). Statistical analysis was performed using a two-tailed p

(D) Determining which allele is more frequently coated by Xist RNA using RNA/DN

129 allele (Masui et al., 2011). X chromosomes are identified by using a probe for

(two biological replicates, more than 80 cells per genotype counted for each). St

(E and I) Crosses used for analysis of RNA allelic ratios in female hybrid embryos

(F and G) RNA allelic ratios for Xist (F) and Atp7a (G), an X-linked gene. Each black

using a two-tailed t test (*p < 0.05; **p < 0.01). Reverse cross shown in Figure S3

(H) Inversion of the LinxP element.

(J) Analysis of Xist RNA allelic ratios. Each black dot represents the ratio for a sing

Analysis of Atp7a RNA allelic ratios and reverse cross is shown in Figure S3G.

356 Molecular Cell 77, 352–367, January 16, 2020
Tsix. This occurs despite the fact that the Xist promoter is

located in the adjacent TAD.

LinxHarbors cis-Regulatory Elements thatModulate XCI
Choice Independently of Linx Transcription or RNA
Next, we set out to define the elements within the D245-kb

region that could account for the misregulation of Xist on the

one hand and Tsix on the other (which would ultimately affect

Xist as well; in fact, Xist upregulation in the D245-kb allele is

most likely a consequence of both downregulation of Tsix and

loss of other regulatory elements that act on Xist in a Tsix-inde-

pendent manner). Within the 245-kb interval, the only sequences

previously implicated in the regulation of XCI are Tsx, which

stimulates Tsix expression but the deletion of which only mildly

affects Xist (Anguera et al., 2011), and Linx, the function of which

has not been investigated genetically (Nora et al., 2012). To

identify putative candidate cis-regulatory elements in this region

that could account for the dramatic skewing of XCI in the D245-

kb allele, we performed the assay for transposase-accessible

chromatin using sequencing (ATAC-seq) (Buenrostro et al.,

2013) in differentiating XX cells (day 0, day 1, and day 2) (Figures

2A and S2A). We found strong open-chromatin sites at all known

promoters within the 245-kb interval, as well as at an intergenic,

non-annotated region between Chic1 and Tsx. This region dis-

plays chromatin marks of active transcription (e.g., H3K27Ac),

hereby named as putative enhancer element Orix. Deletion of

Orix in mESC or in mice did not reveal any significant effect on

Tsix or Xist expression (Figures S2B–S2D).

None of the identified ATAC-seq peaks within the 245-kb

region (including Orix) showed significant changes during differ-

entiation, except the promoter region of Linx, which showed

reduced accessibility at day 2 compared to day 0 or day 1 (p <

0.01; Figure 2A). The dynamic behavior of the Linx promoter

at the onset of XCI, together with its proposed role in regulating

Tsix, prompted us to further investigate the Linx locus in the

context of random XCI regulation. We abrogated Linx transcrip-

tion and RNA by deleting a �2-kb region centered on Linx TSS

(DLinxP) in male and female mESCs, as well as in mice (Figures

2B and S3A–S3C; see also the note in the Figure S3 legend).

Differentiating (day 4) DLinxP-heterozygous polymorphic female

mESCs displayed modest but significant skewing in Xist allelic

ratios in favor of the mutant allele (1.2-fold, p < 0.01; Figure 2C),

similar to the intermediate Xce alleles reported to date (Galupa

and Heard, 2015). Our results were consistent in both clones

analyzed, regardless of the strain origin of the mutated allele.

We also detected preferential Xist cloud formation on the DLinxP
ote that each clone harbors the deletion in a different allele and Xist RNA allelic

being compared. Data are presented asmeans, and error bars represent SEM

aired t test with Bonferroni’s correction (**p < 0.01).

A FISH. The two alleles can be distinguished due to a TetO array present on the

the Tsix/Xist region. Data are presented as means, and error bars represent SD

atistical analysis was performed using a chi-square test (*p < 0.05).

. The table summarizes the number of embryos collected.

dot corresponds to a single female embryo. Statistical analysis was performed

E.

le female embryo. Statistical analysis was performed using a two-tailed t test.



chromosome by RNA-DNA fluorescence in situ hybridization

(FISH) (Figure 2D), implying skewed XCI choice. We observed

similar results in three independent mutant clones generated in

isogenic female mESCs (Figure S3D). Analysis of Xist allelic

ratios in postimplantation heterozygous female embryos also

revealed a slight but significant preference for Xist expression

from the DLinxP allele (0.54 versus 0.48, p < 0.01; Figures 2E,

2F, and S3E) and corresponding preferential Atp7a inactivation

(0.59 versus 0.64, p < 0.01; Figures 2G and S3E). We conclude

that LinxP is a negative cis regulator of Xist that modulates the

probability of XCI choice. We found very similar results for

another element within Linx, the LinxE element (Figures S2E–

S2G and the note in the Figure S2 legend). To distinguish the

contribution of the Linx transcript/transcription from the

LinxP element itself, we inverted LinxP in mice and mESCs

(Figure 2H), which similarly to DLinxP abolished Linx lncRNA

and transcription across the Linx locus (Figure S3F). Unlike

DLinxP, heterozygous LinxP-inv female embryos did not show

bias of Xist or Atp7a allelic ratios compared to wild type (Figures

2I, 2J, and S3G). Together, these results imply that transcrip-

tion across the Linx locus or the Linx lncRNA is not mediating

the effect of the LinxP deletion in Xist regulation (see also the

note in the Figure S3 legend); these effects are therefore most

likely a consequence of losing important cis-regulatory genomic

elements, which seem to work in an orientation-independent

manner. LinxP (and LinxE) thus acts as a cis-regulatory element

that negatively modulates Xist expression during differentiation

and influences choice at the onset of XCI. Xist expression is

affected to a greater extent in D245-kb mutants than in DLinxP

mutants, indicating that other regulators remain to be

discovered.

The LinxP Element RepressesXist Independently of Tsix
Given that Linx shares the same TAD as Tsix, we next explored

whether LinxP modulates XCI choice by acting as a classic

enhancer of Tsix, and therefore negatively affecting Xist expres-

sion. However, the LinxP deletion did not downregulate Tsix

expression in differentiating male mESCs (Figure 3A; see also

the first note in the Figure S4 legend). In fact, in the undifferenti-

ated state (day 0), Tsix is slightly upregulated in DLinxP mutants

(Figures 3A and S4A), in line with previous observations that

Linx and Tsix expression levels from the same allele are anti-

correlated (Giorgetti et al., 2014). Together, our results argue

against a role for LinxP as an active enhancer of Tsix expression.

In female mESCs (day 0), Tsix allelic ratios are also not affected

by LinxP heterozygous deletion (Figure 3B). However, we did

detect modest but significant differences in Xist allelic ratios

prior to differentiation (Figure 3B), implying that the effects on

Xist might precede effects on Tsix. This raises the possibility

that Linx regulates Xist in a Tsix-independent manner, which

could account, at least partially, for the effects observed with

the D245-kb allele. Differences in Xist allelic ratios between

mutant and wild-type alleles became stronger upon differentia-

tion (Figure 3B). Tsix allelic ratios eventually became significantly

different as well (Figure 3B), which may be due to silencing in cis

by Xist RNA. To uncouple Tsix and Xist regulation, we generated

heterozygous DLinxP mutants in the XGTC cell line (Figure 3C).

Cherry (Tsix) levels were slightly upregulated in the DLinxP
XGTC cells compared to controls at day 0 and day 2 (Figure 3D),

consistent with the results on DLinxP male mESCs (Figure 3A)

and again arguing against a role for LinxP as an enhancer of

Tsix. However, the proportion of cells upregulating GFP from

the DLinxP allele upon differentiation was slightly but signifi-

cantly increased (38% versus 30%, p = 0.008) (Figure 3G), sup-

porting that LinxP represses Xist in cis independently of Tsix. We

have thus identified a specific element within the Tsix-TAD that

regulates Xist, but not via Tsix. Moreover, this controlling element

acts as long-range cis repressor, not as an enhancer, to regulate

the Xist promoter �170 kb away in the adjacent TAD.

Topological Changes Associated with Linx Expression
Are Not Involved in Xist Regulation
Distal regulatory elements are generally thought to act on their

target genes through physical contacts. A major regulator of

these contacts is the protein CTCF (Nora et al., 2017). The Linx

locus harbors three CTCF-bound sites between the regulatory

elements LinxP and LinxE (Figure 4A), which anchor strong loops

with other CTCF sites within the Tsix-TAD (Giorgetti et al., 2014;

Nora et al., 2012). To explore a possible role for these sites in

mediating the regulation of Xist by LinxP/LinxE, we deleted a

large intronic interval containing the CTCF sites in male ESCs

(DLinx-int1, �51 kb) and mice (DLinx-CBS, �25 kb) (Figure 4A).

Chromosome conformation capture carbon copy (5C) analysis

of the mutant mESCs revealed disruption of local 3D organiza-

tion. Increased contacts were found between the Linx 30 end re-

gion and the Chic1 locus, which harbors CTCF sites in conver-

gent orientation to those within the Linx 30 end region

(Figure 4B). Furthermore, the Linx 30 end region lost contacts

with Xite (Figure 4B) and displayed decreased basal contacts

throughout the Xist-TAD (Figure 4C, black arrow). The interaction

frequencies were reduced between LinxE and the Xist promoter

and unaltered between LinxP and the Xist promoter (Figure S6A).

However, in heterozygous female embryos, we did not observe

any effect on Xist or Atp7a allelic ratios (Figures 4D, S5A, and

S5B). This indicates that Linx-mediated regulation of Xist does

not require the intronic CTCF sites and can operate in the context

of a disrupted chromatin topology of the Tsix- and Xist-TADs.

We thenwished to determinewhether LinxP itself could directly

contact the Xist promoter prior or during XCI initiation. To obtain

high-resolution interaction profiles for Linx and Xist promoters,

we performed Capture-C (Hughes et al., 2014) in differentiating

female ESCs (days 0, 1, 2, and 4). We observed no preferential

interaction peakswithXistwhen capturing the Linxpromoter (Fig-

ure 4E) or vice versa (Figure 4F); in fact, their topological land-

scapes seem rather stable during early differentiation. We also

investigated the global organization of the Xic-TADs at the onset

of XCI, by performing 5C on the same samples, but we found that

the structure of the Xic-TADs remained mostly unaffected upon

differentiation (Figure S5C). Together, these data do not reveal

any differentiation-specific differences in the topological organi-

zation of the Xic that could explain how LinxP regulates the Xist

promoter during the initiation of XCI.

Finally, we wondered whether the DLinxP allele itself could be

affecting the structural landscape of the Xic and thereby influ-

encing Xist expression in cis. We performed 5C on wild-type

andmutantDLinxPmalemESCs as well as LinxP-inv andDLinxE
Molecular Cell 77, 352–367, January 16, 2020 357
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Figure 3. The LinxP Element Is Not an Enhancer of Tsix but Regulates Xist Expression

(A) Gene expression analysis during differentiation. Data are normalized to wild-type day 0 for each gene, and represents the average of two biological replicates

for each genotype.

(B) Allelic quantification of Xist (top) and Tsix (bottom) RNA during early differentiation. See legend of Figure 2C for more information on the clones. Data are

presented as means and error bars represent SEM (six biological replicates). Statistical analysis was performed using a two-tailed paired t test with Bonferroni’s

correction (**p < 0.01).

(C) XGTC female line (129/Cast) as in Figure 1H. We generated DLinxP mutant clones on the Cast allele.

(D and E) Median fluorescence intensity (FI) of mCherry (normalized to WT, day 0) or percentage of EGFP positive cells (as in Figure 1J). Wild-type data represent

an average of five wild-type clones, with four experimental replicates for each. DLinxP data represent an average of five independent clones, with four exper-

imental replicates for each. Statistical analysis was performed using a paired two-tailed t test (**p < 0.01; ***p < 0.001; ****p < 0.0001).
male mESCs for comparison. Differential analysis of 5C maps

comparing DLinxE to wild-type cells revealed no obvious alter-

ations in the structural organization of the Xic TADs (Figures

4G and S5D), even though DLinxE leads to skewing in Xist

expression (Figures S2F and S2G). However, DLinxP led to

marked differences in contact frequencies throughout the Xic-

TADs, in particular a gain of contacts between the Tsix- and

the Xist-TADs (Figures 4H, 4J, and S5D). Similar results were

observed for the LinxP-inv allele (Figures 4I, 4J, and S5D),

implying the involvement of Linx transcription and/or Linx

lncRNA in the structural changes observed. To further test this

hypothesis, without disturbing the LinxP element, we knocked
358 Molecular Cell 77, 352–367, January 16, 2020
in a poly(A) cassette downstream of LinxP, which abolishes

Linx transcription (Figures S6B and S6C). 5C analysis revealed

that early truncation of Linx transcription also led to a significant

gain of contacts between the Tsix- and Xist-TADs (Figures S6D

and S6E), further supporting that loss Linx transcription or

lncRNA is associated with the structural phenotype. We note,

however, that this gain is not as high as in the LinxP deletion or

inversion, raising the possibility that the LinxP element itself

might also contribute to the Xic topological organization. These

changes, however, are not correlated with an effect on Xist regu-

lation, as the LinxP-inv allele does not impact Xist expression or

XCI choice (Figures 2J and S3G). The interaction frequency
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(legend on next page)
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between LinxP and the Xist promoter in the Linx-inv allele does

not seem to be significantly altered (Figure S6A); this could be

the reason for not seeing an effect on Xist regulation in this mu-

tants, if we are to assume that the interaction frequency between

LinxP and Xist is important for how LinxP regulates Xist. Our data

do not allow us to conclude whether this is indeed the case, and

this assumption remains an open question that merits further

investigation. In conclusion, our data show that the Linx locus

is independently involved, on the one hand, in helping to shape

Xic folding via its transcription or lncRNA (at least partly) and,

on the other hand, in modulating Xist expression and XCI choice

via its cis-regulatory elements.

The LinxP Element Acts as a cis Activator of Xist When
Sharing the Same TAD
To further explore how LinxP might regulate Xist, we performed

knockins of LinxP (�2 kb) into the Xist-TAD, in polymorphic fe-

male cells, and we determined allelic ratios of Xist expression

from the modified or wild-type X chromosomes. We inserted

LinxP at two different, independent locations within the Xist-

TAD: one was between Jpx and Ftx (Figure 5A), �60 kb away

from the Xist promoter and within the high-frequency contact re-

gion upstream of Xist (see Figure 1A), and the other was between

Ftx and Xpct (Figure 5B), �170 kb away from the Xist promoter,

which corresponds to the same distance between the endoge-

nous LinxP and the Xist promoter. In both locations, LinxP was

inserted in both orientations and included a transcriptional stop

cassette to prevent potential LinxP-mediated transcription

spreading into the new loci. As controls, we also introduced

the transcriptional stop cassette alone in both locations and in

the two possible orientations. We differentiated these cell lines

and determined Xist allelic ratios at days 0, 2, and 4. Our results

consistently showed that the presence of LinxP in the Xist-TAD,

regardless of its orientation or position, leads to preferential Xist

expression from that chromosome at each differentiation time

point (Figures 5A and 5B; see also the second note in the Fig-

ure S4 legend). The controls showed no such effects. The action

of LinxP on Xist seems therefore to be TAD dependent (or

context dependent); LinxP acts as a repressive modulator of

Xist expression at its original location in the neighboring TAD

and as an enhancer of Xist when lying within the same TAD as

the Xist promoter.
Figure 4. Linx-Related Topological Features Are Not Implicated in Xist

(A) The Linx locus, CTCF binding, and orientation of CTCF motifs associated wit

tation of CTCF motifs within the Tsix-TAD is represented above. The targeted d

Methods for sources of CTCF, DNaseI, and H3K27Ac datasets.

(B and C) 5C profiles of the Tsix-TAD (B) and the two Xic TADs (C); pooled data fro

deletion (see STAR Methods). Gray pixels represent either the deleted region or

(D) Left: cross used for analysis of RNA allelic ratios in female hybrid embryos. Righ

Statistical analysis was performed using a two-tailed t test. The table summariz

reverse cross is shown in Figures S5A and S5B.

(E and F) Capture-C profiles for LinxP (E) andXist (F) viewpoints, at different time po

or three replicates for each time point were performed and are identical to the one

DpnII fragment per 10,000 total contacts within a specified region (see STARMeth

(G–I) 5C differential maps for mutant male mESCs: DLinxE (G), DLinxP (H) and L

profiles for each genotype are shown in Figure S5D. Gray pixels correspond to e

(J) Quantification of 5C inter-TAD contacts (see Figure S5E for details). Bars repre

(DLinxE and LinxP-inv) independent replicates. Statistical analysis was performe
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The LinxP Element Is Conserved in Sequence and
Synteny across Mammals
The Linx locus is poorly conserved overall (Figure 6A), similarly to

many lncRNA loci (Chodroff et al., 2010). However, we observed

a high degree of sequence conservation for the LinxP element

across mammals, from mouse to cetaceans and primates,

including humans (Figure 6B). In particular, two conserved mod-

ules within LinxP show shared synteny across placental mam-

mals, but not in themarsupial opossum (Figure 6C). One of these

modules coincides with binding of Nanog and Oct4 in mESCs

(Figure 6B). The pluripotency factors are known repressors of

Xist expression, but their repressive mechanisms remain to be

determined (Minkovsky et al., 2013; Navarro et al., 2008; Sousa

et al., 2018; reviewed in Minkovsky et al., 2012). It is therefore

possible that the pluripotency factors are implicated in the cis

repression of Xist by LinxP. We note that LinxP is the first regu-

lator of choice described to date that is conserved in sequence

and position across placental mammals; the other known regu-

lators of choice, Tsix, Xite, and Xce, seem in fact poorly

conserved across mammals (Galupa and Heard, 2018; Peeters

et al., 2016). Therefore, LinxPmay mediate an ancestral mecha-

nism of Xist negative regulation and choice making during

random XCI. Random XCI and the presence of both Xist and

LinxP within the Xic are all specific features of placental

mammals.

DISCUSSION

In a quest to understand cis regulation at the Xic in the light of its

topological organization, we found that the cis-regulatory land-

scape of Xist actually includes sequences separated from the

Xist promoter by a TAD boundary and located almost 200 kb

away in the neighboring TAD. This was surprising, as current

views posit that TAD boundaries prevent communication be-

tween cis-regulatory elements and genes in neighboring TADs,

thus working as powerful insulator elements. While this is the

case for a subset of loci investigated to date (Flavahan et al.,

2016; Franke et al., 2016; Gröschel et al., 2014; Hnisz et al.,

2016; Lupiáñez et al., 2015; Northcott et al., 2014; Vicente-Gar-

cı́a et al., 2017), including the Xic (van Bemmel et al., 2019; Nora

et al., 2012), our results suggest that TAD boundaries are

not completely impermeable to cis-regulation, a concept that
Regulation

h CTCF chromatin immunoprecipitation sequencing (ChIP-seq) peaks. Orien-

eletions DLinxCBS (�25 kb) and DLinx-int1 (�51 kb) are indicated. See STAR

m two biological replicates for each genotype. Differential map is corrected for

filtered contacts.

t: Xist RNA allelic ratios; each black dot corresponds to a single female embryo.

es the number of embryos collected. Analysis of Atp7a RNA allelic ratios and

ints of differentiation of XX (Pgk12.1) mESCs. Data represent one replicate; two

shown (data available in GEO). Profiles represent number of contacts for each

ods). CTCF ChIP-seq onmale mESCs is represented below (Nora et al., 2017).

inxP-inv (I); pooled data from two biological replicates for each genotype. 5C

ither deleted regions or filtered contacts.

sent the average of the calculated proportions of four (E14 and DLinxP) or two

d using a two-tailed t test (**p < 0.01; ***p < 0.001).
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Figure 5. LinxP Enhances Xist Expression In cis When Knocked In to the Xist-TAD

(A and B) (Top) Location of the two knock-in cassettes, in between Jpx and Ftx (A) or in between Ftx and Xpct (B). (Bottom) Allelic quantification of Xist RNA at

differentiation time points day 0, day 2, and day 4. Note that for each clone, the cassette was knocked in one allele only, and allelic ratios are shown for each clone

relative to the knock-in allele. Data are presented as means, and error bars represent SEM (three biological replicates each). Statistical analysis was performed

using a two-tailed paired t test (*p < 0.05; **p < 0.01). Clones harboring the poly(A) cassette alone (shades of gray) were compared to WT, while clones harboring

the LinxP element (shades of salmon and purple) were compared to the clones harboring the poly(A) cassette alone.
is supported as well by other studies (Despang et al., 2019; Diao

et al., 2017; Groff et al., 2018; Kragesteen et al., 2018; Tsujimura

et al., 2015). Depending on the nature of cis-regulatory elements

(i.e., the factors they bind), the topological organization of the

genome might be more or less important for their activity. Our

study reveals that the Tsix-TAD is a Xist-repressive landscape

and that this landscape is presumably required to temper the

activation of Xist during the onset of XCI, where Xist expression

must be rendered monoallelic. Our discovery that a conserved

element can act as a Xist repressor in the Tsix-TAD and a Xist

activator in the Xist-TAD highlights the importance of Xic topo-

logical partitioning (further discussed below).

We have identified that the promoter region of the Linx

lncRNA locus (LinxP), which lies within the Tsix-TAD, nega-

tively regulates Xist expression, and it does this independently

of any effect on Tsix expression. Furthermore, unlike other

regulators of Xist, such as Jpx, Ftx, and Tsix, which have

been reported to regulate Xist in cis via their transcripts or

transcription (reviewed in Galupa and Heard, 2015), LinxP reg-

ulates Xist in cis in a manner independent of Linx transcripts or

transcription. Thus, even though Linx produces an 80-kb-long

lncRNA, the element that regulates Xist appears to act inde-

pendently of this RNA. We found that the LinxP element acts

as a long-range, negative regulator of Xist. However, whether

this inter-TAD cis-regulation between neighboring TADs in-

volves physical contacts still remains an open question. Con-
tacts between TADs have been detected ever since their dis-

covery; the difference between interaction frequency within

TADs and across TAD boundaries is �2-fold only. Inter-TAD

contacts have also been observed with single-cell Hi-C (Na-

gano et al., 2013), high-resolution microscopy (Bintu et al.,

2018; Giorgetti et al., 2014) and a crosslink-free and ligation-

free approach (Redolfi et al., 2019). We were able to detect

contacts between LinxP and the Xist promoter, but these do

not occur at higher frequency than between neighboring se-

quences (Figures 4E and 4F). It should also be noted that in-

ter-TAD contacts do not imply inter-TAD regulation, as illus-

trated by a recent study (Despang et al., 2019), and that

inter-TAD regulation does not have to require inter-TAD con-

tacts. Indeed, it has recently been suggested that cis-regula-

tory elements can employ a variety of mechanisms to control

their targets, some independent of 3D proximity with their

target (Alexander et al., 2019; Benabdallah et al., 2019).

Thus, it is possible that Linx-mediated regulation of Xist hap-

pens without direct physical proximity between the loci

(although it is nevertheless influenced by the topological orga-

nization of the Xic, as discussed below). The communication

between LinxP and Xist might rely on alternative mechanisms,

such as nuclear microenvironments and/or phase-transition

domains (Furlong and Levine, 2018). Indeed, the pluripotency

factor Oct4, which binds LinxP, has been implicated in such

phase-separation mechanisms (Boija et al., 2018).
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Figure 6. The LinxP Element Is Conserved across Placental Mammals and Overlaps the Binding Site for Pluripotency Factors

(A) Sequence conservation analysis. Conservation score across placentalmammals shows poor sequence conservation for Linx (compared toCdx4), except for a

few regions. Multiz alignment shows conserved stretches in green.

(B) Zoom-in from (A) of the Linx promoter region, showing two highly conserved modules across placental mammals. Nanog and Oct4 ChIP-seq, as well as

DNaseI-seq (DNase I hypersensitive sites sequencing), are represented below (same as in Figure 2B)

(C) Synteny analysis across placental mammals and opossum of the two conserved modules identified in (B). Note that they are highly syntenic in placental

mammals, lying close toCdx4 and Xist on the X chromosome. In themarsupial opossum, the conserved element (half of one LinxPmodule) lies on chromosome 2,

while Cdx4 and Rsx (the marsupial equivalent to Xist) lie on the X chromosome. Genomes of species marked with an asterisk (*) are shown here in inverse

orientation to what is annotated in UCSC for clarity purposes. Each species is designated by the first letter of its genus (in capital) and the first three letters of its

specific epithet; the order of the species is the same as in (B), where they are designated by their common names. Evolutionary distance is represented in million

years (Ma).
Our finding that the LinxP cis-regulatory element has a

different effect on Xist depending on which side of the TAD

boundary it is located is very intriguing. In its endogenous loca-

tion, within the Tsix-TAD, LinxP acts as a silencer. We show that

this silencing effect acts independently of Tsix’s repression of

Xist. Silencers have been largely underappreciated in the tran-

scriptional regulation field, despite the first examples being re-

ported more than 30 years ago in yeast, flies, birds, and mam-

mals (Baniahmad et al., 1987; Brand et al., 1985; Cao et al.,

1989; Doyle et al., 1989; Nakamura et al., 1989; Saffer and Thur-

ston, 1989) and a recent attempt to map silencers across the

mouse and human genomes (Jayavelu et al., 2018). Silencers

are similar to enhancers in that they normally act in an orienta-

tion-independent way and overlap DNA hypersensitive sites,
362 Molecular Cell 77, 352–367, January 16, 2020
but they repress, rather than activate, their target genes; we

did observe these properties for LinxP. Silencers’ mechanisms

of action are not fully understood, but they can act either at short

or long distances (or both) (Gray and Levine, 1996; Li and Arnosti,

2011; Perry et al., 2011; Studer et al., 1994; Weintraub et al.,

1995). LinxP’s repressive action occurs at a distance of �170

kb and across a TAD boundary. Consistent with this action on

Xist, LinxP binds two known repressors of Xist, the pluripotency

factors Nanog and Oct4. How these factors repress Xist has

remained unclear (reviewed in Minkovsky et al., 2012). Linx

expression is actually positively regulated by the pluripotency

network, and this may be linked to the way it represses Xist.

It will be interesting to understand and dissect how a transcrip-

tionally active promoter can act as a long-range silencer of



another gene, especially in the light of recent models of gene

expression that involve the clustering of cis-regulatory elements

and promoters into condensates (Plys and Kingston, 2018). It is

important to note that LinxP is a negative modulator of Xist activ-

ity rather than a complete repressor, as its deletion leads not to

Xist activation in all cells but simply to a bias in random monoal-

lelic Xist expression.

When we inserted LinxP in the same TAD as the Xist promoter

(and also at the same distance of �170 kb), it actually enhanced

Xist expression in cis rather than repressing it. cis-Regulatory

elements that can act as both silencers and enhancers have

already been reported, and this behavior has been shown to

depend on the combination of factors binding to them at different

developmental stages (Brand et al., 1987; Jiang et al., 1993;

Kirov et al., 1993; Gisselbrecht et al., 2019). In the case of LinxP,

this dual activity is present in the same cell type, but it is depen-

dent on the TAD in which the LinxP element is located. We spec-

ulate that the different ways the Xist promoter responds to LinxP

are associated to topology; the TAD boundary at the Xic might

not be merely separating cis repressors and cis activators on

each side of the Xist promoter but might actually be determining

whether they act as silencers or enhancers. In other words,

different environments created by different TADs may define

how certain controlling elements mediate their effects. This

could have important implications in the context of cell-to-cell

variability and fluctuations of the topological structure of chro-

mosomes over time (Fudenberg and Mirny, 2012; Giorgetti

et al., 2014), implying that a cis-regulatory element could be ex-

ploited as either a silencer or an enhancer depending on the to-

pological organization of the locus at a given time point. Further

functional studies will allow us to test such hypotheses.

Besides harboring a long-range regulator of Xist, the Linx locus

is also involved in (1) regulating Cdx4, located �10 kb upstream

of Linx; and (2) shaping the topological organization of the Xic.

We show that these two regulatory functions of Linx are geneti-

cally uncoupled from Xist regulation. Moreover, while Xist regu-

lation does not depend on transcription across the Linx locus,

regulation of Cdx4 and Xic topology are associated with Linx

transcription or lncRNA. In summary, the Linx locus produces

a lncRNA, and its transcription can influence TAD structure

and nearby gene activity. In addition, the LinxP element at the

50end of Linx is conserved and a regulator of Xist, which acts

as a TAD context-specific modulator of Xist expression and

choice making during XCI. The multifaceted Linx locus illustrates

the remarkable complexity and finesse of cis-regulatory land-

scapes required to orchestrate appropriate gene expression

during development. It also highlights the importance of careful

dissection of noncoding loci (Anderson et al., 2016; Bassett

et al., 2014; Engreitz et al., 2016; Paralkar et al., 2016; Ritter

et al., 2019).

Finally, our study provides some important and intriguing

perspectives on the mechanisms and evolution of cis-regulatory

elements. Random XCI is present in all species of placental

mammals examined to date, yet elements previously identified

in the mouse for choice making (e.g., Tsix and Xite) do not

seem conserved across most of the other species (Galupa

and Heard, 2018; Migeon et al., 2002; Peeters et al., 2016).

Here, we identified a novel regulator of XCI choice that is
conserved across placental mammals, both in sequence and

location within the Xic. Thus the Linx promoter could be the

ancestral cis regulator of Xist monoallelic expression, maybe

with increased relevance in species that lack Tsix. The TAD

boundary that separates the Linx elements from the Xist pro-

moter in the mouse is conserved in humans (Galupa and Heard,

2018), suggesting that this too could be an ancestral feature and

may be of importance for the choice-making process during XCI.

Inter-TAD regulation could be particularly relevant for such fine-

tuned developmental decisions, and evolution might have

favored the positioning of elements responsible for choice-mak-

ing processes (such as those within the Linx locus) in a separate

TAD to the promoter they control. We note that other critical

developmentally associated loci also display bipartite TAD orga-

nization, as reviewed previously (Galupa and Heard, 2017), sug-

gesting that regulatory crosstalk between neighboring TADs

might be another core feature of gene regulation during develop-

ment. Further dissection ofmechanisms throughwhich elements

within the Tsix-TAD regulate the Xist promoter in the neighboring

TADwill certainly provide new insights into the fundamental prin-

ciples of cis-regulatory control.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Tissue culture

B Mouse experimentation

d METHOD DETAILS

B Genomic engineering of mice and mESC

B RNA and DNA fluorescent in situ hybridization (FISH)

B Gene expression analysis

B ATAC-seq (assay for transposase-accessible chro-

matin using sequencing)

B Flow cytometry analysis

B Sequence conservation and synteny analysis

B Chromosome conformation capture techniques

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Gene expression analysis

B ATAC-seq (assay for transposase-accessible chro-

matin using sequencing)

B Chromosome conformation capture techniques

d DATA AND CODE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

molcel.2019.10.030.

ACKNOWLEDGMENTS

We are grateful to Katia Ancelin and Isabelle Grandjean for help and advice

with animal management; Lucile Marion-Poll for help and advice with flow cy-

tometry experiments; Maud Borensztein for scientific discussions as well as

help with mouse genotyping; and Denis Krndija, Katia Ancelin, Inês Pinheiro,
Molecular Cell 77, 352–367, January 16, 2020 363

https://doi.org/10.1016/j.molcel.2019.10.030
https://doi.org/10.1016/j.molcel.2019.10.030


and Simão da Rocha for critical reading of the manuscript. We thank all mem-

bers of the Heard lab for advice, support, and helpful comments and discus-

sions, in particular Catherine Corbel, Aurélie Bousard, Jan Zylicz, Laia Richart,

Anne-Valérie Gendrel, Benjamin Foret, Tim Pollex, and Edda Schulz. We are

also thankful to facilities at the Institut Curie, including the Mouse Facility,

the Flow Cytometry Platform, the BDD team of PICT-IBiSA, the NGS Platform,

the Genomics Platform (in particular David Gentien, Cécile Reyes, Audrey

Rapinat, and Benoit Albaud), and the Bioinformatics Platform. We acknowl-

edge the Zhang lab for sharing plasmids and the ENCODE Consortium and

the Bruneau, Ren, Sharp, Stamatoyannopoulos, and Young labs for gener-

ating datasets used in this study. Finally, we wish to thank our anonymous re-

viewers, who provided critical comments that substantially improved the

clarity and breadth of this work. R.G. would like to dedicate this article to Luı́sa

Supico (1963–2019) and her inspiring mentorship, righteous indignation, and

precious friendship.

This work was supported by fellowships from Région Ile-de-France (DIM
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Gröschel, S., Sanders, M.A., Hoogenboezem, R., de Wit, E., Bouwman,

B.A.M., Erpelinck, C., van der Velden, V.H.J., Havermans, M., Avellino, R.,

van Lom, K., et al. (2014). A single oncogenic enhancer rearrangement causes

concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157, 369–381.
Guttman, M., Garber, M., Levin, J.Z., Donaghey, J., Robinson, J., Adiconis, X.,

Fan, L., Koziol, M.J., Gnirke, A., Nusbaum, C., et al. (2010). Ab initio recon-

struction of cell type-specific transcriptomes in mouse reveals the conserved

multi-exonic structure of lincRNAs. Nat. Biotechnol. 28, 503–510.

Hahne, F., and Ivanek, R. (2016). Visualizing Genomic Data Using Gviz and

Bioconductor (Humana Press), pp. 335–351.

Heard, E., Mongelard, F., Arnaud, D., and Avner, P. (1999). Xist yeast artificial

chromosome transgenes function as X-inactivation centers only in multicopy

arrays and not as single copies. Mol. Cell. Biol. 19, 3156–3166.

Hnisz, D., Weintraub, A.S., Day, D.S., Valton, A.-L., Bak, R.O., Li, C.H.,

Goldmann, J., Lajoie, B.R., Fan, Z.P., Sigova, A.A., et al. (2016). Activation of

proto-oncogenes by disruption of chromosome neighborhoods. Science

351, 1454–1458.

Hughes, J.R., Roberts, N., McGowan, S., Hay, D., Giannoulatou, E., Lynch,M.,

De Gobbi, M., Taylor, S., Gibbons, R., and Higgs, D.R. (2014). Analysis of hun-

dreds of cis-regulatory landscapes at high resolution in a single, high-

throughput experiment. Nat. Genet. 46, 205–212.

Jayavelu, N.D., Jajodia, A., Mishra, A., and Hawkins, R.D. (2018). An atlas of

silencer elements for the human and mouse genomes. bioRxiv. https://doi.

org/10.1101/252304.

Jiang, J., Cai, H., Zhou, Q., and Levine, M. (1993). Conversion of a dorsal-

dependent silencer into an enhancer: evidence for dorsal corepressors.

EMBO J. 12, 3201–3209.

Kagey, M.H., Newman, J.J., Bilodeau, S., Zhan, Y., Orlando, D.A., van

Berkum, N.L., Ebmeier, C.C., Goossens, J., Rahl, P.B., Levine, S.S., et al.

(2010). Mediator and cohesin connect gene expression and chromatin archi-

tecture. Nature 467, 430–435.

Kent, W.J. (2002). BLAT–the BLAST-like alignment tool. Genome Res. 12,

656–664.

Kirov, N., Zhelnin, L., Shah, J., andRushlow, C. (1993). Conversion of a silencer

into an enhancer: evidence for a co-repressor in dorsal-mediated repression in

Drosophila. EMBO J. 12, 3193–3199.

Kragesteen, B.K., Spielmann, M., Paliou, C., Heinrich, V., Schöpflin, R.,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tissue culture
Culture conditions

Feeder-independent mESC lines (E14, Pgk12.1, LF2 and clones derived from them) were grown on flasks or dishes coated with 0.1%

(wt/vol) gelatin. The XGTCmESC line is feeder-dependent (Loos et al., 2016) and was grown on amono-layer of mitomycin C-treated

male MEFs. Culture media consisted in DMEM (GIBCO) except for E14, which were grown in Glasgow medium supplemented with

2mM L-Glutamine, 0.1mM nonessential amino acids and 1mM sodium pyruvate. All mESC media contained 15% FBS (GIBCO),

0.1 mM b-mercaptoethanol (Sigma) and 1000 U/mL of LIF (Chemicon). All cells were cultivated at 37�C under 8%CO2 and passaged

according to their confluency, generally every other day. Medium was refreshed daily.

Early differentiation assays

mESC were washed with 1x PBS, incubated with trypsin at 37�C (E14: 20min; Pgk12.1, LF2 and XGTC: 12 min) and resuspended in

ES medium without LIF. After cell counting, desired number of cells was resuspended in differentiation medium and seeded. Differ-

entiationmediumwas either ‘‘AF differentiationmedium,’’ consisting of N2B27medium, 20 ng/mL activin A (R&D) and 12 ng/mL FGF-

basic (R&D); or ‘‘Fibro differentiation medium,’’ consisting of DMEM, 10% FBS, 0.1 mM b-mercaptoethanol and 100 U/mL penicillin-

streptomycin. For E14 and derived clones, 8*105 cells per well were seeded in a fibronectin-coated (10 mg/mL, Millipore) 6-well plate

in AF differentiation medium. For Pgk12.1 and derived clones, 2*105 cells per well were seeded in a gelatin-coated 6-well plate in AF

differentiation medium. For LF2, XGTC and derived clones, 2*105 cells per well were seeded in a gelatin-coated 6-well plate in Fibro

differentiation medium. For all differentiation assays, medium was changed daily and cells were washed in PBS before collection to

remove dead cells.

Mouse experimentation
Permissions

Animal care and use for this study were performed in accordance with the recommendations of the European Community (2010/63/

UE) for the care and use of laboratory animals. Experimental procedures, including genomic engineering (see below), are in compli-

ance with international guidelines and were specifically approved by the ethics committee of the Institut Curie CEEA-IC #118 and

given authorization by the French national authorities (references: APAFiS##13962-2018030717538778-v2 and APAFIS#8812-

2017020611033784-v2).

Manipulation

Postimplantation embryos were collected at E8.5-10.5 stages, assuming plugging at midnight. Females with a vaginal plug were

weighted every other day and only taken for dissection if a significant increase in weight was observed (�2g for B6D2F1 mice,

�1g for JF1 mice) at expected time of E8.5-E10.5 development. Extraembryonic tissues were taken for sexing the embryos. Whole

embryo proper was washed three times in 1xPBS before frozen for allelic expression analysis.

METHOD DETAILS

Genomic engineering of mice and mESC
Plasmids

Deletions and inversions were generated using TALENs (mESC) or CRISPR-Cas9 (mESC and mice) technologies. We designed

TALENs and sgRNAs to flank the region of interest; Table S1 contains the sequences of TALENs and sgRNAs for each engineered

locus. For TALEN assembly, we used the TALE Toolbox kit (Kit # 1000000019; Addgene) and the protocol described in (Sanjana et al.,

2012), except that the TALEN backbones were modified to contain a CAGGS promoter instead of the default CMV promoter. TALEN

constructs were amplified upon transformation of Shot Stbl3 Chemically Competent E. coli (Life Technologies) according

to manufacturer’s specifications, and sequenced for verifying correct assembly. Bacteria were grown at 30�C to minimize

recombination events. For cloning sgRNAs, we used pX459-v2 (Plasmid #62988; Addgene) and protocol from the Zhang lab

(https://media.addgene.org/cms/filer_public/e6/5a/e65a9ef8-c8ac-4f88-98da-3b7d7960394c/zhang-lab-general-cloning-protocol.pdf).

sgRNA constructs were amplified upon transformation of DH5a competent cells (Takara) grown at 37�C, and sequenced for

verifying correct cloning. Midipreps were prepared at final concentration > 1mg/mL using the NucleoBond Xtra Midi Plus kit

(Macherey-Nagel). Knock-ins were generated via CRISPR/Cas9 mediated homologous recombination; Table S1 contains the

sequences of sgRNAs used for each engineered locus. Donor plasmids were generated with standard cloning techniques;

they are listed in Table S1 and their sequences can be found in the folder ‘‘Knockin-plasmid-sequences’’ accompanying

this manuscript.
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Engineering mESC

for knock-outs and inversions, mESCwere transfectedwith TALEN or sgRNA constructs using the P3 Primary Cell 4D-Nucleofector X

Kit (V4XP-3024) and the Amaxa 4D Nucleofector system (Lonza). We used the transfection program CG-104 for E14, LF2 and XGTC

and CG-110 for Pgk12.1. Each transfection included 5 million cells resuspended in the nucleofection mix (prepared according to

manufacturer’s instructions) containing 2.5mg of each TALEN (four constructs) or 5mg of each sgRNA (two constructs). For knock-

ins, half a million cells were reverse-transfected with 3 mL of Lipofectamine-2000 (ThermoFisher) complexed with 0.5 mg of sgRNA

construct and 1.5mg of donor plasmid. As a transfection control, 10mg of pmaxGFP (Lonza) were used, for which the nucleofection

efficiency was around 90% (E14, LF2, XGTC) or 50% (Pgk12.1). For knock-outs and inversions, cells were immediately resuspended

in pre-warmed culture medium after nucleofection and seeded at three serial 10x dilutions in 10-cm dishes to ensure optimal density

for colony-picking. Transfected cells were selected with puromycin for 48h, and grown for 8-10 days. For knock-ins, cells were only

diluted one day after transfection, and puromycin selection was started 3-4 days after dilution. Single colonies or pools of colonies

were picked into 96-well plates. Genomic DNA was isolated in 96-well plates for PCR-based screening of deletions and inversions;

Table S1 contains the sequences of genotyping primers for each engineered locus. The strategy was inspired on the Epigenesys

protocol by Nora and Heard, 2012, described in https://www.epigenesys.eu/images/stories/protocols/pdf/20130507072445_p62.

pdf. Positive clones for female cell lines were subsequently re-seeded at single-cell dilution in 96-well plates, followed by a new

PCR screening, to ensure monoclonal colonies. For knock-ins, selection marker was subsequently removed by reverse lipofection

with a flipase plasmid and clones were checked for puromycin sensitivity. We sequenced the PCR products from the deletion/inver-

sion alleles to determine their exact location and, for females, the allele of the respective deletion/inversion. For knock-ins, both left

and right side of the insertion were sequenced. Wild-type alleles were also sequenced, to ensure their integrity. Table S1 contains a

summary of these sequencing results, including the coordinates of the deletions/inversions for each engineered locus.

Engineering mice

Themousemutant lines were generated following the strategy described in (Wang et al., 2013) with minor modifications. Cas9mRNA

was in vitro transcribed from a T7-Cas9 pCR2.1-XL plasmid (Greenberg et al., 2017) using themMESSAGEmMACHINE T7ULTRA kit

(Life Technologies) and purified with the RNeasyMini kit (QIAGEN), or bought from Tebu-bio (L-7206). The sgRNAswere amplified by

PCR with primers containing a 50 T7 promoter sequence from the plasmids used for mESC transfection (Table S1). After gel purifi-

cation, the T7-sgRNA PCR products were used as the template for in vitro transcription with the MEGAshortscript T7 kit (Life Tech-

nologies) and the products were purified using the MEGAclear kit (Life Technologies). Cas9 mRNA and the sgRNAs were eluted in

DEPC-treated RNase-free water, and their quality was assessed by electrophoresis on an agarose gel after incubation at 95�C for

3min with denaturing agent provided with the in vitro transcription kits. Cas9 mRNA and sgRNAs (at 100 ng/ml and 50 ng/ml, respec-

tively) were injected into the cytoplasm of mouse B6D2F1 zygotes from eight-week-old superovulated B6D2F1 (C57BL/6J3 DBA2)

females mated to studmales of the same background. Zygotes with well-recognized pronuclei were collected inM2medium (Sigma)

at E0.5. Injected embryos were cultured in M16 medium (Sigma) at 37�C under 5% CO2, until transfer at the one-cell stage the same

day or at the two-cell stage the following day to the infudibulum of the oviduct of a pseudogestant CD1 female at E0.5 (25-30 embryos

were transferred per female). All weanedmice (N0) were genotyped for presence of deletion or inversion alleles; Table S1 contains the

sequences of genotyping primers for each engineered locus. Mice carrying engineered alleles were crossed to B6D2F1 mice and

their progeny screened again for the presence of an engineered allele – in some cases, up to 6 different alleles were found from a

single N0 mouse. We sequenced the PCR products of the engineered allele to determine the exact location of the deletion/inversion

(Table S1 contains a summary of these results). The F1micewere considered the ‘‘founders’’ and bred to B6D2F1mice; their progeny

was then intercrossed to generate homozygous mice and lines were kept in homozygosity.

RNA and DNA fluorescent in situ hybridization (FISH)
On cells from tissue culture

FISH was performed as described previously with minor modifications (Chaumeil et al., 2008). Briefly, undifferentiated or differenti-

ating mESCs were grown on gelatin-coated coverslips or dissociated using accutase (Invitrogen) and adsorbed onto Poly-L-Lysine

(Sigma) coated coverslips #1.5 (1mm) for 5 min. Cells were fixed with 3% paraformaldehyde in PBS for 10 min at room temperature

and permeabilized for 5 min on ice in PBS containing 0.5%Triton X-100 and 2mM Vanadylribonucleoside complex (New England

Biolabs). Coverslips were preserved in 70% EtOH at �20�C. For RNA FISH, coverslips were dehydrated through an ethanol series

(80%, 95%, and 100% twice) and air-dried quickly, then lowered onto a drop of the probe/hybridization buffer mix (50% Formamide,

20%Dextran sulfate, 2x SSC, 1 mg/ml BSA, 10mMVanadyl-ribonucleoside) and incubated overnight at 37�C. For RNA/DNA FISH, the

coverslipswere first washed three times in 23SSCand incubated for 1h at 37�C in 23SSC supplementedwith 0.1mgml�1 RNase A

(Fermentas) and 10 U ml�1 RNase H (New England Biolabs). After the RNase treatment, the coverslips were dehydrated through an

ethanol series (80%, 95%, and 100% twice). Before hybridization, cells on coverslips were denatured for 38min at 80�C in 50% form-

amide in 23 SSC (pH 7.2-7.4) and then quickly transferred to ice and washed three times in ice-cold 23 SSC. Coverslips were then

lowered onto a drop of probe/hybridization buffer mix (as described for RNA FISH) and incubated overnight at 42�C. The next day,

coverslips were washed three times at 42–45�C in 50% formamide in 23 SSC (pH 7.2-7.4) and three times at 42–45�C in 23 SSC.

Nuclei were counterstained with DAPI (0.2mg/ml), coverslips were mounted (90% glycerol, 0.1X PBS, 0.1% p-phenylenediamine at

pH9), and cells were imaged using a wide-field DeltaVision Core microscope (Applied Precision).
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On mouse embryos

RNA FISH on mouse embryos was performed as described previously with minor modifications (Borensztein et al., 2017; Ranisavl-

jevic et al., 2017). Embryos were recovered at E3.5-E4.5 by flushing the uterus withM2medium (Sigma) and/or by dissection from the

uterus. Zona pellucida was removed using acidic Tyrode’s solution (Sigma), and embryos were washed twice with M2 medium

(Sigma). ICM was then isolated by immunosurgery, by culturing blastocysts without zona pellucida in anti-mouse red blood cell

serum from rabbit (Rockland) for 30 min then in guinea pig complement serum (Sigma) for 15–30 min. For consistency, ICMs from

both wild-type and homozygous knockout embryos (from separate crosses) were placed in different regions of the same coverslip

before the FISH procedure (Ranisavljevic et al., 2017).

Probes

A list of RNA andDNA FISH probes used for this study can be found in Table S1. Plasmid, fosmid and bacterial artificial chromosome-

(BAC)-derived probes were labeled using the Nick Translation kit from Abbot and following manufacturer’s instructions. Probes were

either ethanol-precipitated or vacuum-dried and resuspended in formamide with shaking at 37�C. BAC- and fosmid-derived probes

were co-precipitated with mouse Cot-1 DNA (Invitrogen), and competition to block repetitive sequences was performed for at least

20min at 37�C, and after denaturation (75�C, 10min). Probeswere thenmixedwith one volume of 23 hybridization buffer. Probes not

requiring competition were denatured at 75�C for 10 min and stored on ice until mixed with one volume of 23 hybridization buffers.

Gene expression analysis
Time points

Cells were collected for gene expression analysis at different time points of differentiation. For XYmESC (E14 and derived clones): 0h,

12h, 24h, 36h, 48h and 60h of differentiation; for XX mESC (Pgk12.1, LF2, XGTC and derived clones): 0h, 24h, 48h, 72h and 96h of

differentiation. Embryos were collected at E8.5-10.5.

Total RNA extraction for cells

Cells were lysedwith Trizol (Invitrogen), and RNAwas isolated using the RNAeasyMini kit (QIAGEN), including DNase treatment. RNA

samples were systematically run on an agarose gel to check their integrity.

Total RNA extraction for embryos

Embryos were lysed in RLT buffer (QIAGEN) supplemented with 0.01% 2-mercaptoethanol, and after two rounds of vortexing (15sec

each), lysates were applied directly to a QIAshredder spin column (QIAGEN) and centrifuged for 3min at full speed. RNA was ex-

tracted using the RNAeasy Mini kit (QIAGEN), including DNase treatment, and following manufacturer’s instructions. RNA samples

were systematically run on an agarose gel to check their integrity.

Reverse transcription

cDNAwas synthesized from 0.5 mg of RNA using SuperScript III Reverse Transcriptase and random primers (both Invitrogen) accord-

ing to the manufacturer’s recommendations. Two independent reverse transcription experiments were carried out for each sample,

pooled at the end and diluted 25-fold prior to qPCR or allelic expression analysis. No-reverse transcription controls were processed

in parallel.

nCounter analysis

We used the NanoString nCounter gene expression system (Geiss et al., 2008) to systematically characterize transcriptional differ-

ences in wild-type andmutantmESC, prior or during differentiation. We used 500ng of total RNA from each sample for each nCounter

hybridization round.We designed a customised probe codeset to identify nearly a hundred transcripts from Xic genes, other X-linked

genes, pluripotency factors, differentiation markers, proliferation markers and normalization genes (see Table S1; also published in

(van Bemmel et al., 2019)). Standard positive controls included in the kit were used for scaling the raw data. Genes Actb, Rrm2 and

Sdhawere used for normalization. Differential expression was always calculated for samples run on the same nCounter hybridization.

RT-qPCR

qPCR on cDNA was performed on a ViiA7 system (Applied Biosystems) using the 2x SYBR Green Master Mix (Applied Biosystems),

2.5uL cDNA and validated primers (final concentration: 0.1 mM) in a reaction volume of 10 mL. Appropriate no-reverse transcription

and no-cDNA controls were perfomed in parallel. All primers used were validated using standard curves (see Table S1 for a list of the

primers used in this study). A threshold of 0.3 was used for determining the quantification cycle for all genes, except for Chic1, for

which 0.2 was used. Normalization of gene expression levels was done using the geNorm method (Vandesompele et al., 2002) and

ArpP0, Rrm2 and Gapdh used as reference genes.

Allelic expression analysis

cDNA from XX samples (cells or embryos) was PCR-amplified with biotinylated primers and pyrosequenced for allele quantification

on a Pyromark Q24 system (QIAGEN). The same PCR was done on no-reverse transcription control samples to confirm absence of

genomic DNA contamination. All primers used were designed using the PyroMark Assay Design software and validated on XX poly-

morphic genomic DNA for a ratio of 50%:50% (±4%). List of primers and SNPs used for allele quantification can be found in Table S1.

RNA-sequencing

RNA-seq libraries were prepared from 500 ng of DNase-treated total RNA (RIN = 10) using the TruSeq Stranded Total RNA kit (Illu-

mina). Sequencing was performed using paired-end reads (PE100) in a NovaSeq System (Illumina).
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ATAC-seq (assay for transposase-accessible chromatin using sequencing)
Library preparation and sequencing: ATAC-seq libraries were prepared following (Buenrostro et al., 2013) with some modifications.

Fifty thousand cells were washed with cold 1xPBS twice and then resuspended directly in the transposase reaction (step with lysis

buffer was omitted to reduce mitochondrial DNA content of the library). Transposase reaction was performed at 37�C for 45 minutes.

DNA was purified with MinElute column (QIAGEN) and PCR amplified for 12 cycles using barcode-specific primers for each library.

Total number of PCR cycles was determined by running 5 initial cycles and thenmonitoring the amplification of an aliquot using qPCR

and the same PCR mix supplemented with 1xEvaGreen dye (Biotium) to determine additional number of PCR cycles. Amplified li-

braries were purified with MinElute column (QIAGEN), followed by two rounds of purification using Agencourt AMPure XP beads

(A63881, Beckman Coulter) at a ratio of 1:1.6. Libraries were sequenced on a Nextseq 500 platform, with 75bp paired-end reads.

Information on the sequencing reads can be found in Table S1.

Flow cytometry analysis
Single-cell suspensions in 1xPBS were prepared after accutase treatment for 5 min at 37�C. Duplets were excluded by appropriate

gating. Relative fluorescence intensities were determined for EGFP and mCherry, using Blue-B-530/30 and Green-D-610/20 filters,

on an LSRFortessa instrument with FACSDiva software. Subsequent analysis was performed with FlowJo.

Sequence conservation and synteny analysis
Conservation score across placental mammals – Basewise Conservation, PhyloP (Siepel et al., 2005) andMultiz alignments (Blanch-

ette et al., 2004) were retrieved from UCSC Genome Browser (http://genome.ucsc.edu/). To determine the chromosomal position of

the conserved LinxP elements, sequences for each available species weremanually extracted and curated from theMultiz alignment

(sequences available in Table S1) and then blasted against respective genome using BLAT in the UCSC Genome Browser

(Kent, 2002).

Chromosome conformation capture techniques
3C templates

3C libraries were prepared based on previous protocols (Nora et al., 2017; Rao et al., 2014), with some modifications. Crosslinked

cells (in 2% Formaldehyde; 10 million for each sample) were lysed in 10 mM Tris–HCl, pH 8, 10 mMNaCl, 0.2%NP-40, 13 complete

protease inhibitor cocktail (Roche) for 15min on ice. Nuclei were resuspended in 100 mL 0.5% SDS, incubated at 62�C for 10min and

quenched with 50 mL 10% Triton X-100 and 290 mL water at 37�C for 15min. Digestion was performed overnight by adding 50 mL of

DpnII (Capture-C) or HindIII (5C) buffer and 10 mL of high-concentration DpnII or HindIII (NEB) and incubating samples at 37�C in a

thermomixer. Before this step, an aliquot was taken from each sample as an undigested control. Digests were heat inactivated for

20 min at 65�C and an aliquot was taken from each sample as a digested (unligated) control. Samples were cooled at room temper-

ature for 10 min before adding the ligation cocktail. 3C libraries for Capture-C were diluted by adding 672 mL water and ligated over-

night at 16�C with 8 mL T4 Ligase (30U/ml EL0013 Thermo Scientific) and 122 mL Ligation buffer in a thermomixer at 1400rpm. 3C

libraries for 5C were ligated for 4 hours at 25�C with 10U T4 ligase and ligation buffer (ThermoFisher cat 15224) in a thermomixer

at 1000rpm. All ligated samples were then centrifuged at 2000rpm, resuspended in 240 mL of 5% SDS and 1 mg Proteinase K, incu-

bated at 55�C for 30min, supplemented with 50 mL 5 M NaCl and incubated at 65�C for 4 hours. DNA was then purified by adding

500 mL isopropanol, incubated at�80�C overnight, centrifuged at 12,000 rpm at 4�C, washed with 70% ethanol, air-dried and resus-

pended in 100 mL water, followed by incubation with RNase A at 37�C for one hour. 3C templates were quantified using Qubit DNA

Broad-Range (ThermoFisher) and diluted to 100 ng/mL. Libraries and respective controls (undigested and digested aliquots) were

verified on a gel.

5C (chromosome conformation capture carbon copy)

5C was performed as described in (Nora et al., 2017), which adopts a single-PCR strategy to construct 5C-sequencing libraries from

the 3C template. Briefly, four 10 mL 5C annealing reactionswere assembled in parallel, each using 500 ng of 3C template, 1 mg salmon

sperm (ThermoFisher) and 10 fmol of each 5C oligonucleotide in 1X NEBuffer 4 (5C set of oligonucleotides described in Nora et al.,

2012). Samples were denatured at 95�C for 5 min and incubated at 48�C for 16-18h. 10 mL of 1X Taq ligase buffer with 5U Taq ligase

were added to each annealing reaction followed by incubation at 48�C for 4h and 65�C for 10 min. Negative controls (no ligase, no

template or no 5C oligonucleotide) were included during each experiment to ensure the absence of contamination. To attach Illu-

mina-compatible sequences, 5C libraries were directly PCR amplified with primers harboring 50-mer tails containing Illumina se-

quences that anneal to the universal T3/T7 portion of the 5C oligonucleotides (Nora et al., 2017). For this, each 5C ligation reaction

was used as the template for three parallel PCRs (12 PCRs total), using per reaction 6 mL of 5C ligation with 1.125 U AmpliTaq Gold

(ThermoFisher) in 1X PCR buffer II, 1.8 mMMgCl2, 0.2 mM dNTPs, 1.25 mM primers in 25 mL total. Cycling conditions were 95�C for

9min, 25 cycles of 95�C for 30 s, 60�C for 30 s, 72�C for 30 s followed by 72�C for 8min. PCRproducts from the same 3C sample were

pooled and run on a 2.0% agarose electrophoresis gel. 5C libraries (231 bp) were then excised and purified with the MinElute Gel

Extraction kit (QIAGEN). Library concentrations were estimated using TapeStation (Agilent) and Qubit (ThermoFisher), pooled and

sequenced using 12 pM for the loading on rapid flow cells using the HiSeq 2500 system (Illumina). Sequencing mode was set as

20 dark cycles followed by 80 bases in single end reads (SR80). Information on the sequencing reads can be found in Table S1.
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Capture-C

Capture-C was performed as described in (Davies et al., 2016) with some modifications. Capture probes were designed using Cap-

Sequm (Hughes et al., 2014). To prepare Capture-C libraries, 5 mg of 3C library were sonicated using a S220 focused ultrasonicator

(Covaris) to 200 bp and 2.5 mg of fragmented DNA were processed with the KAPA Hyper Prep Kit (KK8500, Kapa Biosystems) ac-

cording to manufacturer’s instructions. Two rounds of capture of respectively 72 and 24 hours were then performed, pooling 2 mg of

each indexed library and using 13pmol of capture probes (biotinylated oligonucleotides, Integrated DNA Technologies), with the Seq-

Cap EZ system (#06953212001, Roche/NimbleGen). This capture was performed according to manufacturer’s instructions, except

for the first round when the volume of reagents was multiplied by the number of pooled libraries. Library size was confirmed using

LabChip GXII TouchHT (Perkin Elmer) with a DNAHigh Sensitivity chip, andDNA concentrations were estimated usingQubit (Thermo

Fisher Scientific). Capture-C libraries were sequenced on a MiSeq instrument (Illumina) using 75bp paired end reads and 5% PhiX.

QUANTIFICATION AND STATISTICAL ANALYSIS

Gene expression analysis
RNA FISH, RT-qPCR, nCounter, allelic expression analysis

All statistical details of experiments can be found in the figure legends, figures and/or Results, including the statistical tests used,

exact value of n and what n represents.

RNA-sequencing

RNA sequencing reads have been aligned on the mouse reference genome (mm9) using the STARmapper (v2.5.2b) (McCarthy et al.,

2012), with the following parameters: outFilterMultimapNmax 20; outFilterMismatchNmax 999; outFilterMismatchNoverLmax 0.04;

outSAMprimaryFlag OneBestScore; outMultimapperOrder Random. Read counts per gene were also generated with STAR and

combined across samples to generate the raw counts table. Gene counts were filtered to be > 1 in at least one sample and normalized

by the trimmedmean of M values (TMM) using the edgeR package (McCarthy et al., 2012; Robinson et al., 2010). Differential expres-

sion was determined using the limma R package (Ritchie et al., 2015). Information on the sequencing reads can be found in Table S1.

ATAC-seq (assay for transposase-accessible chromatin using sequencing)
Mapping and filters

Demultiplexing was performed with the Illumina bcl2fastq software, version 2.20.0 (https://support.illumina.com/downloads/

bcl2fastq-conversion-software-v2-20.html). The reads were mapped with STAR 2.4.2a (Dobin et al., 2013) to the mm9 genome. A

75bp index was built using STAR’s generate_genome command and GENCODE mouse annotation, version M1 (Frankish et al.,

2019). STAR parameters were as follows: (1) trimming the Nextera Transposase Adapters (clip3pAdapterSeq CTGTCTCTTATACA

CATCTGACGCTGCCGACGA CTGTCTCTTATACACATCTCCGAGCCCACGAGAC, clip3pAdapterMMp 0.1); (2) suppressing splice

junction determination (alignIntronMax 10, alignSJoverhangMin 75, alignSJDBoverhangMin 75); (3) read pairs that represented

fragments of 1500bp or less were retained (alignMatesGapMax 1500); and (4) the remaining non-default parameters were:

alignEndsType Extend5pOfRead1; outSAMattributes NH HI AS nM MD NM; outFilterMismatchNoverReadLmax 0.04; outFilterMis-

matchNoverLmax 1. After mapping, the reads were subject to further filtering. First we collapsed read duplicates with PICARD tools

v1.90 (http://broadinstitute.github.io/picard), and selected only uniquely mapping reads using the flag ‘‘NH:i:1.’’ Then we removed

chrM and any non-reference chromosomes, and retained only concordant read pairs that represented fragments > = 38bp and %

1500bp. As a quality check, we assessed for low read duplication and a low percentage of reads mapping to chrM. We also verified

that the ratio of short reads to long (> 150bp) reads was consistent with published ATAC-seq datasets for both mouse and human

(i.e., approximately 1:1).

Peak calling and reproducibility

To identify potential open chromatin regions within the Xic region, ATAC-seq peaks were called using MACS2 v.2.1.0 (Zhang et al.,

2008) and submitted to IDR (version 2; https://github.com/nboley/idr) to determine the subset of reproducible peaks. MACS2 was

used to generate two types of peak lists for IDR: (1) a statistical cut-off of q-value < 0.01 was used on the pooled replicates of

each time point, to generate an ‘‘oracle’’ peak list; and (2) for each individual replicate a ‘‘relaxed’’ list of true and false positives

was created using a cut-off of p value < 0.1. The remaining arguments to the MACS2 callpeak command were as follows: gsize

mm, nomodel, shift 100, extsize 200, keep-dup all. The blacklist regions reported by ENCODE for mm9 were removed from the

MACS2 peak files using BEDTools intersect (version 2.26.0) (Quinlan and Hall, 2010). The final list of ATAC-seq peaks was deter-

mined with IDR: for a given time point, the oracle list from MACS2 and the top scoring 125,000 peaks from each replicate’s relaxed

MACS2 list were input to IDR. The remaining IDR parameters were: input-file-type narrowPeak, rank p.value, idr-threshold 0.05. The

subset of regions that passed the IDR threshold were used for downstream analysis.

Differential peak analysis

EdgeR, version 3.20.1 (McCarthy et al., 2012) was used to call differential ATAC-seq peaks between time points: days 0 versus 1,

days 1 versus 2, and days 0 versus 2. To create a list of regions-of-interest for EdgeR, the IDR peaks from all time points weremerged

using BEDTools (version 2.26.0) merge command (Quinlan and Hall, 2010). The regions-of-interest and the ATAC-seq bam files were

input to EdgeR with default parameters and an FDR of 0.01.
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Data visualization

The processed data was visualized using the R package GVIZ, version 1.22.3 (Hahne and Ivanek, 2016), and the bam files for each

time point were normalized using DeepTools bamCoverage, with parameters: normalizeUsingRPKM, binSize 20, smoothLength 60.

Chromosome conformation capture techniques
5C (chromosome conformation capture carbon copy)

Sequencing data was processed using our custom pipeline, 5C-Pro, available at https://github.com/bioinfo-pf-curie/5C-Pro. Briefly,

single-end sequencing reads were first trimmed to remove Illumina adapters and aligned on an in silico reference of all pairs of for-

ward and reverse primers using the bowtie2 software (Langmead and Salzberg, 2012). Aligned reads were then directly used to infer

the number of contacts between pairs of forward and reverse primers, thus providing a 5Cmap at the primer resolution. Based on our

previous experiments, inefficient primers were discarded from downstream analysis. Quality controls of the experiments were then

performed using the HiTC BioConductor package (Servant et al., 2012). Data from biological replicates were pooled (summed) and

binned using a running median (window = 30kb, final resolution = 6kb). We normalized 5C contacts for the total number of reads and

filtered out outlier probes and singletons, as previously described (Hnisz et al., 2016; Nora et al., 2012; Smith et al., 2016). We also

developed a novel method to exclude noisy contacts in the 5C maps, called ‘‘neighbourhood coefficient of variation,’’ available at

https://github.com/zhanyinx/Coefficient_Variation. Considering that the chromatin fiber behaves as a polymer, the contact fre-

quency of a given pair of genomic loci (e.g., i and j) cannot be very different from those of fragments i±N and j±N if N is smaller

(or in the order of) than the persistence length of the chromatin fiber. Hence, a given pixel in the 5C map (which is proportional to

the contact frequency between the two corresponding loci) can be defined as noisy if its numerical value is too different from those

corresponding to neighboring interaction frequencies. To operatively assess the similarity of a given interaction with neighboring con-

tacts, we calculated the coefficient of variation (CV) of contacts (pixels in the 5C map) in a 10x10 square centered on every contact.

We then set out to discard pixels for which the corresponding coefficient of variation was bigger than a threshold. Given that the dis-

tribution of the coefficient of variation of all 5C samples in this study is bimodal aroundCV = 1, we set the CV threshold to 1. Discarded

contacts appear as gray pixels in the differential 5C maps. For differential analysis between two samples of interest (generally wild-

type versusmutant), we calculated the difference between Z-scores determined for each individual map (Smith et al., 2016). Samples

corresponding to inversions of genomic regions were mapped to a virtually inverted map before analysis. Samples corresponding to

deletions were corrected for the new distance between genomic elements; this distance-adjustment was performed along with the

Z-score calculation.

Capture-C

Raw readswere first trimmed using the TrimGalore! pipeline (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), and

then processed using the HiC-Pro pipeline, v2.8.0 (Servant et al., 2015), until the detection of valid interaction products. Interaction

products including the viewpoint of choice were selected using the make Viewpoint HiC-Pro utility. For plotting, interaction fre-

quencies were normalized to the number of contacts per DpnII fragment per 10.000 total contacts within the analyzed region

(chrX:100214149-101420149), followed by a running mean with a window size of 7 DpnII fragments.

DATA AND CODE AVAILABILITY

All next-generation sequencing data generated in this study has been deposited in the Gene Expression Omnibus (GEO) under the

accession number GSE124596, as indicated in the Key Resources Table. Codes used in this study and their availability are also indi-

cated in the Key Resources Table.
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Figure S1. Characterisation of 245kb mutants, Related to Figure 1 

(A) 5C profiles of 254kb male mESCs; pooled data from two biological replicates. Differential 
maps represent the subtraction of Z-scores calculated for wildtype data from Z-scores calculated 
for mutant data (see Methods). Grey pixels correspond to either the deleted region or to contacts 
that were filtered because they did not meet the quality control threshold (see Methods). (B, C, D) 

Gene expression analysis using nCounter (see Methods) of wild type (grey) and 245kb (orange) 
male mESCs during differentiation. Data is normalised to six reference genes (see Methods), and 
represents the average of RNA counts from two biological replicates for each genotype. (E) 

Analysis of Xist RNA allelic ratios in wildtype and heterozygous 245kb female mESCs at day 4 
of differentiation. In the mutant female mESCs, the 129 allele harbours the deletion. Average of 
three replicates is shown with error bars representing SEM. Statistical analysis: paired two-tailed 
t-test (** p<0.01). (F) Reciprocal cross of analysis shown in Fig. 1E-G. On the left, schematic 
illustration of the crosses used for analysis of RNA allelic ratios in wildtype and heterozygous 
E8.5-E10.5 female hybrid embryos (molossinus/domesticus). Table summarises number of 
embryos collected. On the right, analysis of allelic ratios for Xist and Atp7a RNA. Each black dot 
represents the ratio for a single female embryo. Statistical analysis: two-tailed t-test (*** p<0.001, 

**** p<0.0001). Note 1: Given that 245kb heterozygous female ESCs also showed skewed Xist 

expression during early differentiation (Fig. S1E), our results indicate that the 245kb allele 
affects primary XCI choice (Xist upregulation). We cannot rule out that the effects we see in vivo 
are further intensified by secondary choice mechanisms (such as counter-selection of cells 

inactivating the wildtype allele); we note, however, that the 245kb allele is not deleterious for 

cell viability, as male mice with a single 245kb X-chromosome are viable. Note 2: Male and 

female 245kb mutants (hemizygous or homozygous) are viable, survive to adulthood and 
generate live descendants, despite lacking several coding and noncoding loci (Tsx, Chic1, Cdx4, 
Linx, Ppnx, Nap1L2). However, homozygous crosses are subfertile. Given that either paternal or 

maternal transmission of the 245kb allele result in viable male and female pups, imprinted XCI 

seems to be unaffected. This indicates that the 245kb region is not involved in regulating Xist 
expression during imprinted XCI, which is consistent with previous observations from transgene 
studies (Okamoto et al., 2005). 
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Figure S2. Characterisation of Orix, LinxE and LinxE-LinxP, Related to Figure 2 

(A) ATAC-seq data for the Tsix-TAD region in differentiating XX mESC – second replicate 
shown. See legend of Fig. 2A for more details. Pale red box highlights the Orix element. (B) 

Heatmap representation of nCounter analysis (see Methods) of wildtype (wt) and Orix () male 
mESCs during differentiation. Data is normalised to wt-d0 for each gene, and represents the 
average of two biological replicates (wt) or the average of two biological replicates from two 

independent mutant clones (). Statistical analysis: two-way ANOVA (** p<0.01). (C, D) On the 
left, schematic illustrations of the crosses used for analysis of RNA allelic ratios in wildtype and 
heterozygous E8.5-E10.5 female hybrid embryos (molossinus/ domesticus). Tables summarise 
number of embryos collected. On the right, analysis of allelic ratios for Xist RNA; each black dot 
represents the ratio for a single female embryo. Statistical analysis: two-tailed t-test. (E) Schematic 
representation of the Linx locus and its chromatin features (see Methods for sources of datasets 
represented). Position of introns and exons is based on Nora et al, 2012 (Nora et al., 2012) and 
mESC RNA SCRIPTURE (Guttman et al., 2010). Targeted region LinxE (~6kb) is indicated. 
Coordinates (mm9) – chrX: 100416637-100531447. (F, G) Schematic illustration of the crosses 
used for analysis of RNA allelic ratios in wildtype and heterozygous E8.5-E10.5 female hybrid 
embryos (molossinus/domesticus). Tables summarise number of embryos collected. Graphs show 
analysis of RNA allelic ratios for Xist and Atp7a, an X-linked gene. Each black dot represents the 
ratio for a single female embryo. Statistical analysis: Tukey’s multiple comparisons test (* p<0.05; 
**** p<0.0001). Note: We could still detect some transcripts at the 3’ of the locus in ~10% of 
cells (Fig. S3A, S3C), likely corresponding to a reported smaller isoform of Linx with an 
alternative first exon (Nora et al., 2012), here referred to as Linx-jr. We also generated mice 

knockout for the promoter region of Linx-jr (LinxE, ~6kb) (Fig. S2E), either alone or in 

combination with LinxP. Similar to LinxP, LinxE led to increased Xist expression in cis and 
preferential inactivation of Atp7a (0.68 vs 0.48, p<0.0001, Fig. S2F-G). Double cis-knockout of 
LinxE and LinxP did not have a stronger effect than LinxE knockout alone (Fig. S2F-G). The Linx 
locus therefore harbours two different negative cis-regulators of Xist with an impact on XCI 
choice. The repetitive nature of the LinxE DNA sequences did not allow us to study this element 
in more detail, and we therefore focused on LinxP. 
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Figure S3. Characterisation of LinxP mutants, Related to Figure 2 

(A) Schematic representation of the Linx locus and position of the primers used for qRT-PCR 

analysis of wildtype, LinxP and LinxE mESC. Gene expression levels relative to wildtype and 
normalised to three control genes (geNorm; see Methods). Bars represent averages of three 
biological replicates for each genotype/clone. (B) RNA FISH for Linx and Huwe1 (X-linked) on 

immuno-dissected inner cell masses (ICM) from E4.5 wildtype and LinxP embryos. Max 

projections of six z-planes (~2.5m). Exposure acquisitions and image processing were the same 
for wildtype and mutant. Percentages of cells in the ICM positive for Linx or Huwe1 are 
represented. Position of Linx probe (wi1-1985N4) is represented in (J). Equivalent results found 

in two additional embryos for each genotype (data not shown). Scale bar: 10m. (C) RNA FISH 

for different regions of Linx and DXPas34 (control) on wildtype and LinxP mutant male mESC. 
Position of the Linx probes used is illustrated in the scheme above. Percentages of cells positive 
for each probe are indicated. Equivalent results found in an independent experiment (data not 

shown). Scale bar: 2m. (D) Determining which allele is more frequently coated by Xist RNA in 

isogenic female ESCs, wildtype or heterozygous for LinxP, using RNA/DNA FISH. The two 
alleles are distinguished using a probe for the deleted region (LinxP). X chromosomes are 
identified by using a probe for the Tsix/Xist region. Data are presented as means and error bars 
represent standard deviation (two biological replicates, more than 80 cells per genotype counted 
for each). In wildtype cells, the proportion of cells with either one or the other X chromosome 
inactivated is expected to be 50:50 (dotted line) because the X chromosomes are genetically 
identical. (E) Reciprocal cross of analysis shown in Fig. 2E-G. Left, schematic illustration of the 
crosses used for analysis of RNA allelic ratios in wildtype and heterozygous E8.5-E10.5 female 
hybrid embryos (molossinus/domesticus). Table summarises number of embryos collected. Right, 
analysis of allelic ratios for Xist and Atp7a RNA. Each black dot represents the ratio for a single 
female embryo. Statistical analysis: two-tailed t-test (* p<0.05, ** p<0.01). (F) Gene expression 
analysis by qRT-PCR of wildtype and LinxP-inv mESC. Gene expression levels relative to 
wildtype and normalised to three control genes (geNorm; see Methods). Bars represent averages 
of three biological replicates for each genotype/clone. (G) Complementary analysis (Atp7a RNA 
allelic ratios) and reciprocal cross of analysis shown in Fig. 2L. Schematic illustrations represent 
the crosses used for analysis of RNA allelic ratios in wildtype and heterozygous E8.5-E10.5 female 
hybrid embryos (molossinus/domesticus) and tables summarise number of embryos collected. 
Graphs show analysis of allelic ratios for Xist and Atp7a RNA; each black dot represents the ratio 
for a single female embryo. Statistical analysis: two-tailed t-test. Note: The Linx-jr RNA does not 
seem involved in regulating Xist. Upon inversion of the LinxP element, which does not have an 
impact on Xist expression nor XCI choice in mouse (Fig. 2H-J; S3G), Linx-jr transcripts cannot 
be detected (Fig. S3F). The absence of Linx-jr transcripts is therefore associated with an absence 
of an effect on Xist expression or XCI choice. 
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Figure S4. Characterisation of LinxP and LinxP-knockin mutants, Related to Figure 3 and 
5 

(A) Gene expression analysis by qRT-PCR of wildtype and LinxP male mESC during early 
differentiation. Gene expression levels relative to wildtype (d0) and normalised to three control 
genes (geNorm; see Methods). Bars represent averages of three biological replicates for each 
genotype. (B) Allelic quantification of Cdx4 RNA by pyrosequencing in hybrid (129/PGK) female 

ESCs, wildtype or heterozygous for LinxP. Note that each clone harbours the deletion in a 
different allele and Cdx4 RNA allelic ratios are shown from one or the other allele (PGK or 129), 
depending on the mutant clone that is being compared. Data are presented as means and error bars 
represent SEM (three biological replicates). Statistical analysis: two-tailed paired t-test (** 
p<0.01). (C) Analysis of Xist RNA allelic ratios in wildtype female mESC and heterozygous 

Cdx4P clones at day 4 of differentiation. In each mutant female clone, the 129 allele harbours 
the deletion. Average of three replicates is shown for each genotype/clone with error bars 
representing SEM. Statistical analysis: paired two-tailed t-test. (D) Allelic quantification of Jpx, 
Ftx, Xpct and Rnf12 RNA by pyrosequencing in hybrid (129/PGK) female ESCs, wildtype or 

heterozygous for LinxP. Note that each clone harbours the deletion in a different allele and Cdx4 
RNA allelic ratios are shown from one or the other allele (PGK or 129), depending on the mutant 
clone that is being compared. Data are presented as means and error bars represent SEM (three 
biological replicates). Statistical analysis: two-tailed paired t-test. (E, F, G) Gene expression 

analysis using nCounter (see Methods) of wild type (grey) and LinxP (green) male mESCs during 
differentiation. Data is normalised to six reference genes (see Methods), and represents the average 
of RNA counts from four biological replicates for each genotype. (H, I, J) Allelic quantification 
of Jpx, Ftx or Rnf12 RNA by pyrosequencing in hybrid (129/PGK) female ESCs, wildtype or 
harbouring a knock-in cassette, at differentiation time points d0, d2 and d4. Note that for each 
clone, the cassette was knocked-in either on the 129-X chromosome or the PGK-X chromosome, 
and the RNA allelic ratios are shown for each clone relative to the knock-in allele. Data are 
presented as means and error bars represent SEM (three biological replicates each). Statistical 
analysis: two-tailed paired t-test (* p<0.05). Clones harbouring the polyA cassette alone (shades 
of grey) were compared to wild type (WT), while clones harbouring the LinxP element (shades of 
salmon and purple) were compared to the clones harbouring the polyA cassette alone. Note 1: We 

characterised the transcription status of all Xic genes in LinxP and also LinxE male mESC using 

nCounter technology, qPCR and/or RNA-seq (see Methods). The LinxE allele is not associated 

with any changes in gene expression across the Xic (data not shown). In LinxP male mESC, we 
observed that Cdx4, located ~10kb upstream of Linx, was dramatically downregulated (Fig. S4A). 

Cdx4 expression was also affected in cis in LinxP heterozygous female mESC (Fig. S4B) and in 
mutants harbouring a polyA cassette downstream of LinxP (Fig. S6C). To address whether Cdx4 
expression could be involved in regulating Xist in cis, we generated heterozygous mutants of the 

Cdx4 promoter (Cdx4P) in female ESCs and compared Xist allelic ratios upon differentiation. 

No difference was found between heterozygous Cdx4P mutants and control ESCs (Fig. S4C), 



excluding the hypothesis that LinxP could be affecting Xist expression in cis via Cdx4. We also 

assessed whether LinxP could be affecting other genes within the Xist-TAD, but allelic ratios for 

Jpx, Ftx, Xpct or Rnf12 were not significantly different between LinxP heterozygous and control 
female ESCs (Fig. S4D; unlike Xist, Fig. 3B). No other gene within the Xic or genome-wide (as 
revealed by RNA-seq; data not shown but available with this paper) was consistently affected by 

LinxP, including markers for pluripotency, differentiation and proliferation (Fig. S4E, S4F, 
S4G). Note 2: We observed preferential expression of either Jpx or Ftx for the LinxP knock-ins 
between Jpx and Ftx, or Ftx and Xpct, respectively; however, this effect was not consistent across 
clones nor across differentiation (Fig. S4H-J), in contrast to the effect on Xist. Xist activation in 
cis by the LinxP knock-ins was accompanied by skewed silencing of Rnf12 during differentiation 
in some clones (Fig. S4H-J). 
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Figure S5. Characterisation of LinxCBS mutants and chromosome conformation analysis 
of female mESCs, Related to Figure 4 

(A) Complementary analysis (Atp7a RNA allelic ratios) of Fig. 4D. Left, schematic illustration of 
the crosses used for analysis of RNA allelic ratios in wildtype and heterozygous E8.5-E10.5 female 
hybrid embryos (molossinus/domesticus) and table summarising number of embryos collected. 
Right, analysis of allelic ratio for Atp7a RNA; each black dot represents the ratio for a single 
female embryo. Statistical analysis: two-tailed t-test. (B) Reciprocal cross of analysis shown in 
Fig. 4D. Left, schematic illustration of the crosses used for analysis of RNA allelic ratios in 
wildtype and heterozygous E8.5-E10.5 female hybrid embryos (molossinus/domesticus) and table 
summarising number of embryos collected. Right, analysis of allelic ratios for Xist and Atp7a 
RNA; each black dot represents the ratio for a single female embryo. Statistical analysis: two-
tailed t-test. (C) 5C profiles of female mESC (Pgk12.1) during early differentiation; pooled data 
from two or three biological replicates for each time point. See Methods for more details. (D) 5C 

profiles of wildtype, LinxE, LinxP and LinxP-inv male mESC; pooled data from two biological 
replicates for each genotype. Differential maps to wildtype shown in Fig.4G-I. See Methods for 
more details. (E) Supporting figure for Fig. 4J, depicting the calculations of the proportion of inter-
TAD contacts. 
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Figure S6. Characterisation of Linx-stop mutants and chromosome conformation analysis of 

LinxP, LinxE and LinxP-inv mutants, Related to Figure 4 

(A) Virtual 4C plot generated from 5C data, using the bin containing the Xist promoter as view 
point. (B) Schematic representation of the knock-in strategy for inserting a stop-cassette ~1kb 
downstream of the LinxP element. Selection marker was removed (flipase, Flp) and polyA signal 
inverted to correct orientation (Cre). As a control, the cassette was removed (Dre). (C) Gene 
expression analysis by qRT-PCR of wildtype and Linx-stop mESC. Gene expression levels relative 
to wildtype and normalised to three control genes (geNorm; see Methods). Bars represent averages 
of three biological replicates for each genotype/clone. (D) 5C profiles of Linx-stop male mESCs; 
pooled data from two biological replicates. Differential maps represent the subtraction of Z-scores 
calculated for wildtype data from Z-scores calculated for mutant data (see Methods). Grey pixels 
correspond to to contacts that were filtered because they did not meet the quality control threshold 
(see Methods). (E) Quantification of 5C inter-TAD contacts in wildtype, Linx-stop and Linx-stop-
del mESC (see Fig.S5E for details on calculations). Bars represent the average of the calculated 
proportions of four (E14, Linx-stop) or two (Linx-stop-del) independent replicates. Statistical 
analysis: two-tailed t-test (* p<0.05). 
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