GigaScience

A high-quality chromosomal genome assembly of Diospyros oleifera --Manuscript Draft--

Manuscript Number:	GIGA-D-19-00174R1			
Full Title:	A high-quality chromosomal genome assembly of Diospyros oleifera			
Article Type:	Data Note			
Funding Information:	National Key R &D Program of China (2018YFD1000606)	Dr. Jianmin Fu		
	Fundamental Research Funds for the Central Non-profit Research Institution of CAF (CAFYBB2017ZA005)	Dr. Peng Sun		
	Fundamental Research Funds for the Central Non-profit Research Institution of CAF (CAFYBB2017ZA004-3)	Dr. Fangdong Li		
Abstract:	Background: Diospyros oleifera, a member of the genus Diospyros of the family Ebenaceae, is an economically important tree. Phylogenetic analyses have indicated that D. oleifera is closely related to D. kaki, and could be used as a model plant for research on D. kaki. Therefore, development of the genomic resources of D. oleifera will facilitate auxiliary assembly of the hexaploid persimmon genome and provide insight into the molecular mechanisms of the major economic traits. Findings: The D. oleifera genome was assembled into a total of 443.6 Gb of raw reads using the Pacific Bioscience Sequel and Illumina HiSeq X Ten platforms. The final draft genome was approximately 812.3 Mb and had a high level of continuity with the 3.36 Mb N50. By using the Hi-C data and the draft genome assembly, fifteen scaffolds corresponding to the 15 chromosomes were assembled to a final size of 721.5 Mb using 332 scaffolds, accounting for 88.81% of the genome. The identified repeat sequences accounted for 54.8% of the genome. By de novo sequencing and analysis of homology with other plant species, 30,539 protein-coding genes with an average transcript size of 1,080.9 bp were annotated, of which 28,146 protein-coding genes (92.2%) had conserved functional motifs or functional terms. In addition, 171 candidate genes involved in the synthesis of tannin and deastringency in persimmon were identified, of which CHS (Chalcone synthase) genes had different degrees of expansion in D.oleifera genome compared with D.lotus, C.sinensis, and V.vinifera. Moreover, 186 positively selected genes were identified, including CHI (Chalcone isomerase) gene, which was one of the key enzymes in the flavonoid-anthocyanin pathway. Phylogenetic tree indicated that the split of D.oleifera and D. lotus was estimated at 9.0 Mya. Besides the ancient y event, a second WGD event occurred in D.oleifera and D.lotus (4dtv=0.36 ~0.27-0.42). Conclusions: We generated a high-quality chromosome-level draft genome for D. oleifera, which will facilitate the assembly of the			
Corresponding Author:	Yujing Suo CHINA			
Corresponding Author Secondary Information:				
Corresponding Author's Institution:				
Corresponding Author's Secondary Institution:				
First Author:	Yujing Suo			
First Author Secondary Information:				
Order of Authors:	Yujing Suo			
	Peng Sun			

	Huihui Cheng	
	Weijuan Han	
	Songfeng Diao	
	Huawei Li	
	Yini Mai	
	Xing Zhao	
	Fangdong Li	
	Jianmin Fu	
Order of Authors Secondary Information:		
Response to Reviewers:	Dear Editor,	
	Thank you very much for offering us the opportunity to resubmit a revised version of our manuscript. Hereby, we submit the revised manuscript entitled "A high-quality chromosomal genome assembly of Diospyros oleifera" (GIGA-D-19-00174) to GigaScience. We appreciate the valuable comments and suggestions from you and the reviewers, which help us to improve and clarify the manuscript. We have discussed the comments carefully and tried our best to improve the manuscript according to the reviewers' good comments.	
	The main modifications are as follows: 1. We confirmed the NCBI data link, you and the reviewers can find the data under this link: https://dataview.ncbi.nlm.nih.gov/object/PRJNA532832?reviewer=gbss3pp9p06h5hosk s3vrepirg	
	2. We supplemented the content of comparative genomic analysis, including gene family cluster, expansion and contraction of gene families, positively selection analysis, and macrosynteny analysis. Some interesting results were found: Firstly, compared with D.lotus, C.sinensis, and V.vinifera, CHS (Chalcone synthase) genes (the first key enzyme in the flavonoid-anthocyanin pathway) had different degrees of expansion in D.oleifera genome, which may be contribute to the abundant tannin production in the D.oleifera. Besides, CHI (Chalcone isomerase) gene (another key enzyme in the flavonoid-anthocyanin pathway) was found to be positive selected. These results will provide important data support for the molecular mechanism analysis of the major economic traits in Diospyros. Furthermore, the divergence time of between D. oleifera and D.lotus was estimated at 9.0 Mya, and two WGD events occurred in D.oleifera genome. These results will be helpful for the further analysis of the evolution of Diospyros species, and the origin of hexaploid persimmon.	
	Detailed responses to your and the reviewers' comments are provided in the next sections. We hope you and the reviewers will be satisfied with our responses to the comments and the revisions for the original manuscript. Please feel free to contact us with any questions and we are looking forward to your response.	
	Thanks and Best wishes!	
	Yours sincerely, Yujing Suo and Jianmin Fu	
	Response to Reviewer:	
	Reviewer #1: Suo et al report a chromosome scale assembly of D. oleifera, a diploid relative of hexaploid persimmon. They used a combination of Illumina, 10x, PacBio, and HiC to generate the chromosome scale assembly D. oleifera. The inclusion of high coverage Illumina data and scaffolding with 10x likely ensured that most of the residual indels from the PacBio only assembly were corrected. The HiC contact map in Figure 2	

has no obvious inversions or misplacements, suggesting the genome is well assembled. This resource will be useful for the comparative genomics and persimmon research communities. I have a few minor concerns that should be addressed before this manuscript is published.

Q1. The estimated heterozygosity of D. oleifera is quite high (1.1%) and this would have likely resulted in assembly issues related to haplotype specific contigs. How many primary and alternate contigs were assembled by FALCON? A: There were 2,986 contigs initially assembled by FALCON (Table 1).

Q2.Akagi et al. (https://www.biorxiv.org/content/early/2019/05/05/628537.full.pdf) report a chromosome scale assembly of diploid persimmon (D. lotus). The authors could cite this preprint in their manuscript and if the genome is publicly available, survey macrosynteny.

A: Thanks for your suggestion. We have added the macrosynteny analysis (Revised manuscript, Page12, Line 291-297). The chromosome-based macrosynteny analysis revealed a striking correspondence between D.oleifera and D.lotus, for that there were totally 432 syntenic blocks showed in supplementary Fig. S5.

Q3. The identification of homologs of sex determination genes from kiwi and D. lotus is not informative, as the kiwi sex determination system is likely completely different from D. oleifera and sex chromosomes may have an independent origin in D. lotus and D. oleifera. It is fine to leave this in the paper, but the statement that candidate sex determination genes were identified should be removed from the abstract A: Thanks for your suggestion. We have removed the content about sex determination, and focused on the analysis of genes related to tannin synthesis.

Q 4. The identification of a WGD event in D. oleifera is interesting, and figure S2 could probably be moved to the main text. Based on this figure, it looks like there could have been two WGD events in D. oleifera.

A: Thanks for your suggestion. We have moved the Fig. S2 to the main text as the new Fig. 5. Besides the ancient γ event (all core eudicots share an ancient WGD, 4dtv = 0.66), a second WGD event occurred in D.oleifera and D.lotus (4dtv=0.36 ~0.27-0.42) which might contribute to the divergence of Ebenaceae with A. chinensis and C. sinensis. (Revised manuscript, Page12, Line 289-292)

Minor

Page 6, line 152. homologous should not be use here

Versions are provided or most but not all bioinformatics software. Where appropriate, versions should be added.

A: 'homologous' in Page 6, line 152 was deleted and versions of bioinformatics software had been provided in the article. (Revised manuscript, Page7, Line 165-166)

Reviewer #2: This manuscript describes the assembly of the first chromosome-level genome sequence of an Ebenaceae, Diospyros oleifera. The newly generated genome sequence was analysed for TE and gene content as well as for tannin synthase and sex determination genes. A phologenetic tree was constructed for divergence time estimation.

Data preparation as well as the construction of the pseudomolecules follows established and proven protocols and the results look good to me. Same is true for the gene model prediction and TE detection.

My main issue with this study is that it is almost exclusively a description of a newly established genomic resources, with very little to no new biological insights included in this manuscript. There is a little bit on tannin synthase and sex determination but this is all based on existing knowledge and little more than a homolog search. I appreciate the generation of these novel and helpful resources but these data could/should have been used to gain more biological insights.

A : For the question you mentioned, we supplemented the content of comparative

	genomic analysis in the revised manuscript, including gene family cluster, expansion and contraction of gene families, positively selection analysis, and macrosynteny analysis. Some interesting results were found: Firstly, compared with D.lotus, C.sinensis, and V.vinifera, CHS (Chalcone synthase) genes (the first key enzyme in the flavonoid-anthocyanin pathway) had different degrees of expansion in D.oleifera genome, which may be contribute to the abundant tannin production in the D.oleifera. Besides, CHI (Chalcone isomerase) gene (another key enzyme in the flavonoid- anthocyanin pathway) was found to be positive selected. These results will contribute to the molecular mechanism analysis of the major economic traits in Diospyros. Furthermore, the divergence time of between D. oleifera and D.lotus was estimated at 9.0 Mya, and two WGD events occurred in D.oleifera genome. These results will be helpful for the further analysis of the evolution of Diospyros species, and the origin of hexaploid persimmon. In brief, this study provides a high-quality chromosomal level assembly of D.oleifera genome, which will provide important data support for the assembly of subsequent hexaploid persimmon genomes and the molecular mechanism analysis of the major economic traits in Diospyros.
	More specific issues: a.)Transcriptome data: I could not find a proper description of the transcriptome data that was obviously generated with this study and used for gene prediction. This could e.g. also be used to establish transcription levels for gene or gene families of interest. A : The description of the transcriptome data was displayed in the 'Genomic RNA extraction, library construction and sequencing' part of the article. (Revised manuscript , Page7 , Line 156-160)
	 b.)Functional annotation: I would recommend to use more specialized tools such as AHRD or BLAST2GO instead of simple best Blast hit for the human readable descriptions. A : Thanks for your suggestion. We had reannotated the gene set by BLAST2GO, as a result , 19,900 genes were annotated. After combining with the earlier annotation by blastp with InterPro database, there were totally 20,826 genes that had GO annotation, account for 68.20% of the gene models. The results were showed in the article. (Revised manuscript , Page8 , Line 186-191)
	 c.)Phylogeny: I would recommend to use OrthoFinder instead of the older OrthoMCL version for determining the orthologous groups. Also, I'm not sure about the bias possibly introduced by just picking the single copy orthologs for the construction of the phylogenetic tree. A : Thanks for your suggestion. We had reanalysis the gene families with OrthoFinder and got totally 19,722 clusters which were used for the phylogeny construction. The results were displayed in the article. (Revised manuscript, Page9, Line 224-230)
	A : We confirmed the NCBI data link, you and the reviewers can find the data under this link: https://dataview.ncbi.nlm.nih.gov/object/PRJNA532832?reviewer=gbss3pp9p06h5hosk s3vrepirg
	e.) Language and grammar needs improvement. A : The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/Q48QsC
Additional Information:	
Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes

Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends. Have you included all the information requested in your manuscript?	
Resources	Yes
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite <u>Research Resource</u> Identifiers (RRIDs) for antibodies, model organisms and tools, where possible.	
Have you included the information requested as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	
Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in <u>publicly available repositories</u> (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the "Availability of Data and Materials" section of your manuscript.	
Have you have met the above requirement as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	

1 A high-quality chromosomal genome assembly of *Diospyros oleifera*

- 2
- 3 Yujing Suo^{1,2,3,†}, Peng Sun^{1,2,3,†}, Huihui Cheng^{4†}, Weijuan Han^{1,2,3}, Songfeng Diao^{1,2,3}, Huawei
- 4 Li^{1,2,3}, Yini Mai^{1,2,3}, Xing Zhao⁴, Fangdong Li^{1,2,3, *} and Jianmin Fu^{1,2,3, *}

 ¹Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No.3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China; ²Non-timber Forest Research and Development Center, Chinese Academy of Forestry, No.3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China; ³National Innovation Alliance of Persimmon Industry, No.3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China; ⁴Novogene Bioinformatics Institute, Beijing, 100083, China

10

* Correspondence address. Fangdong Li, Non-timber Forest Research and Development Center, Chinese Academy
 of Forestry, No.3 Weiwu Road, Jinshui District, Zhengzhou, 450003, E-mail: <u>lifangdong66@163.com</u>; Jianmin Fu,

- 13 Non-timber Forest Research and Development Center, Chinese Academy of Forestry, No.3 Weiwu Road, Jinshui
- 14 District, Zhengzhou, 450003, E-mail: fjm371@163.com
- 15 [†]Contributed equally to this work.
- 16

17 Abstract

Background: Diospyros oleifera, a member of the genus Diospyros of the family Ebenaceae, is an 18 19 economically important tree. Phylogenetic analyses have indicated that D. oleifera is closely related to D. kaki, and could be used as a model plant for research on D. kaki. Therefore, development of the 20 21 genomic resources of D. oleifera will facilitate auxiliary assembly of the hexaploid persimmon 22 genome and provide insight into the molecular mechanisms of the major economic traits. Findings: The D. oleifera genome was assembled into a total of 443.6 Gb of raw reads using the Pacific 23 Bioscience Sequel and Illumina HiSeq X Ten platforms. The final draft genome was 24 approximately 812.3 Mb and had a high level of continuity with the 3.36 Mb N50. By using the 25 Hi-C data and the draft genome assembly, fifteen scaffolds corresponding to the 15 chromosomes 26 were assembled to a final size of 721.5 Mb using 332 scaffolds, accounting for 88.81% of the 27 genome. The identified repeat sequences accounted for 54.8% of the genome. By de novo 28 sequencing and analysis of homology with other plant species, 30,539 protein-coding genes with 29 an average transcript size of 1,080.9 bp were annotated, of which 28,146 protein-coding genes 30 (92.2%) had conserved functional motifs or functional terms. In addition, 171 candidate genes 31

32 involved in the synthesis of tannin and deastringency in persimmon were identified, of which 33 CHS (Chalcone synthase) genes had different degrees of expansion in D.oleifera genome 34 compared with D.lotus, C.sinensis, and V.vinifera. Moreover, 186 positively selected genes were 35 identified, including CHI (Chalcone isomerase) gene, which was one of the key enzymes in the flavonoid-anthocyanin pathway. Phylogenetic tree indicated that the split of D.oleifera and D. 36 *lotus* was estimated at 9.0 Mya. Besides the ancient γ event, a second WGD event occurred in 37 D.oleifera and D.lotus (4dtv=0.36 ~0.27-0.42). Conclusions: We generated a high-quality 38 chromosome-level draft genome for *D. oleifera*, which will facilitate the assembly of the hexaploid 39 40 persimmon genome and further studies on the major economic traits in the genus Diospyros.

41

42 Keywords: *Diospyros oleifera*; chromosome-level genome assembly; Hi-C assembly; Tannin

43 synthesis; sex determination genes

44

45 Data Description

46 Background

Diospyros, the largest genus in the family Ebenaceae, comprising more than 500 species, of 47 48 which the ebony and fruit have considerable economic value. The ebony of more than 20 species of Diospyros (including D. reticulata from Africa, D. ebenum and D. ferrea from Asia) is used 49 commercially for arts, crafts, and decorative building materials. In addition, D. kaki, D. oleifera, 50 51 and D. lotus are important species for fruit production; indeed, D. kaki is one of the most widely distributed fruit trees worldwide. However, most D. kaki cultivars are hexaploid (2n=6x=90) or 52 53 nonaploid (2n=9x=135) and its progenitor, origin, and polyploidization mechanisms are unclear, which hampers molecular breeding. D. *oleifera* is diploid (2n=2x=30) and its fruit contains large 54 quantities of tannins, important raw materials for the production of persimmon paint (Fig. 1). 55 Also, D. oleifera is frequently selected as stock for grafting of persimmon (D. kaki). Phylogenetic 56

57 analyses based on the chloroplast genome and protein-coding, intergenic, and intron sequences 58 have indicated that *D. oleifera* is closely related to *D. kaki* and could be used as a model plant for 59 research on *D. kaki* [1]. Therefore, analysis of the genome of *D. oleifera* will contribute to 60 auxiliary assembly of the hexaploid persimmon genome.

Similar to persimmon, D. oleifera has gynoecious, androecious, monoecious and 61 andromonoecious sex types, making it ideal for studying the mechanism of sex determination of 62 persimmon. The mechanism of sex determination of D. lotus has been investigated; using 63 segregating F1 sibling trees (female (XX) and male (XY) progenies), two key genes (MeGI and 64 65 OGI) were identified. OGI is required for the formation of male flowers and encodes a small RNA that represses the expression of *MeGI* [2]. However, this mechanism of sex determination 66 67 cannot explain the monoecious sex type of other Diospyros species. Therefore, development of 68 the genomic resources of D. oleifera could provide insight into the mechanisms of sex 69 determination of members of the genus Diospyros.

Here, we constructed a high-quality chromosome-level reference genome assembly for *D*. *oleifera* using the long reads generated by the Pacific Biosciences (PacBio) DNA sequencing platform and Hi-C data. The high quality (in terms of completeness and continuity) of the genome will facilitate both assembly of the hexaploid persimmon genome and further studies on the major economic traits in the genus *Diospyros*.

75 Genomic DNA extraction, library construction, sequencing, and genome size estimation

Genomic DNA was extracted from fresh leaves of *D. oleifera* using a DNAsecure Plant Kit (Tiangen Biotech, Beijing, China). A short-read genomic library was prepared using the TruSeq DNA PCR-Free LT Library Kit (Illumina, San Diego, CA, USA). Five paired-end genomic sequence libraries with a gradient insert size of 250 to 450 bp were constructed and sequenced on the Illumina HiSeq X Ten platform. A total of 104.02 Gb of raw sequence data (119.78-fold coverage of the *D. oleifera* genome) were used for genome assembly (Supplementary Table S1). At least 10 µg of sheared DNA was required to generate the 40 kb insert library. Preparation of the SMRT cell template involved DNA concentration, damage repair, end repair, ligation of hairpin adapters, and template purification. Subsequently, the genome was sequenced on the PacBio Sequel platform (Pacific Biosciences, Menlo Park, CA, USA). A total of 99.76 Gb of raw sequence data (114.88-fold coverage of the *D. oleifera* genome) were used for genome assembly (Supplementary Table S1).

To produce a 10X genome library, about 1 ng of input DNA (50 kb length) was used for the GEM reaction during PCR, and 16 bp barcodes were introduced into droplets. Next, the droplets were fractured following purification of the intermediate DNA library. The library comprised 109.88 Gb (126.53-fold coverage of the *D. oleifera* genome) and was sequenced using 150 bp paired-end reads on the Illumina HiSeq X platform (Supplementary Table S1).

93 One Dovetail Hi-C library was prepared as described previously [3]. Briefly, for each library, chromatin was fixed in place in the nucleus using formaldehyde and then extracted. Fixed 94 95 chromatin was digested with DpnII, the 5' overhangs were filled using biotinylated nucleotides, and free blunt ends were ligated. After ligation, crosslinks were reversed, and DNA was separated 96 97 from protein. Purified DNA was treated to remove biotin outside of the ligated fragments, sheared to a mean fragment size of about 350 bp, and used to create sequence libraries with NEBNext 98 Ultra enzymes (New England Biolabs, Ipswich, MA, USA) and Illumina-compatible adapters. 99 100 Biotin-containing fragments were isolated using streptavidin beads before PCR enrichment of the 101 libraries; the libraries were next sequenced on the Illumina HiSeq PE150 platform. A total of 98.24 Gb of reads was produced for the libraries. Together, these Dovetail Hi-C library reads 102 103 provided 113.12-fold physical coverage of the genome (Supplementary Table S1).

High-quality paired-end reads from *D. oleifera* were used to generate 17-mer frequency information by k-mer analysis [4]. The 17-mer distribution was dependent on the characteristics of the genome and followed a Poisson distribution (Supplementary Fig. S1). We estimated the 107 genome to be 868.41 Mb in size with a heterozygosity of 1.08% (Supplementary Table S2).

108 De novo assembly of D. oleifera

De novo assembly of the long reads generated by SMRT sequencing was performed using 109 110 FALCON [5] (v.0.3, https://github.com/PacificBiosciences/FALCON/). Briefly, we first selected 111 the longest coverage of subreads as seeds for error correction. Next, the data were filtered and assembled (length_cutoff_pr = 4000, max_diff = 100, and max_cov = 100). A total of 2,986 112 113 contigs was assembled with a total length of 806.74 Mb (accounting for about 92.9% of the 114 estimated genome), an N50 of 2.92 Mb, and a longest contig of 14.72 Mb (Table 1). The primary 115 contigs (p-contigs) were polished using Quiver [6] by aligning SMRT reads, which produced a 116 genome of 812.37 Mb and an N50 of 2.94 Mb. Finally, Pilon [7] (v.1.22) was used to perform the 117 second round of error correction with the short paired-end reads generated by the Illumina HiSeq platform, resulting in a genome of 811.09 Mb and a longest contig of 14.81 Mb (Table 1). For the 118 119 scaffolding step, Long Ranger (v. 2.1.2, https://support.10xgenomics.com/genomeexome/software/pipelines/latest/installation) was applied to build scaffolds using the 10X data. 120 121 FragScaff [8] (v. 1-1) was used to build superscaffolds from the barcoded sequencing reads. The 122 final assembly contained 2,812 scaffolds and had a total length of 812.32 Mb, representing 123 approximately 93.54% of the genome estimated by k-mer analysis. The sizes of the longest contig and scaffold were 14.82 and 17.43 Mb, respectively, and the N50s were 2.94 and 3.36 Mb, 124 125 respectively (Table 1). Subsequently, the Hi-C sequencing data were aligned to the assembled scaffolds by BWA-mem [9] (v.0.7.8), and the scaffolds were clustered onto chromosomes with 126 127 LACHESIS (http://shendurelab.github.io/LACHESIS/). Among the 2,812 scaffolds, 332 were 128 grouped into the 15 chromosomes, with maximum and minimum lengths of 61.45 Mb and 40.21 Mb, respectively (Fig. 2). The final genome was 721.45 Mb and the N50 was 33.5 Mb, accounting for 129 130 88.81% of the total genome (Supplementary Table S3, Fig. 3). The continuity and integrity of the 131 assembly for D. oleifera is significantly better than that of the published D. lotus genome, which final genome was 945.63 Mb with contigs N50 0.65Mb, and 746.09 Mb (78.9%) was assembled intothe 15 pseudomolecules[10].

134 Assessment of the assembled genome

135 To estimate the quality of the assembled genome, the short reads were mapped back to the consensus 136 genome using BWA; the overall mapping rate was 98.19%, suggesting that the assembly contained comprehensive genomic information (Supplementary Table S4). The completeness of gene regions 137 138 was assessed using Core Eukaryotic Gene Mapping Approach (CEGMA) [11] and Benchmarking 139 Universal Single-Copy Orthologs (BUSCO) [12] to evaluate the completeness of the assembled 140 genome. The CEGMA assessment showed that 215 (93.55%) of 248 core eukaryotic genes were covered (Supplementary Table S5). In contrast, 89.4% of complete BUSCOs were detected and 6.6% 141 142 were missing (Supplementary Table S6), indicating that the assembled genome had a high level of 143 completeness.

144 Repetitive elements identification of *D. oleifera*

The *D. oleifera* genome was subjected to annotation of repetitive sequences—transposable elements (TEs) and tandem repeats. RepeatMasker [13,14] (v.4.0.5) was used to detect TEs in a repeat library derived from a known repeat library (Repbase, v. 15.02) and a *de novo* repeat library generated using RepeatModeler [3] (v. 1.0.5), RepeatScout [15] (v.1.0.5), Piler (v.1.0), and LTR_FINDER [16] (v.1.0.7). RepeatProteinMask [14] (v.4.0.5) was used to detect TEs in the *D. oleifera* genome by comparison with a TE database. Tandem repeats were identified using Tandem Repeats Finder [17] (v.4.0.7).

Repetitive sequences comprised 54.8% of the *D. oleifera* genome, among which TEs accounted for 53.03%. The most frequently detected TEs were long terminal repeat (LTR) retrotransposons (46.73%), followed by DNA TEs (4.17%). Of the LTRs, 26.63% and 14.40% were Ty3/Gypsy and Ty1/Copia, respectively (Table 2).

156 Genomic RNA extraction, library construction, sequencing

For RNA-sequencing, we collected different tissues of *D.oleifera* from the same plant used for genome sequencing, including material from leaf, root, seed, stem and fruit. Total RNAs were extracted using TRIzol® Reagent (Thermo Fisher Scientific, USA) according to the manufacturer's instructions. RNA-seq was performed using an Illumina platform.

161 Annotation of protein-coding genes

De novo, homolog-based, and RNA sequencing (RNA-seq)-based predictions were employed to 162 163 annotate the protein-coding genes in the *D. oleifera* genome. The following *ab initio* gene prediction 164 software packages were used to predict genes: Augustus [18, 19] (v. 3.0.2), Genescan [20] (v. 1.0), 165 Geneid [21] (v.1.4), GlimmerHMM [22] (v. 3.0.2), and SNAP [23] (2013-11-29). The protein sequences of seven species (including Arabidopsis thaliana and Daucus carota) were downloaded 166 167 from Ensembl or the National Center for Biotechnology Information (NCBI) databases. Homologous 168 sequences were aligned against the repeat-masked D. oleifera genome using TBLASTN [24] 169 (v.2.2.26, E-value \leq 1E-05). Genewise [25] (v. 2.2.0) was employed to predict gene models based on 170 the aligned sequences. The RNA-seq data were assembled into the unique sequences of transcripts 171 by mapping the RNA-seq data to the *D. oleifera* genome using TopHat [26] (v. 2.0.8) and Cufflinks 172 [27] (v. 2.1.1) (http://cufflinks.cbcb.umd.edu/) for transcript assembly. Alternatively, Trinity [28] (v.2.1.1) was used to assemble the RNA-seq data, and the gene structures were improved using 173 174 PASA [29] software (r20140417, http://pasapipeline.github.io/). A weighted and non-redundant gene 175 set was generated by merging all of the gene models predicted by the above three approaches with EVidenceModeler (EVM) [30] (v.1.1.1). PASA was applied to adjust the gene models generated by 176 177 EVM. The final reference gene set contained 30,539 protein-coding genes with an average transcript 178 size of 7,112.37 bp, an average coding sequence size of 1,080.95 bp, and a mean number of exons per gene of 4.62 (Supplementary Table S7). The number of annotated genes in this genome is less 179 180 than that in the *D. lotus* genome (40,532 genes).

181 Functional annotation

182 Functional annotation of protein-coding genes was performed according to the best BLAST hit by 183 BLASTP (v.2.2.28, E-value < 1E-05) searching of the SwissProt, TrEMBL [31], and NCBI non-184 redundant (NR) protein databases. Motifs and domains were annotated by searching the Pfam, 185 PRINTS, PROSITE, ProDom, and SMART InterPro (v. 29.0) databases using InterProScan [32] (v. 4.8). The Gene Ontology term for each gene was annotated by Blast2GO [33]. Additionally, the gene 186 187 sets were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG) [34] (v. 53) pathways to 188 identify the best match classification for each gene (BLASTp E-value \leq 1E-05). Finally, 28,580 189 protein-coding genes (93.59% of total 30,539 genes) had conserved functional motifs or functional 190 terms—92.01% (28,098), 78.69% (24,032), and 71.18% (21,739) of the genes in NR, InterPro, and KEGG, respectively (Supplementary Table S8). 191

192 Annotation of non-coding RNAs

193 tRNA genes were predicted using tRNAscan-SE software [35] (v.1.4) with the default parameters. 194 rRNAs were annotated based on their level of homology with the rRNAs of several species of higher 195 plants (not shown) using BLASTN with an E-value of 1e-5. The miRNA and snRNA fragments were 196 identified by searching the Rfam database (v. 11.0) using INFERNAL [36,37] (v.1.1) software. 197 Finally, 564 miRNAs, 507 tRNAs, 2,207 rRNAs, and 803 snRNAs were identified, which had 198 average lengths of 114.69, 74.82, 161.40, and 111.54 bp, respectively (Supplementary Table S9).

199

200 Identification of tannin synthase genes in *D. oleifera*

201 Given the importance of tannin production in D. oleifera, we further indentified genes within the tannin biosynthesis pathway, which including chorismic acid pathway, phenylpropane metabolic 202 203 pathway, flavonoid-anthocyanin pathway, and proanthocyanidin specific pathway (Supplementary 204 Fig. S1). All of the synthase genes involved in the three pathways, as well as several closely related 205 transcription factors including WD40 and WIP-ZF were identified by aligning to reference genes downloaded NCBI TAIR 206 in (https://www.ncbi.nlm.nih.gov) or

207 (https://www.arabidopsis.org/index.jsp) using Blastp (E-value<1e-5, identity≥50%, and coverage >50%). A Pfam HMMER search was used to filter genes that don't contain the 208 209 corresponding domain. Transcription factors (TFs) including MYB, MYC and WRKY were 210 identified and classified into different families using the iTAK pipeline (v.1.7, 211 http://bioinfo.bti.cornell.edu/cgi-bin/itak/index.cgi). As a result, 171 genes and 380 TFs were 212 identified, of which 13, 59, and 21 genes were involved in phenylpropane metabolic pathway, flavonoid-anthocyanin pathway, and proanthocyanidin specific pathway respectively. Also, we 213 214 detected 18 genes encoding transport proteins such as Glutathione S-transferase (GST) and Multi-215 drug and toxic compound extrusion transporter (MATE), which were closely related to 216 transmembrane transport of tannin. Besides, we identified the key genes of acetaldehyde metabolism, 217 such as ADH(10), ALDH(19), and PDC(5), which were related to the deastringency of persimmon 218 (Supplementary Table S10). The tannin synthetic genes and TFs identified in this study provided the basis for molecular breeding of persimmon tannins. 219

220 Gene family cluster, Phylogenetic tree construction and divergence time estimation

221 10 other sequenced plant species were used to investigate the evolution of *D.oleifera*, including 8 222 asterids plants (D. lotus, P.veris, R.delavayi, C.sinensis, A.chinensis, D.carota, C.canephora, 223 S.lycopersicum) and 3 rosids plants (A.thaliana, V.vinifera, C.melo). Gene families were generated 224 by Orthofinder [38] (v.2.3.1, http://www.stevekellylab.com/software/orthofinder). First, nucleotide and protein data of 10 species were downloaded from Ensembl (Release 70) and NCBI. Before an 225 226 "all against all" BLASTP (E-value \leq 1E-07) program, the longest transcript was selected from alternative splicing transcripts belonging to one gene, and genes with ≤ 50 amino acids were 227 228 removed. The alignments with high-scoring segment pairs (HSPs) were conjoined for each gene pair 229 by solar [39]. After clustering, 19,722 gene families were detected across D.oleifera and 11 other 230 species, of which 5,599 gene families and 221 single-copy orthologs were shared by 12 species. Among the 5 Ericales species (*D.oleifera*, *D.lotus*, *A.chinensis*, *R.delavayi*, and *C.sinensis*), 177 gene families consisting of 312 genes were unique to *D.oleifera* (Supplementary Fig. S3), which KEGG pathway enriched in Ubiquitin mediated proteolysis, Pyruvate metabolism, Biosynthesis of amino acids, Carbon metabolism, Glycine, serine and threonine metabolism, Aminoacyl-tRNA biosynthesis, and Valine, leucine and isoleucine degradation.

236 Based on this ortholog set, a phylogenetic tree of the 12 plant species was constructed using Othofinder based on phylogenitic tree constructed by FastME [40] (v.2.1.5). Then mcmctree 237 238 program of PAML [41] (v.4.5, http://abacus.gene.ucl.ac.uk/software/paml.html) was applied to 239 estimate divergence time among 12 species by using the 221 shared single-copy orthologs with main parameters burn-in=100,000, sample-number=100,000, and sample-frequency=2. 4 calibration points 240 241 were selected from TimeTree website (http://www.timetree.org) as normal priors to restrain the age 242 of the nodes. The phylogenetic tree confirmed the grouping of Angiospermae. The split of *D.oleifera* and D. lotus was estimated at 9.0 Mya (Fig.4). 243

244 Expansion and contraction of gene families

245 We determined the expansion and contraction of the gene families by comparing the cluster size 246 differences between the ancestor and each species using the CAFÉ program [42]. A random birth and death model were used to study changes of gene families along each lineage of phylogenetic 247 248 tree. A probabilistic graphical model (PGM) was introduced to calculate the probability of transitions 249 in gene family size from parent to child nodes in the phylogeny. Using conditional likelihoods as the 250 test statistics, we calculated the corresponding p-valuein each lineage and p-value of 0.05 was used to identify families that were significantly expanded and contracted. Compared with the common 251 252 ancestor of *D.oleifera* and *D. lotus*, 175 gene families (1,896 genes) have expanded in *D.oleifera* (Supplementary Fig. S4) which KEGG pathway enriched in Ubiquitin mediated proteolysis, ABC 253 254 transporters, Carbon fixation in photosynthetic organisms, etc. On the contrary, 333 gene families (1,021 genes) were contracted in *D.oleifera*, which KEGG pathway enriched in Plant–pathogen
interaction, Phenylpropanoid biosynthesis, Cyanoamino acid metabolism, etc.

257 In addition, the reference sequences of tannin synthase genes identified in D.oleifera were used 258 as a query for blast to identify the homology genes in *D.lotus*, *C.sinensis*, and *V.vinifera*. A sequence with similarity greater than cutoff (50%) and coverage greater than cutoff (50%) were selected as a 259 260 preliminary candidate gene; then searching for the domain by hmmsearch, only when it in query was identical with that in subject, the candidate gene was finally retained. A fisher test (pvalue ≤ 0.05) 261 262 was performed on the number of individual genes related to tannin synthesis in the genomes of the 263 four species to see if the corresponding gene expanded or contracted. The results showed that compared with other species, CHS (Chalcone synthase) genes had different degrees of expansion in 264 265 D.oleifera genome (Supplementary Table S11). CHS is the first key enzyme in the flavonoid-266 anthocyanin pathway, the expansion of CHS gene may be related to the abundant tannin production in the D.oleifera. Besides, compared with V.vinifera, LAC (Laccase) genes showed contraction in 267 268 D.oleifera. It has been reported that LAC may be involved in the polymerization of persimmon 269 tannin monomers, but the specific functions need to be further verified [43,44].

270 Positively selected genes in D.oleifera

271 The CDS alignments of 789 single-copy gene families in D.oleifera, D.lotus, A.chinensis, P.veris, R.delavayi and S.lycopersicum were generated using MUSCLE. Gblocks [45] was applied to filter 272 273 poorly aligned positions and divergent regions of the CDS alignments. With the D.oleifera as 274 foreground branch, positive selection sites were detected based on branch-site models [46] of PAML [41] using the CDS alignments. P-values were computed using the χ^2 statistic and adjusted by FDR 275 method. Finally, 186 genes were positive selected in D.oleifera (Supplementary Table S12), which 276 277 KEGG pathway enriched in Lipoic acid metabolism, One carbon pool by folate, Fatty acid degradation, Thiamine metabolism, Fatty acid elongation, Carotenoid biosynthesis, Fatty acid 278

279 metabolism, Nucleotide excision repair, Pyrimidine metabolism, Purine metabolism, Starch and 280 sucrose metabolism. Among the 186 PSGs, *CHI* (Chalcone isomerase) gene was found to be 281 positive selected (ID:evm.model.original_scaffold_909.101), which was one of the key enzymes in 282 the flavonoid-anthocyanin pathway and was involved in the biosynthesis of persimmon tannins .

283 Whole-genome duplication and macrosynteny analysis.

284 We used BLASTP (E-value < 1e-5) to do homolog or paralog search with the *D.oleifera* and other 285 genomes (A.chinensis, C.canephora, C.sinensis) and MCScanX (s=5, e=1e-5) [47] was used to 286 detect syntenic blocks. Then calculate 4dtv (transversion substitutions at fourfold degenerate sites) rates for all syntenic genes to identify putative whole genome duplication or species split events in 287 288 D.oleifera. Besides the ancient whole-genome duplication (WGD) events occurred in all dicots species: γ event (all core eudicots share an ancient WGD, 4dtv = 0.66), a second WGD event 289 occurred in *D.oleifera* and *D.lotus* (4dtv=0.36 ~0.27-0.42) which might contribute to the divergence 290 of Ebenaceae with A. chinensis and C. sinensis (Fig. 5). Besides, we got 431 syntenic blocks between 291 292 D.olerfera and D.lotus. On the whole, except for the translocation of some loci, the sequence of 293 genes between *D.olerfera* and *D.lotus* were relatively conservative (Supplementary Fig. S5). However, compared with D.olerfera genome, D.lotus genome lacked some regions on each 294 chromosome, which may be lost in the process of anchoring contigs to 15 pseudo-chromosomes 295 296 using genetic maps. This result further proved the integrity and accuracy of the D.olerfera genome 297 assembly.

298 Conclusions

We generated a high-quality chromosome-level draft genome of *D. oleifera* based on long reads generated by the third-generation PacBio Sequel sequencing platform. The final draft genome was approximately 812.3 Mb, slightly smaller than the 868.4 Mb estimated by k-mer analysis. The Hi302 C data were combined with the assembled draft genome to generate chromosome-length scaffolds. 303 As a result, 15 scaffolds corresponding to the 15 chromosomes were assembled; these comprised 304 721.5 Mb and 332 scaffolds, with an N50 of 33.5 Mb, and accounted for 88.81% of the genome. 305 30,539 protein-coding genes were predicted, and 92.2% (28,146 genes) of all protein-coding genes were annotated. Also, repeat sequences accounted for 54.8% of the genome, and 564 306 307 miRNAs, 507 tRNAs, 2,207 rRNAs, and 803 snRNAs were identified. In addition, 171 candidate genes involved in the synthesis of tannin and deastringency were identified, of which CHS genes 308 309 had different degrees of expansion in *D.oleifera* genome compared with *D.lotus*, *C.sinensis*, and 310 V.vinifera. Moreover, 186 positively selected genes were identified, including CHI gene, which was one of the key enzymes in the flavonoid-anthocyanin pathway. The divergence time between 311 312 D. oleifera and D.lotus was estimated at 9.0 Mya, and two WGD events occurred in D.oleifera 313 genome. The high-quality chromosomal genome assembly of *D.oleifera* will facilitate both research on the major economic traits in the genus Diospyros and assembly of the hexaploid persimmon 314 315 genome.

316

317 Availability of supporting data

The data set supporting the results of this article is available in the NCBI Sequence Read Archive[Accessions: PRJNA532832].

320

321 Additional files

- 322 Fig. S1: k-mer distribution of the *D.olefera* genome.
- 323 Fig. S2: Tannins sythnase genes and deastringency process in *Diospyros*.
- 324 Fig. S3: Venn diagram of gene family cluster of five Ericales species.
- 325 Fig. S4: Gene family expansion and contraction analysis of 12 species.

- 326 Fig. S5: Macrosynteny analysis between *D.olefera* genome and *D.lotus* genome. a: gene density;
- 327 b: LINE transposon density; c: LTR transposon density; d: DNA transposon density; e: GC
- density (density is calculated in units of 500 kb).
- 329
- Table S1: The sequencing data size by various sequencing platform.
- Table S2: Estimation of *D.oleifera* genome size by K-mer analysis.
- 332 Table S3: Chromosomes length using HiC reads.
- 333 Table S4: Mapping rate of reads to *D.oleifera* genome assembly.
- Table S5: CEGMA assessment of *D.oleifera* genome.
- Table S6: BUSCO notation assessment of *D.oleifera* genome.
- Table S7: Gene annotation of *D.oleifera* genome via three methods.
- 337 Table S8: *D.oleifera* genome gene annotation statistics used different databases.
- 338 Table S9: *D.oleifera* genome ncRNA annotation statistics used different databases.
- Table S10: Genes involved in tannins sythnase genes and deastringency process in *D. oleifera*.
- 340 Table S11: Expansion and contraction of tannin synthase genes in *D.oleifera*.
- 341 Table S12: Positively selected genes in *D.oleifera*.
- 342

343 Abbreviations

BWA: Burrows-Wheeler Aligner; BLAST: Basic Local Alignment Search Tool; BUSCO:
Benchmarking Universal Single-Copy Orthologs; NCBI: National Center for Biotechnology
Information; PacBio: Pacific Biosciences; RNA-seq: RNA-sequencing; SMRT sequencing: single

molecule real time sequencing; TE: transposable element; WGD: whole-genome duplication.

348

347

349 Competing interests

350 The authors declare that they have no competing interests.

352	Funding			
353	This work was supported by the National Key R &D Program of China (2018YFD1000606), and the			
354	Fundamental Research Funds for the Central Non-profit Research Institution of CAF			
355	(CAFYBB2017ZA005 and CAFYBB2017ZA004-3)			
356				
357	Author contributions			
358	J.M.F. and F.D.L. conceived the project. W.J.H., H.W.L. and S.F.D. collected the samples, Y.J.S., P.S.			
359	and Y.N.M. conducted genome assembly and data analysis, X.Z. provided intellectual insights,			
360	Y.J.S., P.S. and H.H.C. wrote the paper. All authors read and wrote part of the manuscript.			
361				
362	The English in this document has been checked by at least two professional editors, both native			
363	speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/Q48QsC			
364				
365	References			
366	1. Fu JM, Liu HM, Hu JJ, et al. Five Complete Chloroplast Genome Sequences from Diospyros:			
367	Genome Organization and Comparative Analysis. PLOS ONE, 2016, 11(7):e0159566			
368	2. Akagi T, Henry IM, Tao R, et al. A Y-chromosome-encoded small RNA acts as a sex			
369	determinant in persimmons. Science, 2014, 346(6209):646-650.			
370	3. Lieberman-Aiden E, et al. Comprehensive mapping of long-range interactions reveals folding			
371	principles of the human genome. Science, 2009, 326: 289–293.			
372	4. Liu, B. et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo			
373	genome projects. arXiv: Genomics, 2013.			
374	5. Chin CS, Peluso P, Sedlazeck FJ, et al. Phased diploid genome assembly with single-molecule			

- 375 real-time sequencing. Nature Methods, 2016.
- 6. Chin CS, Alexander DH, Marks P, et al. Nonhybrid, finished microbial genome assemblies from
 long-read SMRT sequencing data. Nature Methods, 2013, 10(6):563.
- 378 7. Walker BJ, Abeel T, Shea T, et al. Pilon: An Integrated Tool for Comprehensive Microbial
 379 Variant Detection and Genome Assembly Improvement. PLOS ONE, 2014, 9.
- 380 8. Adey A, Kitzman JO, Burton JN, et al. In vitro, long-range sequence information for de novo
 381 genome assembly via transposase contiguity. Genome Research, 2014, 24(12):2041-2049.
- 382 9. Li H, and Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
 383 transform. Bioinformatics, 2009.
- 384 10. Akagi T, Shirasawa K, Nagasaki H, et al. The persimmon genome reveals clues to the evolution
 385 of a lineage-specific sex determination system in plants.
- 386 bioRxiv 628537; doi: https://doi.org/10.1101/628537
- 11. Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic
 genomes. Bioinformatics, 2007, 23(9):1061-1067.
- 389 12. Simao FA, Waterhouse RM, Ioannidis P, et al. BUSCO: assessing genome assembly and
 390 annotation completeness with single-copy orthologs. Bioinformatics, 2015:btv351.
- 391 13. Smit AF, Hubley R, Green P. RepeatMasker at
 392 http://www.repeatmasker.org/RepeatModeler.html.
- 393 14. Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. *Curr Protoc*394 Bioinformatics, 2004, Chapter 4, Unit 4.
- 395 15. Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes.
 396 Bioinformatics, 2005, 21(Suppl 1):i351-i358.
- 397 16. Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR
 398 retrotransposons. Nucleic Acids Research, 2007, 35(Web Server):W265-W268.
- 399 17. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res.

400 1999, 27, 573-580.

- 401 18. Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel.
 402 Bioinformatics, 2003, 19, ii215–25.
- 403 19. Stanke M, Sch?Ffmann O, Morgenstern B, et al. Gene prediction in eukaryotes with a
 404 generalized hidden Markov model that uses hints from external sources. Bmc Bioinformatics,
 405 2006, 7(1):62-0.
- 20. Salamov AA. Ab initio gene finding in Drosophila genomic DNA. Genome Res, 2000, 10, 516–
 522.
- 408 21. Parra G, Blanco E, Guigó R. GeneID in Drosophila. Genome Research, 2000, 10(4):511.
- 409 22. Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio
 410 eukaryotic gene-finders. Bioinformatics, 2004, 20(16):2878-2879.
- 411 23. Korf I. Gene finding in novel genomes. BMC Bioinformatics, 2004, 5, 59.
- 412 24. Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search
 413 programs. Nucleic Acids Res, 1997, 25, 3389-402.
- 414 25. Birney E, Clamp M, Durbin R. Genewise and genomewise. Genome Res, 2004, 14, 988–995.
- 415 26. Trapnell C, Pachter L, Salzberg SL. TopHat: Discovering splice junctions with RNA-Seq.
 416 Bioinformatics, 2009, 25, 1105-11.
- 417 27. Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq
- 418 reveals unannotated transcripts and isoform switching during cell differentiation. Nature
 419 Biotechnology, 2010, 28(5):511-515.
- 420 28. Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq
 421 data without a reference genome. Nature Biotechnology, 2011, 29(7):644-652.
- 422 29. Haas BJ, Delcher AL, Mount SM, et al. Improving the Arabidopsis genome annotation using
 423 maximal transcript alignment assemblies. Nucleic Acids Research, 2003, 31(19):5654-5666.
- 424 30. Haas BJ, Salzberg SL, Zhu W, et al. Automated eukaryotic gene structure annotation using

- 425 EVidenceModeler and the Program to Assemble Spliced Alignments. Genome biology, 2008,
 426 9(1).
- 427 31. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement
 428 TrEMBL in 2000. Nucleic Acids Res, 2000, 28, 45-48.
- 429 32. Mulder N, Apweiler R. InterPro and InterProScan: tools for protein sequence classification and
 430 comparison. Methods Mol Biol, 2007, 396, 59-70.
- 431 33. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The
 432 Gene Ontology Consortium. Nat Genet, 2000, 25, 25-29.
- 433 34. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res,
 434 2000, 28, 27-30.
- 435 35. Lowe TM, Eddy SR. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes
 436 in Genomic Sequence. Nucleic Acids Res, 1997, 25, 955-964.
- 437 36. Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics,
 438 2009, 25(10):1335.
- 439 37. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics,
 440 2013, 29(22):2933-2935.
- 441 38. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons
 442 dramatically improves orthogroup inference accuracy. Genome Biology, 2015, 16(1):157.
- 39. Yu XJ, Zheng HK, Wang J, et al. Detecting lineage-specific adaptive evolution of brainexpressed genes in human using rhesus macaque as outgroup. Genomics, 2006, 88(6):0-751.
- 445 40. Lefort V, Desper R, Gascuel O. FastME 2.0: A Comprehensive, Accurate, and Fast Distance446 Based Phylogeny Inference Program: Table 1. Molecular Biology and Evolution, 2015:msv150.
- 447 41. Yang Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24:
 448 1586-1591.
- 449 42. De Bie T, Cristianini N, Demuth JP, & Hahn MW. CAFE: a computational tool for the study of

- 450 gene family evolution. Bioinformatics,2006, 22(10), 1269-1271.
- 43. Zhao J, Pang Y, Dixon RA. The mysteries of proanthocyanidin transport and polymerization.
 Plant Physiology, 2010,153 (2): 437 443.
- 453 44. Hu QN, Luo C, Zhang QL, Luo ZR. Isolation and characterization of a laccase gene
- 454 potentially involved in proanthocyanidin polymerization in oriental persimmon (*Diospyros kaki*
- 455 Thunb.) fruit. Molecular Biology Reports, 2013, 40 (4): 2809 2820.
- 456 45. Castresana J. Selection of conserved blocks from multiple alignments for their use in
 457 phylogenetic analysis. Molecular Biology and Evolution, 2000, 17: 540-552.
- 46. Zhang J, Nielsen R, Yang Z. Evaluation of an Improved Branch-Site Likelihood Method for
 Detecting Positive Selection at the Molecular Level. Mol Biol Evol.,2005, 22, 2472-2479.
- 460 47. Wang Y, Tang H, Debarry JD, et al. MCScanX: a toolkit for detection and evolutionary analysis
- 461 of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7):e49-e49.

A high-quality chromosomal genome assembly of Genome sequence of Diospyros oleifera: the 1 2 first chromosome-level draft Ebenaceae genome 3 Yujing Suo^{1,2,3,†}, Peng Sun^{1,2,3,†}, Huihui Cheng^{4†}, Weijuan Han^{1,2,3}, Songfeng Diao^{1,2,3}, Huawei 4 Li^{1,2,3}, Yini Mai^{1,2,3}, Huihui Cheng⁴, Xing Zhao⁴, Fangdong Li^{1,2,3,*} and Jianmin Fu^{1,2,3,*} 5 6 ¹Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry 7 and Grassland, No.3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China; ²Non-timber Forest Research and 8 Development Center, Chinese Academy of Forestry, No.3 Weiwu Road, Jinshui District, Zhengzhou, 450003, 9 China; ³National Innovation Alliance of Persimmon Industry, No.3 Weiwu Road, Jinshui District, Zhengzhou, 10 450003, China; ⁴Novogene Bioinformatics Institute, Beijing, 100083, China 11 12 * Correspondence address. Fangdong Li, Non-timber Forest Research and Development Center, Chinese Academy 13 of Forestry, No.3 Weiwu Road, Jinshui District, Zhengzhou, 450003, E-mail: lifangdong66@163.com; Jianmin Fu, 14 Non-timber Forest Research and Development Center, Chinese Academy of Forestry, No.3 Weiwu Road, Jinshui 15 District, Zhengzhou, 450003, E-mail: fjm371@163.com 16 [†]Contributed equally to this work. 17 18 Abstract 19 **Background:** Diospyros oleifera, a member of the genus Diospyros of the family Ebenaceae, is an economically important tree. Phylogenetic analyses have indicated that D. oleifera is closely related 20 to D. kaki, and could be used as a model plant for research on D. kaki. Therefore, development of the 21 genomic resources of D. oleifera will facilitate auxiliary assembly of the hexaploid persimmon 22 genome and provide insight into the molecular mechanisms of the major economic traitseex 23 determination. Findings: The D. oleifera genome was assembled into a total of 443.6 Gb of raw 24 reads using the Pacific Bioscience Sequel and Illumina HiSeq X Ten platforms. The final draft 25

26 genome was approximately 812.3 Mb and had a high level of continuity with the 3.36 Mb N50.

27 By using the Hi-C data and the draft genome assembly, fifteen scaffolds corresponding to the 15

28 chromosomes were assembled to a final size of 721.5 Mb using 332 scaffolds, accounting for

29 88.81% of the genome. The identified repeat sequences accounted for 54.8% of the genome. By de

30 novo sequencing and analysis of homology with other plant species, 30,539 protein-coding genes

31 with an average transcript size of 1,080.9 bp were annotated, of which 28,146 protein-coding genes

32	(92.2%) had conserved functional motifs or functional terms. In addition, <u>1/1</u> candidate genes
33	and 380 TFs involved in the synthesis of tannin and deastringency in persimmon and sex
34	determination were identified, of which <u>CHS</u> (Chalcone synthase) genes had different degrees of
35	expansion in <u>D.oleifera</u> genome compared with <u>D.lotus</u> , <u>C.sinensis</u> , and <u>V.vinifera</u> In
36	addition, Moreover, 186 positively selected genes were identified, including <u>CHI</u> (Chalcone
37	isomerase) gene, which was one of the key s a key enzymes in the flavonoid-anthocyanin pathway.
38	Phylogenetic tree indicated that the split of <i>D.oleifera</i> and <i>D. lotus</i> was estimated at 9.0 Mya.
39	Besides the ancient γ event, a second WGD event occurred in <i>D.oleifera</i> and <i>D.lotus</i> (4dtv=0.36
40	<u>~0.27-0.42</u>). Conclusions: We generated a high-quality chromosome-level draft genome for D .
41	oleifera, which is the first reference genome of a member of the family Ebenaceae. This genome-will
42	facilitate the assembly of the hexaploid persimmon genome and further studies on the major
43	economic traits in the genus <i>Diospyros</i> .

 Formatted: Font: Italic

 Formatted: Font: Italic

44

45 Keywords: Diospyros oleifera; chromosome-level genome assembly; Hi-C assembly; Tannin

- 46 synthesis; sex determination genes
- 47

48 Data Description

49 Background

50 *Diospyros*, the largest genus in the family Ebenaceae, comprising more than 500 species, of 51 which the ebony and fruit have considerable economic value. The ebony of more than 20 species 52 of *Diospyros* (including *D. reticulata* from Africa, *D. ebenum* and *D. ferrea* from Asia) is used 53 commercially for arts, crafts, and decorative building materials. In addition, *D. kaki, D. oleifera*, 54 and *D. lotus* are important species for fruit production; indeed, *D. kaki* is one of the most widely 55 distributed fruit trees worldwide. However, most *D. kaki* cultivars are hexaploid (2n=6x=90) or 56 nonaploid (2n=9x=135) and its progenitor, origin, and polyploidization mechanisms are unclear,

Formatted: Font: Italic

which hampers molecular breeding. *D. oleifera* is diploid (2n=2x=30) and its fruit contains large quantities of tannins, important raw materials for the production of persimmon paint (Fig. 1). Also, *D. oleifera* is frequently selected as stock for grafting of persimmon (*D. kaki*). Phylogenetic analyses based on the chloroplast genome and protein-coding, intergenic, and intron sequences have indicated that *D. oleifera* is closely related to *D. kaki* and could be used as a model plant for research on *D. kaki* [1]. Therefore, analysis of the genome of *D. oleifera* will contribute to auxiliary assembly of the hexaploid persimmon genome.

64 Similar to persimmon, D. oleifera has gynoecious, androecious, monoecious and andromonoecious sex types, making it ideal for studying the mechanism of sex determination of 65 66 persimmon. The mechanism of sex determination of D. lotus has been investigated; using 67 segregating F1 sibling trees (female (XX) and male (XY) progenies), two key genes (MeGI and 68 OGI) were identified. OGI is required for the formation of male flowers and encodes a small RNA that represses the expression of MeGI [2]. However, this mechanism of sex determination 69 70 cannot explain the monoecious sex type of other Diospyros species. Therefore, development of 71 the genomic resources of D. oleifera could provide insight into the mechanisms of sex 72 determination of members of the genus Diospyros.

No genome sequence with chromosomal assembly of *Diospyros* has been reported. Here, we constructed a high-quality chromosome-level reference genome assembly for *D. oleifera* using the long reads generated by the Pacific Biosciences (PacBio) DNA sequencing platform and Hi-C data. This is the first chromosome level reference genome of a member of the family Ebenaceae. The high quality (in terms of completeness and continuity) of the genome will facilitate both assembly of the hexaploid persimmon genome and further studies on the major economic traits mechanisms of sex determination in the genus *Diospyros*.

80 Genomic DNA extraction, library construction, sequencing, and genome size estimation

81 Genomic DNA was extracted from fresh leaves of D. oleifera using a DNAsecure Plant Kit

(Tiangen Biotech, Beijing, China). A short-read genomic library was prepared using the TruSeq
DNA PCR-Free LT Library Kit (Illumina, San Diego, CA, USA). Five paired-end genomic
sequence libraries with a gradient insert size of 250 to 450 bp were constructed and sequenced on
the Illumina HiSeq X Ten platform. A total of 104.02 Gb of raw sequence data (119.78-fold
coverage of the *D. oleifera* genome) were used for genome assembly (Supplementary Table S1).

At least 10 µg of sheared DNA was required to generate the 40 kb insert library. Preparation of the SMRT cell template involved DNA concentration, damage repair, end repair, ligation of hairpin adapters, and template purification. Subsequently, the genome was sequenced on the PacBio Sequel platform (Pacific Biosciences, Menlo Park, CA, USA). A total of 99.76 Gb of raw sequence data (114.88-fold coverage of the *D. oleifera* genome) were used for genome assembly (Supplementary Table S1).

To produce a 10X genome library, about 1 ng of input DNA (50 kb length) was used for the GEM reaction during PCR, and 16 bp barcodes were introduced into droplets. Next, the droplets were fractured following purification of the intermediate DNA library. The library comprised 109.88 Gb (126.53-fold coverage of the *D. oleifera* genome) and was sequenced using 150 bp paired-end reads on the Illumina HiSeq X platform (Supplementary Table S1).

98 One Dovetail Hi-C library was prepared as described previously [3]. Briefly, for each library, chromatin was fixed in place in the nucleus using formaldehyde and then extracted. Fixed 99 100 chromatin was digested with DpnII, the 5' overhangs were filled using biotinylated nucleotides, 101 and free blunt ends were ligated. After ligation, crosslinks were reversed, and DNA was separated 102 from protein. Purified DNA was treated to remove biotin outside of the ligated fragments, sheared to a mean fragment size of about 350 bp, and used to create sequence libraries with NEBNext 103 104 Ultra enzymes (New England Biolabs, Ipswich, MA, USA) and Illumina-compatible adapters. 105 Biotin-containing fragments were isolated using streptavidin beads before PCR enrichment of the libraries; the libraries were next sequenced on the Illumina HiSeq PE150 platform. A total of 106

98.24 Gb of reads was produced for the libraries. Together, these Dovetail Hi-C library readsprovided 113.12-fold physical coverage of the genome (Supplementary Table S1).

High-quality paired-end reads from *D. oleifera* were used to generate 17-mer frequency
information by k-mer analysis [4]. The 17-mer distribution was dependent on the characteristics
of the genome and followed a Poisson distribution (Supplementary Fig. S1). We estimated the
genome to be 868.41 Mb in size with a heterozygosity of 1.08% (Supplementary Table S2).

113 De novo assembly of D. oleifera

De novo assembly of the long reads generated by SMRT sequencing was performed using 114 FALCON [5] (v.0.3, https://github.com/PacificBiosciences/FALCON/). Briefly, we first selected 115 116 the longest coverage of subreads as seeds for error correction. Next, the data were filtered and 117 assembled (length_cutoff_pr = 4000, max_diff = 100, and max_cov = 100). A total of 2,986 118 contigs was assembled with a total length of 806.74 Mb (accounting for about 92.9% of the estimated genome), an N50 of 2.92 Mb, and a longest contig of 14.72 Mb (Table 1). The primary 119 120 contigs (p-contigs) were polished using Quiver [6] by aligning SMRT reads, which produced a genome of 812.37 Mb and an N50 of 2.94 Mb. Finally, Pilon [7] (v.1.22) was used to perform the 121 122 second round of error correction with the short paired-end reads generated by the Illumina HiSeq 123 platform, resulting in a genome of 811.09 Mb and a longest contig of 14.81 Mb (Table 1). For the 124 scaffolding Ranger (v. 2.1.2, https://support.10xgenomics.com/genomestep, Long exome/software/pipelines/latest/installation) was applied to build scaffolds using the 10X data. 125 FragScaff [8] (v. 1-1) was used to build superscaffolds from the barcoded sequencing reads. The 126 127 final assembly contained 2,812 scaffolds and had a total length of 812.32 Mb, representing 128 approximately 93.54% of the genome estimated by k-mer analysis. The sizes of the longest contig and scaffold were 14.82 and 17.43 Mb, respectively, and the N50s were 2.94 and 3.36 Mb, 129 130 respectively (Table 1). Subsequently, the Hi-C sequencing data were aligned to the assembled scaffolds by BWA-mem [9] (v.0.7.8), and the scaffolds were clustered onto chromosomes with 131

132	LACHESIS (http://shendurelab.github.io/LACHESIS/). Among the 2,812 scaffolds, 332 were
133	grouped into the 15 chromosomes, with maximum and minimum lengths of 61.45 Mb and 40.21 Mb,
134	respectively (Fig. 2). The final genome was 721.45 Mb and the N50 was 33.5 Mb, accounting for
135	88.81% of the total genome (Supplementary Table S3, Fig. 3). The continuity and integrity of the
136	assembly for <i>D. oleifera</i> is significantly better than those at of the published <i>D. lotus</i> genome-, which
137	final genome was 945.63 Mb with contigs N50 0.65 Mb, and 746.09 Mb (78.9%) was assembled into

Formatted: Font: Italic Formatted: Font: Italic

139 Assessment of the assembled genome

the 15 pseudomolecules[10]().

138

140 To estimate the quality of the assembled genome, the short reads were mapped back to the consensus 141 genome using BWA; the overall mapping rate was 98.19%, suggesting that the assembly contained comprehensive genomic information (Supplementary Table S4). The completeness of gene regions 142 143 was assessed using Core Eukaryotic Gene Mapping Approach (CEGMA) [1011] and Benchmarking Universal Single-Copy Orthologs (BUSCO) [4412] to evaluate the completeness of the assembled 144 145 genome. The CEGMA assessment showed that 215 (93.55%) of 248 core eukaryotic genes were 146 covered (Supplementary Table S5). In contrast, 89.4% of complete BUSCOs were detected and 6.6% were missing (Supplementary Table S6), indicating that the assembled genome had a high level of 147 completeness. 148

149 Repetitive elements identification of D. oleifera

The *D. oleifera* genome was subjected to annotation of repetitive sequences—transposable elements (TEs) and tandem repeats. RepeatMasker [$\frac{1213}{14}$] (v. $\frac{-3.3.04.0.5}{100}$) was used to detect TEs in a repeat library derived from a known repeat library (Repbase, v. 15.02) and a *de novo* repeat library generated using RepeatModeler [3] (v. 1.0.5), RepeatScout [$\frac{1415}{100}$] (v.1.0.5), Piler_(v.1.0), and LTR_FINDER [$\frac{1516}{100}$] (v.1.0.7). RepeatProteinMask [$\frac{1314}{100}$] (v.4.0.5) was used to detect TEs in the *D. oleifera* genome by comparison with a TE database. Tandem repeats were identified using Tandem Repeats Finder [$\frac{1617}{100}$] (v.4.0.7). Repetitive sequences comprised 54.8% of the *D. oleifera* genome, among which TEs accounted for 53.03%. The most frequently detected TEs were long terminal repeat (LTR) retrotransposons (46.73%), followed by DNA TEs (4.17%). Of the LTRs, 26.63% and 14.40% were Ty3/Gypsy and Ty1/Copia, respectively (Table 2).

161 Genomic RNA extraction, library construction, sequencing

162 For RNA-sequencing, we collected different tissues of *D.oleifera* from the same plant used for

163 genome sequencing, including material from leaf, root, seed, stem and fruit. Total RNAs were

164 extracted using TRIzol® Reagent (Thermo Fisher Scientific, USA) according to the manufacturer's

165 instructions. RNA-seq was performed using an Illumina platform.

166 Annotation of protein-coding genes

167 De novo, homolog-based, and RNA sequencing (RNA-seq)-based predictions were employed to 168 annotate the protein-coding genes in the D. oleifera genome. The following ab initio gene prediction 169 software packages were used to predict genes: Augustus [1718, 1819] (v. 3.0.2), Genescan [1920] (v. 170 1.0), Geneid [2021] (v.1.4), GlimmerHMM [2122] (v. 3.0.2), and SNAP [2223] (2013-11-29). The 171 protein sequences of seven homologous species (including Arabidopsis thaliana and Daucus carota) 172 were downloaded from Ensembl or the National Center for Biotechnology Information (NCBI) 173 databases. Homologous sequences were aligned against the repeat-masked D. oleifera genome using 174 TBLASTN [2324] (v.2.2.26, E-value \leq 1E-05). Genewise [2425] (v. 2.2.0) was employed to predict 175 gene models based on the aligned sequences. The RNA-seq data were assembled into the unique 176 sequences of transcripts by mapping the RNA-seq data to the D. oleifera genome using TopHat 177 [2526] (v. 2.0.8) and Cufflinks [2627] (v. 2.1.1) (http://cufflinks.cbcb.umd.edu/) for transcript 178 assembly. Alternatively, Trinity $\left[\frac{2728}{2728}\right]$ (v.2.1.1) was used to assemble the RNA-seq data, and the 179 gene structures were improved using PASA [2829] software (r20140417, 180 http://pasapipeline.github.io/). A weighted and non-redundant gene set was generated by merging all 181 of the gene models predicted by the above three approaches with EVidenceModeler (EVM) [2930]

7

Formatted: Font: Bold Formatted: Indent: First line: 0" Formatted: Font: Italic

Formatted: Font:

(v.1.1.1). PASA was applied to adjust the gene models generated by EVM. The final reference gene
 set contained 30,539 protein-coding genes with an average transcript size of 1,080.957,112.37 bp, an
 average coding sequence size of 1,080.95 bp, and a mean number of exons per gene of 4.62
 (Supplementary Table S7). The number of annotated genes in this genome is moreless in this
 genome than that in the *D. lotus* genome (40,532 genes).

187 Functional annotation

188 Functional annotation of protein-coding genes was performed according to the best BLAST hit by 189 BLASTP (v.2.2.28, E-value \leq 1E-05) searching of the SwissProt, TrEMBL [3031], and NCBI non-190 redundant (NR) protein databases. Motifs and domains were annotated by searching the Pfam, 191 PRINTS, PROSITE, ProDom, and SMART InterPro (v. 29.0) databases using InterProScan [3132] 192 (v. 4.8). The Gene Ontology [323] term for each gene was annotated by Blast2GO [33].obtained 193 from the corresponding InterPro description. Additionally, the gene sets were mapped to Kyoto 194 Encyclopedia of Genes and Genomes (KEGG) [3334] (v. 53) pathways to identify the best match 195 classification for each gene (BLASTp E-value \leq 1E-05). Finally, $\frac{28,14628,580}{28,14628,580}$ protein-coding genes 196 (92.293.59% of total 30,539 genes) had conserved functional motifs or functional terms—92.01% 197 (28,098), 78.7<u>69</u>% (24,032), and 72.54871.18% (22,13521,739) of the genes in NR, InterPro, and 198 KEGG, respectively (Supplementary Table 3S8).

199 Annotation of non-coding RNAs

tRNA genes were predicted using tRNAscan-SE software [3435] (v.1.4) with the default parameters.
rRNAs were annotated based on their level of homology with the rRNAs of several species of higher
plants (not shown) using BLASTN with an E-value of 1e-5. The miRNA and snRNA fragments were
identified by searching the Rfam database (v. 11.0) using INFERNAL [3536,3637] (v.1.1) software.
Finally, 564 miRNAs, 507 tRNAs, 2,207 rRNAs, and 803 snRNAs were identified, which had
average lengths of 114.69, 74.82, 161.40, and 111.54 bp, respectively (Supplementary Table \$859).

Formatted: Font: Italic

207	Identification of tannin synthase genes and sex determination genes in D. oleifera
208	Given the importance of tannin production in D. oleifera, we further indentified genes within the
209	tannin biosynthesis pathway, which including chorismic acid pathway, phenylpropane metabolic
210	pathway, and flavonoid-anthocyanin synthesis pathway, and proanthocyanidin specific pathway
 211	(Supplementary Fig. S1). All of the synthase genes involved in the three pathways, as well as several
212	closely related transcription factors including WD40 and WIP-ZF were identified by aligning to
213	reference genes downloaded in NCBI (https://www.ncbi.nlm.nih.gov) or TAIR
214	(https://www.arabidopsis.org/index.jsp) using Blastp (E-value<1e-5, identity 250%, and
215	coverage 250%). A Pfam HMMER search was used to filter genes that don't contain the
216	corresponding domain. Transcription factors (TFs) including MYB, MYC and WRKY were
217	identified and classified into different families using the iTAK pipeline (v.1.7,
218	http://bioinfo.bti.cornell.edu/cgi-bin/itak/index.cgi) As a result, 171 genes and 380 TFs were
219	identified, of which 1613, 1359, and 80-21 genes that arewere involved in chorismic acid pathway,
220	phenylpropane metabolic pathway, and <u>flavonoid-anthocyanin pathway, and proanthocyanidin</u>
221	specific pathway-flavonoid synthesis pathway were identified, respectively. such as: genes encoding
222	the Flavanone 3 hydroxylase (F3H), Anthocyanidin reductase (ANR) and Anthocyanidin synthase
223	(ANS). Also, we detected 18 genes encoding transport proteins such as Glutathione S-transferase
224	(GST) and Multi-drug and toxic compound extrusion transporter (MATE), which were closely
225	related to transmembrane transport of tannin. Besides, we identified the key genes of acetaldehyde
226	metabolism, such as ADH(10), ALDH(19), and PDC(5), which were related to the deastringency of
227	persimmon (Supplementary Table <u>\$9\$10</u>). The tannin synthetic geness and <u>TFs</u> identified in this
228	study provides-provided the basis for molecular breeding of persimmon tannins.
229	It has been reported that MeGI and OGI were the key sex determinant genes in D. lotus [2], and
230	SyGI was a type C cytokinin response regulator as a potential sex determinant gene in the genus

231 Actinidia [37]. To detect the sex determinant genes in D. olcifera, the genome sequences was

Formatted: Default Paragraph Font

232	aligned with reference genes obtained from the NCBI (https://www.nebi.nlm.nih.gov) or a kiwifruit
233	database (ftp://bioinfo.bti.cornell.edu/pub/kiwifruit) using BLASTp (E-value < 1e-5, identity
234	\geq 30%, and coverage \geq 60%). A Pfam HMMER search was performed to filter genes that did not
235	contain the corresponding domain. As a result, two candidate McGI homologous genes
236	(evm.model.fragScaff_scaffold_41.132, located at Chr4; and evm.model.original_scaffold_1194.14,
237	located at original_scaffold_1194) and one candidate SyGI homologous gene
238	(evm.model.original_seaffold_171.540, located at Chr7) were identified in the D. oleifera genome.
239	The functions of these genes should be the subject of further studies.

240 <u>Gene family cluster</u>, Phylogenetic tree construction and divergence time estimation

241 10 other sequenced plant species were used to investigate the evolution of *D.oleifera*, including $\frac{7-8}{2}$ asterids plants (D. lotus, P.veris, R.delavayi, C.sinensis, A.chinensis, D.carota, C.canephora, 242 243 S.lycopersicum) and 3 rosids plants (A.thaliana, V.vinifera, C.melo). Gene families were generated 244 by Orthofinder [38] (v.2.3.1, http://www.stevekellylab.com/software/orthofinder). OrthoMCL [38] 245 (http://orthomel.org/orthomel/). First, nucleotide and protein data of 10 species were downloaded 246 from Ensembl (Release 70) and NCBI. Before an "all against all" BLASTP (E-value ≤ 1E-07) program, the longest transcript was selected from alternative splicing transcripts belonging to one 247 248 gene, and genes with \leq 50 amino acids were removed. The alignments with high-249 scoring segment pairs (HSPs) were conjoined for each gene pair by solar [39]. To identify 250 homologous gene-pairs, more than 30% coverage of the aligned regions in both homologous genes 251 was required. Finally, the alignments were clustered into gene families using OrthoMCL with 1.5 252 inflation index. After clustering, 23,92419,722 gene families were detected across D.oleifera and 11 other species, of which 5,599 gene families and 414-221 single-copy orthologs were detected across 253 254 D. oleifera and 10 11_othershared by 12 species. - Among the 5 Ericales species (D.-D. oleifera, 255 D.lotus, A.chinensis, R.delavavi, and C.sinensis), 177 gene families consisting of 312 genes were

Formatted: Font: Italic

Formatted: Font: Not Italic Formatted: Font: Not Italic

256	unique to D. oleifera (Supplementary Fig. 4S3), which KEGG pathway enriched in Ubiquitin	Formatted: Font: Italic
257	mediated proteolysis, Pyruvate metabolism, Biosynthesis of amino acids, Carbon metabolism,	
258	Glycine, serine and threonine metabolism, Aminoacyl-tRNA biosynthesis, and Valine, leucine and	
259	isoleucine degradation.	
260	Based on this ortholog set, a phylogenetic tree of the 12 plant species was constructed using	Formatted: Indent: Firs
261	Othofinder based on phylogenitic tree constructed by FastmeME [40] (v.2.1.5).	
262	Then, the 414 221 shared single copy orthologs were utilized to construct the phylogenetic tree.	
263	Protein sequences of these orthologs were aligned by MUSCLE [40]. Using the protein alignments,	
264	the phylogenetic tree was constructed by the ML (maximum likelihood) TREE algorithm in RAxML	
265	software [41, 42] (version 7.2.3). Then mcmctree program of PAML [41] (v.4.5,	
266	http://abacus.gene.ucl.ac.uk/software/paml.html) was applied to estimate divergence time among 14	
267	12_species_by using the 221 shared single-copy orthologs with main parameters burn-in=100,000,	
268	sample-number=100,000, and sample-frequency=2. 4 calibration points were selected from	
269	TimeTree website (http://www.timetree.org) as normal priors to restrain the age of the nodes. The	
270	phylogenetic tree confirmed the grouping of Angiospermae. The split of D. oleifera and D. lotus was	Formatted: Font: Italic
271	estimated at 76.9<u>9.0</u> Mya (Fig.4<u>54</u>).	
272	Expansion and contraction of gene families	Formatted: Font: Bold
273	We determined the expansion and contraction of the gene families by comparing the cluster size	After: 13 pt
274	differences between the ancestor and each species using the CAFÉ program [42]. A random birth	
275	and death model were used to study changes of gene families along each lineage of phylogenetic	
276	tree. A probabilistic graphical model (PGM) was introduced to calculate the probability of transitions	
277	in gene family size from parent to child nodes in the phylogeny. Using conditional likelihoods as the	

Formatted: Font: Italic

Formatted: Indent: First line: 1 ch

Formatted: Font: Bold Formatted: Justified, Space Before: 13 pt, After: 13 pt

test statistics, we calculated the corresponding p-valuein each lineage and p-value of 0.05 was used

to identify families that were significantly expanded and contracted. Compared towith the common

278

280	ancestor of <i>D.oleifera</i> and <i>D. lotus</i> , 175 gene families (1,896 genes) have expanded in <i>D.oleifera</i>
281	(Supplementary Fig. 6S4) which KEGG pathway enriched in Ubiquitin mediated proteolysis, ABC
282	transporters, Carbon fixation in photosynthetic organisms, etc-(Supplementary Fig .S3a). On the
283	contrary, SimilarlyIn addition, 333 gene families (1,021 genes) were contracted in D. oleifera, which
284	KEGG pathway enriched in Plant-pathogen interaction, Phenylpropanoid biosynthesis, Cyanoamino
285	acid metabolism, etc-(Supplementary Fig., S3b).
286	MoreoverIn addition, the reference sequences of tannin synthase genes identified in <i>D.oleifera</i>
287	were used as a query for blast to identify the homology tannin synthase genes in <i>D.lotus</i> , <i>C.sinensis</i> ,
288	and V.vinifera, Source search, taking aA sequence with similarity greater than cutoff (50%) and
289	coverage greater than cutoff (50%) were selected as a preliminary candidate gene; then searching for
290	the domain by hmmsearch, only when the jt in guery was identical with that in subject, the candidate
291	gene was finally retained.gene is exactly the same as the subject domain, as a candidate homolog
292	Gene retention. A fisher test (pvalue ≤ 0.05) was performed on the number of individual genes
293	related to tannin synthesis in the genomes of the four species to see if the corresponding gene
294	expanded or contracted. The results showed that compared with other species, CHS (Chalcone
295	synthase) genes had different degrees of expansion in D.oleifera genome, (Supplementary Table
296	S11). CHS is the first key enzyme in the flavonoid-anthocyanin pathway, the expansion of <u>CHS gene</u>
297	may be related to the abundant tannin production in the D.oleifera. and Besides, compared with
298	V.vinifera, LAC (Laccase) genes showed contraction in D.oleifera. It has been reported that LAC
299	may be involved in the polymerization of persimmon tannin monomers, but the specific functions
300	need to be further verified [43,44]compared with V.vinifera. the persimmons had different
301	degrees of expansion with respect to the CHS/STS genes of other species. In addition, the oil
302	persimmon showed contraction compared with grapes.
303	
304	

-	Formatted:	Font:	Italic				
-	Formatted:	Font:	Italic				
	Formatted						
$\ $	Formatted:	Inden	t: First l	ine:	l ch		
\parallel	Formatted						
//	Formatted						
	Formatted: pt	Font:	(Default)	Times	New	Roman,	12
/	Formatted: pt	Font:	(Default)	Times	New	Roman,	12
1	Formatted: pt	Font:	(Default)	Times	New	Roman,	12
1	Formatted:	Font:	(Default)	Times	New	Roman,	12
1	Formatted:	Font:	(Default)	Times	New	Roman,	12
-	Formatted: pt	Font:	(Default)	Times	New	Roman,	12
	Formatted: pt	Font:	(Default)	Times	New	Roman,	12
	Formatted: pt	Font:	(Default)	Times	New	Roman,	12
	Formatted: pt	Font:	(Default)	Times	New	Roman,	12
	Formatted: pt, Italic	Font:	(Default)	Times	New	Roman,	12
	Formatted: pt	Font:	(Default)	Times	New	Roman,	12
	Formatted: pt	Font:	(Default)	Times	New	Roman,	12
	Formatted:	Font:	(Default)	Times	New	Roman,	12
	Formatted:	Font:	(Default)	Times	New	Roman,	12
	Formatted:	Font:	(Default)	Times	New	Roman,	12
	Formatted:	Font:	(Default)	Times	New	Roman,	12
	Formatted:	Font:	(Default)	Times	New	Roman,	12
	Formatted:	Font:	(Default)	Times	New	Roman,	12
	Formatted:	Font:	(Default)	Times	New	Roman,	12
	Formatted:	Font:	(Default)	Times	New	Roman,	12
	Formatted						(
	Formatted						(
	Formatted						(
	Formatted						(
	Formatted:	Font:	Italic				
	Formatted:	Font:	Italic				
	Formatted:	Font:	Italic				
1	Formatted:	Font:	Italic				
1	Formatted						(
Y	Formatted						

305			
306			
307			
308			
309	Positively selected genes in <i>D.oleifera</i>		
310	The CDS alignments of 789 single-copy gene families in D.oleifera, D.lotus, A.chinensis, P.veris,		
311	R.delavayi and S.lycopersicum were generated using MUSCLE. Gblocks [435] was applied to filter		Formatted: Not Superscript/ Subscript
312	poorly aligned positions and divergent regions of the CDS alignments. With the D.oleifera as		Formatted: Not Superscript/ Subscript
313	foreground branch, positive selection sites were detected based on branch-site models,43-[446]of		Formatted: Not Superscript/ Subscript
314	PAML ⁴ O[41] using the CDS alignments. P-values were computed using the χ^2 statistic and adjusted		Formatted: Not Superscript/ Subscript
315	by FDR method. Finally, 186 genes were positive selected in D.oleifera (Supplementary Table		Formatted: Not Superscript/ Subscript
316	S102), which KEGG pathway enriched in Lipoic acid metabolism, One carbon pool by folate, Fatty		
317	acid degradation, Thiamine metabolism, Fatty acid elongation, Carotenoid biosynthesis, Fatty acid		
318	metabolism, Nucleotide excision repair, Pyrimidine metabolism, Purine metabolism, Starch and		
319	sucrose metabolismGO term-enriched in protein N terminal asparagine amidohydrolase activity,		
320	UDP-3-0-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase activity, exosome (RNase		
321	eomplex), transcription initiation from RNA polymerase III promoter, alpha amylase inhibitor		
322	activity, voltage gated calcium channel activity, orotidine 5 phosphate decarboxylase activity, de		
323	novo' pyrimidine nucleobase biosynthetic process, aminoacyl tRNA hydrolase activity, glutaminase		
324	activity, oxaloacetate metabolic process, L-aspartate:2-oxoglutarate aminotransferase activity,		
325	aromatase activity, voltage-gated calcium channel complex, 3,5'-cyclic-AMP phosphodiesterase		
326	activity, cAMP catabolic process, L-phenylalanine:2 oxoglutarate aminotransferase activity, mitotic		
327	chromosome condensation, asparagine metabolic process, condensin complex . Among the 186		
328	PSGs, CHI (Chalcone isomerase) gene was found to be positive selected	_	Formatted: Font: Italic
1			

330	flavonoid-anthocyanin pathway and wasis -involved in the biosynthesis of persimmon tannins.	
331		
332	Whole-genome duplication <u>and macrosynteny</u> analysis ,	
333	We used BLASTP (E-value < 1e-5) to do homolog or paralog search with the <i>D.oleifera</i> and other	
334	genomes (A.chinensis, C.canephora, C.sinensis) and MCScanX (s=5, e=1e-5) [43457] was used to	
335	detect syntenic blocks. Then calculate 4dtv (transversion substitutions at fourfold degenerate sites)	
336	rates for all syntenic genes to identify putative whole genome duplication or species split events in	
337	D.oleifera. Besides the ancient whole-genome duplication (WGD) events occurred in all dicots	
338	species: γ event (all core eudicots share an ancient WGD, 4dtv = 0.66), a second WGD event	
339	occurred in D aleiferg and D latus (4dty=0.36 \sim 0.27-0.42) which might contribute to the divergence	_

(ID:evm.model.original_scaffold_909.101), which was one of the keysa key enzymes in the

occurred in *D.oleifera* and *D.lotus* (4dtv=0.36 ~0.27-0.42) which might contribute to the divergence of Ebenaceae with <u>A. chinensis</u> <u>D.oleifera</u> and <u>C. sinensis</u> (Supplementary Fig. S265). Besides, Wwe got 431 syntenic blocks between <u>D.olerfera</u> and <u>D.lotus</u> (Supplementary Fig. S57). On the whole, except for the translocation of some loci, the sequence of genes between <u>D.olerfera</u> and <u>D.lotus</u> were relatively conservative (Supplementary Fig. S5). However, compared with <u>D.olerfera</u> genome,

Formatted: Font: Italic

Formatted: Justified

347

340

341

342

343 344

345

346

329

348 Conclusions

β49 We generated a high-quality chromosome-level draft genome of *D. oleifera* based on long reads+

integrity and accuracy of the D.olerfera genome assembly.

D.lotus genome lacked some regions on each chromosome, which may be lost in the process of

anchoring contigs to 15 pseudo-chromosomes using genetic maps. This result further proved the

- 350 generated by the third-generation PacBio Sequel sequencing platform. The final draft genome was
- approximately 812.3 Mb, slightly smaller than the 868.4 Mb estimated by k-mer analysis. The Hi-
- 352 C data were combined with the assembled draft genome to generate chromosome-length scaffolds.

353	As a result, 15 scaffolds corresponding to the 15 chromosomes were assembled; these comprised	
354	721.5 Mb and 332 scaffolds, with an N50 of 33.5 Mb, and accounted for 88.81% of the genome. In	
355	addition, 30,539 protein-coding genes with an average transcript size of 1,080.9 bp were predicted,	
356	and 92.2% (28,146 genes) of all protein-coding genes were annotated, 109 of which were related	
357	to the synthesis of tannin, 3 were related to sex determination. Also, repeat sequences accounted	
358	for 54.8% of the genome, and 564 miRNAs, 507 tRNAs, 2,207 rRNAs, and 803 snRNAs were	
359	identified. In addition, 171 candidate genes involved in the synthesis of tannin and deastringency	
360	were identified, of which CHS genes had different degrees of expansion in D.oleifera genome	
361	compared with- D.lotus, C.sinensis, and V.vinifera. Moreover, 186 positively selected genes were	
362	identified, including CHI gene, which was one of the key-s enzymes in the flavonoid-anthocyanin	
363	pathway. The divergence time of between D. oleifera and D.lotus was estimated at 76.9-9.0 Mya,	Formatted: Font: Italic
364	and two WGD events occurred in D.oleifera genome. To our knowledge, our chromosome level	
365	genome assembly of <i>D. oleifera</i> is the first reference genome of a member of the family Ebenaceae.	
366	The high-quality chromosomal genome assembly of assembled genome <u>D.oleifera</u> will facilitate both	Formatted: Font: Italic
367	research on the major economic traits the mechanisms of sex determination in the genus Diospyros	
368	and assembly of the hexaploid persimmon genome.	Formatted: Underline color: Custom Color(RGB(34, 34, 34)), Expanded by 0.15 pt
369		
370	Availability of supporting data	
371	The data set supporting the results of this article is available in the NCBI Sequence Read Archive	
372	[Accessions: PRJNA532832].	
373		
374	Additional files	
375	Fig. S1: <u>k-mer distribution of the <i>D.olefera</i> genome.</u>	Formatted: Font: Italic
376	-Fig. S2: Tannins sythnase genes and deastringency process in Diospyros.	
377	Fig. S3: Venn diagram of gene family cluster of five Ericales species.	
1	15	

378	Fig. S4: Gene family expansion and contraction analysis of 12 species.	
379	Fig. S5: Macrosynteny analysis between <i>D.olefera</i> genome and <i>D.lotus</i> genome. a: gene density;	Formatted: Font: Italic
380	b: LINE transposon density; c: LTR transposon density; d: DNA transposon density; e: GC	Formatted: Font: Italic
381	density (density is calculated in units of 500 kb).	Formatted: Font: Not Italic
382	Fig. S2: Whole-genome duplication analysis of <i>D. oleifera</i> genome. Dol (<i>D. oleifera</i>), Ach	
383	(A.chinensis), Cea (C.canephora), Csi(C.sinensis).	
384	Table S1: The sequencing data size by various sequencing platform.	
385	Table S2: Estimation of <i>D.oleifera</i> genome size by K-mer analysis.	
386	Table S3: Chromosomes length using HiC reads.	
387	Table S4: Mapping rate of reads to <i>D.oleifera</i> genome assembly.	
388	Table S5: CEGMA assessment of <i>D.oleifera</i> genome.	
389	Table S6: BUSCO notation assessment of <i>D.oleifera</i> genome.	
390	Table S7: Gene annotation of <i>D.oleifera</i> genome via three methods.	
391	Table S8: <u><i>D.oleifera</i> genome gene annotation statistics used different databases.</u>	Formatted: Font: Italic
392	Table <u>S8S9</u> : <i>D.oleifera</i> genome ncRNA annotation statistics used different databases.	
393	Table <u>\$9\$10</u> : Genes involved in tannins sythnase genes and deastringency process in <i>D. oleifera</i> .	
394	Table S11: Expansion and contraction of tannin synthase genes in <i>D.oleifera</i> .	Formatted: Font: Italic
395	Table S1042: Positively selected genes in D. oleifera.	Formatted: Font: Not Bold

396

397 Abbreviations

398 BWA: Burrows-Wheeler Aligner; BLAST: Basic Local Alignment Search Tool; BUSCO:

399 Benchmarking Universal Single-Copy Orthologs; NCBI: National Center for Biotechnology

400 Information; PacBio: Pacific Biosciences; RNA-seq: RNA-sequencing; SMRT sequencing: single

401 molecule real time sequencing; TE: transposable element; WGD: whole-genome duplication.

403 Competing interests

- 404 The authors declare that they have no competing interests.
- 405

406 Funding

- 407 This work was supported by the National Key R &D Program of China (2018YFD1000606), and the
- 408 Fundamental Research Funds for the Central Non-profit Research Institution of CAF
- 409 (CAFYBB2017ZA005 and CAFYBB2017ZA004-3)
- 410

411 Author contributions

- 412 J.M.F. and F.D.L. conceived the project. W.J.H., H.W.L. and S.F.D. collected the samples, Y.J.S., P.S.
- 413 and Y.N.M. conducted genome assembly and data analysis, X.Z. provided intellectual insights,
- 414 Y.J.S., P.S. and H.H.C. wrote the paper. All authors read and wrote part of the manuscript.

415

418

419

The English in this document has been checked by at least two professional editors, both native
 speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/Q48QsC.

 Formatted:
 HTML Preformatted,
 Justified,
 Tab

 stops:
 Not at
 0.64" + 1.27" + 1.91" + 2.54"
 +
 3.54" + 2.54"

 +
 3.18" + 3.82" + 4.45" + 5.09" + 5.73" +
 6.36" + 7" + 7.63" + 8.27" + 8.91" + 9.54"
 +
 10.18"

 Formatted:
 Font:
 Font:
 Color:
 Black,
 (Asian)

 Chinese (PRC),
 Border:
 :
 (No border)
 *

Formatted: English (United Kingdom)

420 **References**

- 421 1. Fu JM, Liu HM, Hu JJ, et al. Five Complete Chloroplast Genome Sequences from *Diospyros*:
- 422 Genome Organization and Comparative Analysis. PLOS ONE, 2016, 11(7):e0159566-.
- 423 2. Akagi T, Henry IM, Tao R, et al. A Y-chromosome-encoded small RNA acts as a sex
- determinant in persimmons. Science, 2014, 346(6209):646-650.
- 425 3. Lieberman-Aiden E, et al. Comprehensive mapping of long-range interactions reveals folding
- 426 principles of the human genome. Science, 2009, 326: 289–293.

- 427 4. Liu, B. et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo428 genome projects. arXiv: Genomics, 2013.
- 429 5. Chin CS, Peluso P, Sedlazeck FJ, et al. Phased diploid genome assembly with single-molecule
- 430 real-time sequencing. Nature Methods, 2016.
- 6. Chin CS, Alexander DH, Marks P, et al. Nonhybrid, finished microbial genome assemblies from
 long-read SMRT sequencing data. Nature Methods, 2013, 10(6):563.
- 433 7. Walker BJ, Abeel T, Shea T, et al. Pilon: An Integrated Tool for Comprehensive Microbial
- 434 Variant Detection and Genome Assembly Improvement. PLOS ONE, 2014, 9.
- 435 8. Adey A, Kitzman JO, Burton JN, et al. In vitro, long-range sequence information for de novo
- 436 genome assembly via transposase contiguity. Genome Research, 2014, 24(12):2041-2049.
- 437 <u>9.</u> Li H, and Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
 438 transform. Bioinformatics, 2009.
- 439 <u>10. Akagi T, Shirasawa K, Nagasaki H, et al. The persimmon genome reveals clues to the evolution</u>
- 440 of a lineage-specific sex determination system in plants.
- 441 <u>bioRxiv 628537; doi: https://doi.org/10.1101/628537</u>
- 442 9.
- 443 <u>40.11.</u> Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in
- 444 eukaryotic genomes. Bioinformatics, 2007, 23(9):1061-1067.
- 445 <u>41-12.</u> Simao FA, Waterhouse RM, Ioannidis P, et al. BUSCO: assessing genome assembly and
- annotation completeness with single-copy orthologs. Bioinformatics, 2015:btv351.
- 447 <u>12-13.</u> Smit AF, Hubley R, Green P. RepeatMasker at
- 448 http://www.repeatmasker.org/RepeatModeler.html>.
- 449 13.14. Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr
- 450 *Protoc* Bioinformatics, 2004, Chapter 4, Unit 4.
- 451 14.15. Price AL, Jones NC, Pevzner PA . De novo identification of repeat families in large

Formatted:	Patter	rn: Clear				
Formatted:	Font:	(Default)	Times	New	Roman	
Formatted: Line spacin	Indent ng: Do	t: Left: (uble	0″, Hai	nging	g: 0.2	5″,
Formatted:	Font:	(Default)	Times	New	Roman	
Formatted:	Font:	(Default)	Times	New	Roman	
Formatted:	Font:	(Default)	Times	New	Roman	
Formatted:	Font:	(Default)	Times	New	Roman	
Formatted:	Font:	(Default)	Times	New	Roman	
Formatted:	Font:	(Default)	Times	New	Roman	
Formatted:	Font:	(Default)	Times	New	Roman	
Formatted:	Font:	(Default)	Times	New	Roman	
Formatted:	Font:	(Default)	Times	New	Roman	
Formatted:	Font:	(Default)	Times	New	Roman	
Formatted: color: Blac	Font: k	(Default)	Times	New	Roman,	Font

452 genomes. Bioinformatics, 2005, 21(Suppl 1):i351-i358.

- 453 <u>15:16.</u> Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR
 454 retrotransposons. Nucleic Acids Research, 2007, 35(Web Server):W265-W268.
- 455 <u>16.17.</u> Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res.
 456 1999, 27, 573-580.
- 457 <u>47.18.</u> Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron
 458 submodel. Bioinformatics, 2003, 19, ii215–25.
- 459 18-19. Stanke M, Sch?Ffmann O, Morgenstern B, et al. Gene prediction in eukaryotes with a
- generalized hidden Markov model that uses hints from external sources. Bmc Bioinformatics,2006, 7(1):62-0.
- 462 <u>19.20.</u> Salamov, A. A. Ab initio gene finding in Drosophila genomic DNA. Genome Res, 2000, 10,
 463 516–522.
- 464 20.21. Parra G, Blanco E, Guigó R. GeneID in Drosophila. Genome Research, 2000, 10(4):511.
- 465 21.22. Majoros WH, Pertea M , Salzberg SL . TigrScan and GlimmerHMM: two open source ab
- initio eukaryotic gene-finders. Bioinformatics, 2004, 20(16):2878-2879.
- 467 <u>22.23.</u> Korf I. Gene finding in novel genomes. BMC Bioinformatics, 2004, 5, 59.
- 468 23.24. Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database
- search programs. Nucleic Acids Res, 1997, 25, 3389-402.
- 470 <u>24.25.</u> Birney E, Clamp M, Durbin R. Genewise and genomewise. Genome Res, 2004, 14, 988–
 471 995.
- 472 <u>25.26.</u> Trapnell C, Pachter L, Salzberg SL. TopHat: Discovering splice junctions with RNA-Seq.
 473 Bioinformatics, 2009, 25, 1105-11.
- 474 26-27. Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-
- 475 Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature
- 476 Biotechnology, 2010, 28(5):511-515.

- 477 27.28. Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-
- 478 Seq data without a reference genome. Nature Biotechnology, 2011, 29(7):644-652.
- 479 <u>28.29.</u> Haas BJ, Delcher AL, Mount SM, et al. Improving the Arabidopsis genome annotation using
- 480 maximal transcript alignment assemblies. Nucleic Acids Research, 2003, 31(19):5654-5666.
- 481 29.30. Haas BJ, Salzberg SL, Zhu W, et al. Automated eukaryotic gene structure annotation using
- 482 EVidenceModeler and the Program to Assemble Spliced Alignments. Genome biology, 2008,483 9(1).
- 484 <u>30.31.</u> Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement
 485 TrEMBL in 2000. Nucleic Acids Res, 2000, 28, 45-48.
- 486 <u>31.32.</u> Mulder N, Apweiler R. InterPro and InterProScan: tools for protein sequence classification
 487 and comparison. Methods Mol Biol, 2007, 396, 59-70.
- 488 <u>32.33.</u> Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology.
 489 The Gene Ontology Consortium. Nat Genet, 2000, 25, 25-29.
- 490 33.34. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res,
 491 2000, 28, 27-30.
- 492 <u>34.35.</u> Lowe TM, Eddy SR. tRNAscan-SE: A Program for Improved Detection of Transfer RNA
 493 Genes in Genomic Sequence. Nucleic Acids Res, 1997, 25, 955-964.
- 494 <u>35.36.</u> Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments.
 495 Bioinformatics, 2009, 25(10):1335.
- 496 <u>36.37.</u> Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches.
 497 Bioinformatics, 2013, 29(22):2933-2935.
- 498 37. Akagi T, Henry IM, Ohtani H, et al. A Y encoded suppressor of feminization arose via lineage
- 499 specific duplication of a cytokinin response regulator in kiwifruit. The Plant Cell,
 500 2018:tpc.00787.2017.
- 501 38. Li, L. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome

502	Research, 2003, 13(9):2178-2189-Emms D-M-, Kelly S OrthoFinder: solving fundamental	
503	biases in whole genome comparisons dramatically improves orthogroup inference accuracy[J].	
504	<u>Genome Biology, 2015, 16(1):157.</u>	
505	39. Yu XJ, Zheng HK, Wang J, et al. Detecting lineage-specific adaptive evolution of brain-	
506	expressed genes in human using rhesus macaque as outgroup. Genomics, 2006, 88(6):0-751.	
507	40. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput.	
508	Nucleic Acids Res, 2004, 32: 1792-1797.Lefort V-, Desper R-, Gascuel O FastME 2.0: A	
509	Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program: Table 1-[J].	
510	Molecular Biology and Evolution, 2015:msv150.	
511	41. Yang Z. (2007)-PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol.	
512	<u>2007, 24: 1586-1591.</u>	
513	42. De Bie, Tr, Cristianini, Nr, Demuth, JPr, & Hahn, MW. CAFE: a computational tool for the	Formatted: Indent: Left: 0", Hanging: 0.26", Line spacing: Double
514	study of gene family evolution. Bioinformatics, 2006, 22(10), 1269-1271(2006).	
515	43. Zhao J, Pang Y, Dixon R-A. 2010. The mysteries of proanthocyanidin transport and	
516	polymerization. Plant Physiology, 2010,153 (2): 437 - 443.	
517	44. Hu Q-N, Luo C, Zhang Q-L, Luo Z-R. 2013. Isolation and characterization of a laccase gene	
518	potentially involved in proanthocyanidin polymerization in oriental persimmon (<i>Diospyros kaki</i>	Formatted: Font: Italic
519	Thunb.) fruit. Molecular Biology Reports, 2013, 40 (4): 2809 - 2820.	
520	45. Castresana, J. Selection of conserved blocks from multiple alignments for their use in	
521	phylogenetic analysis. Molecular Biology and Evolution, 2000, 17: 540-552. (2000).	
522	46. Zhang, J., Nielsen, R. &, Yang, Z. Evaluation of an Improved Branch-Site Likelihood Method	
523	for Detecting Positive Selection at the Molecular Level. Mol Biol Evol., 2005, 22, 2472-2479	
524	<u>(2005).</u>	
525	47. Wang Y, Tang H, Debarry JD, et al. MCScanX: a toolkit for detection and evolutionary analysis	Formatted: Indent: Left: 0", Hanging: 0.26"
526	of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7):e49-e49. 21	

527 528	- •	Formatted: Indent: Left: 0.26", No bullets or numbering
529	41-Stamatakis A RAXMI VI. HPC maximum likelihood based phylogenetic analyses with	Formatted: No bullets or numbering
530	thousands of taxa and mixed models. Bioinformatics, 2006, 22: 2688-2690.	
531	42 Stamatakis A, Hoover P, Rougemont J. A Rapid Bootstrap Algorithm for the RAxML Web	
532	Servers. Systematic Biology, 2017, 57(5):758-771.	
533	43.48. Wang Y, Tang H, Debarry JD, et al. MCScanX: a toolkit for detection and evolutionary	Formatted: Indent: First line: 0"
534	analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7):e49-e49.	

	SampleID	Le	ngth	Number		
Program		Contig(bp)	Scaffold(bp)	Contig	Scaffold	
Falson	Total	806,744,914	-	2,986	-	
Falcon	N50	2,916,360	-	72	-	
Onivor	Total	812369941	-	2,986	-	
Quiver	N50	2,938,972	-	72	-	
Dilon	Total	811,094,501	-	2986	-	
r non	N50	2,937,127	-	72	-	
	Total	811,094,501	812,323,628	2,986	2,812	
	Max	14,814,786	17,432,797	-	-	
	Number>=2000	-	-	2,803	2,629	
10V	N50	2,937,127	3,359,874	71	62	
10A	N60	2,314,962	2,662,781	103	89	
	N70	1,622,862	1,911,995	144	125	
	N80	790,034	1,007,083	214	182	
	N90	196,816	257,477	421	333	

Table 1 Summary of the *D.oleifera* genome assembly using Pacbio long-read, Illumina reads and 10X genomics data

# total repeative e	lements		
Program		Repeat Size(bp)	% of genome
Т	ſrf	79,886,467	9.83
Repeat	tmasker	408,623,327	50.3
Protei	inmask	22,154,795	2.73
То	otal	445,187,963	54.8
# Transposons ele	ements		
Ty	уре	Transposons Elementss Length(bp)	% in Genome
DNA		33,844,732	4.17
LINE		13,187,364	1.62
SINE		74,819	0.01
	total	379,582,766	46.73
ITD	Gypsy	216,328,284	26.63
LIK	Copia	116,970,626	14.40
	other	46,283,856	5.70
Unk	nown	10,513,280	1.29
Total		430,778,122	53.03

Table 2 Classification of repetitive elements in D.oleifera genome

Click here to access/download Supplementary Material Fig. S1.png Click here to access/download Supplementary Material Fig. S2.png Click here to access/download Supplementary Material Fig. S3.png Click here to access/download Supplementary Material Fig. S4.png Click here to access/download Supplementary Material Fig. S5.png Supplementary Material

Click here to access/download Supplementary Material Supplementary Tables.xlsx

Dear Editor,

Thank you very much for offering us the opportunity to resubmit a revised version of our manuscript. Hereby, we submit the revised manuscript entitled "A high-quality chromosomal genome assembly of *Diospyros oleifera*" (GIGA-D-19-00174) to GigaScience. We appreciate the valuable comments and suggestions from you and the reviewers, which help us to improve and clarify the manuscript. We have discussed the comments carefully and tried our best to improve the manuscript according to the reviewers' good comments.

The main modifications are as follows:

1. We confirmed the NCBI data link, you and the reviewers can find the data under this link: https://dataview.ncbi.nlm.nih.gov/object/PRJNA532832?reviewer=gbss3pp9p06h5hos ks3vrepirg

2. We supplemented the content of comparative genomic analysis, including gene family cluster, expansion and contraction of gene families, positively selection analysis, and macrosynteny analysis. Some interesting results were found: Firstly, compared with *D.lotus*, *C.sinensis*, and *V.vinifera*, *CHS* (Chalcone synthase) genes (the first key enzyme in the flavonoid-anthocyanin pathway) had different degrees of expansion in *D.oleifera* genome, which may be contribute to the abundant tannin production in the *D.oleifera*. Besides, *CHI* (Chalcone isomerase) gene (another key enzyme in the flavonoid-anthocyanin pathway) was found to be positive selected. These results will provide important data support for the molecular mechanism analysis of the major economic traits in *Diospyros*. Furthermore, the divergence time of between *D. oleifera* genome. These results will be helpful for the further analysis of the evolution of *Diospyros* species, and the origin of hexaploid persimmon.

Detailed responses to your and the reviewers' comments are provided in the next sections. We hope you and the reviewers will be satisfied with our responses to the comments and the revisions for the original manuscript. Please feel free to contact us with any questions and we are looking forward to your response.

Thanks and Best wishes!

Yours sincerely, Yujing Suo and Jianmin Fu

Response to Reviewer:

Reviewer #1: Suo et al report a chromosome scale assembly of D. oleifera, a diploid relative of hexaploid persimmon. They used a combination of Illumina, 10x, PacBio, and HiC to generate the chromosome scale assembly D. oleifera. The inclusion of high coverage Illumina data and scaffolding with 10x likely ensured that most of the residual indels from the PacBio only assembly were corrected. The HiC contact map in Figure 2 has no obvious inversions or misplacements, suggesting the genome is well assembled. This resource will be useful for the comparative genomics and persimmon research communities. I have a few minor concerns that should be addressed before this manuscript is published.

Q1. The estimated heterozygosity of D. oleifera is quite high (1.1%) and this would have likely resulted in assembly issues related to haplotype specific contigs. How many primary and alternate contigs were assembled by FALCON?

A: There were 2,986 contigs initially assembled by FALCON (Table 1).

Q2.Akagi et al. (https://www.biorxiv.org/content/early/2019/05/05/628537.full.pdf) report a chromosome scale assembly of diploid persimmon (D. lotus). The authors could cite this preprint in their manuscript and if the genome is publicly available, survey macrosynteny.

A: Thanks for your suggestion. We have added the macrosynteny analysis (Revised manuscript, Page12, Line 291-297). The chromosome-based macrosynteny analysis revealed a striking correspondence between *D.oleifera* and *D.lotus*, for that there were totally 432 syntenic blocks showed in supplementary Fig. S5.

Q3. The identification of homologs of sex determination genes from kiwi and D. lotus is not informative, as the kiwi sex determination system is likely completely different from D. oleifera and sex chromosomes may have an independent origin in D. lotus and D. oleifera. It is fine to leave this in the paper, but the statement that candidate sex determination genes were identified should be removed from the abstract

A: Thanks for your suggestion. We have removed the content about sex determination, and focused on the analysis of genes related to tannin synthesis.

Q 4. The identification of a WGD event in D. oleifera is interesting, and figure S2 could probably be moved to the main text. Based on this figure, it looks like there could have been two WGD events in D. oleifera.

A: Thanks for your suggestion. We have moved the Fig. S2 to the main text as the new Fig. 5. Besides the ancient γ event (all core eudicots share an ancient WGD, 4dtv = 0.66), a second WGD event occurred in *D.oleifera* and *D.lotus* (4dtv=0.36 ~0.27-0.42) which might contribute to the divergence of Ebenaceae with *A. chinensis* and *C. sinensis*. (Revised manuscript, Page12, Line 289-292)

Page 6, line 152. homologous should not be use here

Versions are provided or most but not all bioinformatics software. Where appropriate, versions should be added.

A: 'homologous' in Page 6, line 152 was deleted and versions of bioinformatics software had been provided in the article. (Revised manuscript, Page7, Line 165-166)

Reviewer #2: This manuscript describes the assembly of the first chromosome-level genome sequence of an Ebenaceae, Diospyros oleifera. The newly generated genome sequence was analysed for TE and gene content as well as for tannin synthase and sex determination genes. A phologenetic tree was constructed for divergence time estimation.

Data preparation as well as the construction of the pseudomolecules follows established and proven protocols and the results look good to me. Same is true for the gene model prediction and TE detection.

My main issue with this study is that it is almost exclusively a description of a newly established genomic resources, with very little to no new biological insights included in this manuscript. There is a little bit on tannin synthase and sex determination but this is all based on existing knowledge and little more than a homolog search. I appreciate the generation of these novel and helpful resources but these data could/should have been used to gain more biological insights.

A: For the question you mentioned, we supplemented the content of comparative genomic analysis in the revised manuscript, including gene family cluster, expansion and contraction of gene families, positively selection analysis, and macrosynteny analysis. Some interesting results were found: Firstly, compared with *D.lotus*, *C.sinensis*, and *V.vinifera*, *CHS* (Chalcone synthase) genes (the first key enzyme in the flavonoid-anthocyanin pathway) had different degrees of expansion in *D.oleifera* genome, which may be contribute to the abundant tannin production in the *D.oleifera*. Besides, *CHI* (Chalcone isomerase) gene (another key enzyme in the flavonoid-anthocyanin pathway) was found to be positive selected. These results will contribute to the molecular mechanism analysis of the major economic traits in *Diospyros*. Furthermore, the divergence time of between *D. oleifera* genome. These results will be helpful for the further analysis of the evolution of Diospyros species, and the origin of hexaploid persimmon.

In brief, this study provides a high-quality chromosomal level assembly of *D.oleifera* genome, which will provide important data support for the assembly of subsequent hexaploid persimmon genomes and the molecular mechanism analysis of the major economic traits in *Diospyros*.

More specific issues:

a.) Transcriptome data: I could not find a proper description of the transcriptome data that was obviously generated with this study and used for gene prediction. This could e.g. also be used to establish transcription levels for gene or gene families of interest.

A: The description of the transcriptome data was displayed in the 'Genomic RNA extraction, library construction and sequencing' part of the article. (Revised manuscript, Page7, Line 156-160)

b.) Functional annotation: I would recommend to use more specialized tools such as AHRD or BLAST2GO instead of simple best Blast hit for the human readable descriptions.

A: Thanks for your suggestion. We had reannotated the gene set by BLAST2GO, as a result, 19,900 genes were annotated. After combining with the earlier annotation by blastp with InterPro database, there were totally 20,826 genes that had GO annotation, account for 68.20% of the gene models. The results were showed in the article. (Revised manuscript, Page8, Line 186-191)

c.) Phylogeny: I would recommend to use OrthoFinder instead of the older OrthoMCL version for determining the orthologous groups. Also, I'm not sure about the bias possibly introduced by just picking the single copy orthologs for the construction of the phylogenetic tree.

A : Thanks for your suggestion. We had reanalysis the gene families with OrthoFinder and got totally 19,722 clusters which were used for the phylogeny construction. The results were displayed in the article. (Revised manuscript, Page9, Line 224-230)

d.) I could not access any data under the NCBI accession number given.

A: We confirmed the NCBI data link, you and the reviewers can find the data under this link:

https://dataview.ncbi.nlm.nih.gov/object/PRJNA532832?reviewer=gbss3pp9p06h5ho sks3vrepirg

e.) Language and grammar needs improvement.

A: The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/Q48QsC