Supplementary Data

D-Ribose catabolism in archaea:

Discovery of a novel oxidative pathway in Haloarcula species

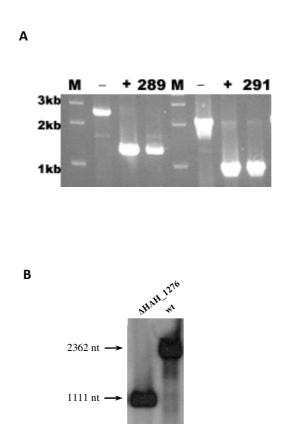
Ulrike Johnsen¹, Jan-Moritz Sutter¹, Andreas Reinhardt¹, Andreas Pickl¹, Rui Wang², Hua Xiang² and Peter Schönheit^{1*}

Table of contents

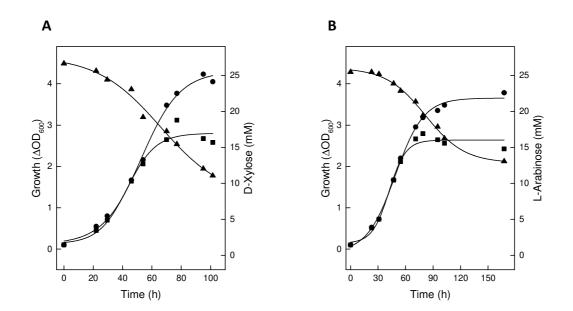
Supplemental Figure S1 Verification of successful deletion of HAH_0289, HAH_0291 and HAH_1276 in *Haloarcula hispanica* DF60.

Supplemental Figure S2 Growth of *Haloarcula marismortui* on D-xylose and L-arabinose.
Supplemental Figure S3 Growth of *Haloarcula hispanica* on D-xylose, D-ribose and L-arabinose.
Supplemental Figure S4 Purification of pentose dehydrogenase from *Haloarcula marismortui* cells grown on D-ribose.

Supplemental Figure S5 Pentonolactonase of *Haloarcula hispanica*.

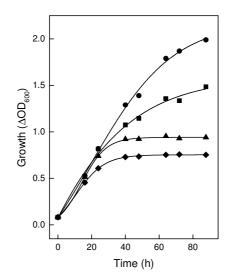

Supplemental Figure S6 Purification of xylonate dehydratase from *Haloarcula marismortui*.

Supplemental Figure S7 Growth of the Δ HVO_B0038A mutant from *Haloferax volcanii* that was complemented with rrnAC0575 and rrnAC3032 from *Haloarcula marismortui*.

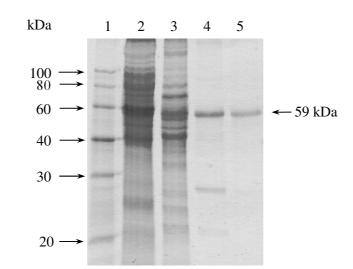

Supplemental Figure S8 Purification of α -ketoglutarate semialdehyde dehydrogenase from *Haloarcula marismortui*.

Supplemental Table S1 Primer used in this study.

Supplemental Figure S1 Verification of successful deletion of HAH_0289, HAH_0291 and HAH_1276 in *Haloarcula hispanica* DF60. (A) Δ HAH_0289 and Δ HAH_0291 mutants were analyzed by PCR with the forward primer of fragment 1 and the reverse primer of fragment 2; wild type (-) and plasmid (+) were used as control. (B) Δ HAH_1276 mutant was analyzed by Southern blot analysis with EcoR1 treated genomic DNA of wild type (wt) and the Δ HAH_1276 mutant. Length of specific signals were determined with the DNA molecular weight marker III, DIG-labeled (Roche Diagnostics). The probe was amplified with the PCR DIG Probe Synthesis Kit (Roche Diagnostics, Germany).



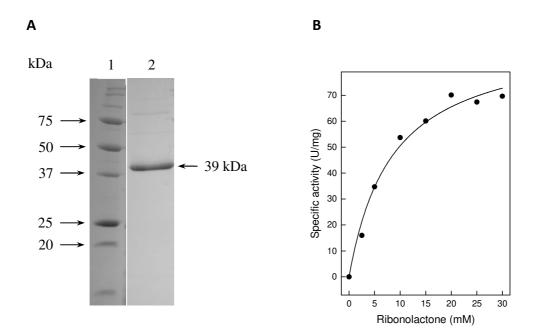
Supplemental Figure S2 Growth of *Haloarcula marismortui* **on D-xylose and L-arabinose.** Growth was performed at 37°C on 25 mM D-xylose (**A**) and L-arabinose (**B**) in the presence of 0.25% yeast extract and 0.5% casamino acids (circles); growth without the addition of pentoses (squares) and consumption of xylose or arabinose (triangles).



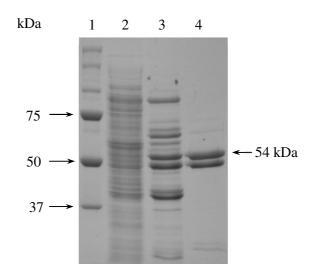
Supplemental Figure S3 Growth of Haloarcula hispanica on D-xylose, D-ribose and L-arabinose.

Growth was performed at 37°C on 25 mM D-xylose (circles), D-ribose (squares) and L-arabinose (triangles) in the presence of 1 g/l yeast extract; growth without the addition of pentoses (diamonds).

Supplemental Figure S4 Purification of pentose dehydrogenase from *Haloarcula marismortui* cells grown on D-ribose. (A) Purification as analyzed by SDS-PAGE, Coomassie blue stained; Lanes: 1, molecular mass standard; 2, cell extract; 3, after Sepharose CL 4B; 4, after Phenyl-Sepharose; 5, after Superdex 200; (B) Enzyme activity was measured at 37°C as NADP⁺ dependent oxidation of D-ribose. The assay mixture contained 1.5 M KCl, 1 mM NADP⁺ and 10 mM D-ribose in 100 mM Tris-HCl, pH 8.8.



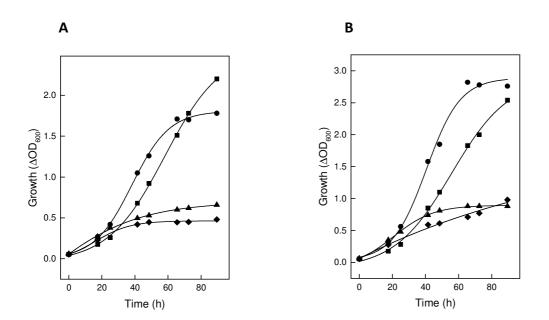
Α


В

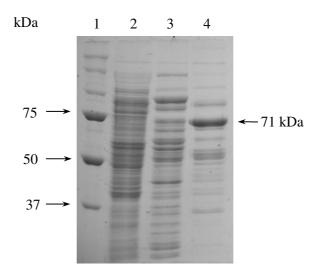
	Protein (mg)	Activity (U)	Sp. activity (U/mg)	Yield (%)	Purification (fold)
Cell extract	985	232	0.235	100	1
Sepharose CL 4B	22	124	5.61	54	24
Phenyl-Sepharose	1.14	40	36	17	153
Superdex 200	0.12	7.3	62	3.2	264

Supplemental Figure S5 Pentonolactonase of *Haloarcula hispanica.* (A) Coomassie blue stained SDS-PAGE. Lanes: 1, molecular mass standard; 2, protein after Superdex 200. (B) Rate dependence of pentonolactonase on the concentration of ribonolactone.

Supplemental Figure S6 Purification of xylonate dehydratase from *Haloarcula marismortui*. (A) Purification as analyzed by SDS-PAGE, Coomassie blue stained. Lanes: 1, molecular mass standard; 2, cell extract; 3, after Phenyl-Sepharose; 4, after Superdex 200. (B) Enzyme activity was measured at 37°C, the assay mixture contained 1.0 M KCl, 20 mM MgCl₂ and 10 mM D-xylonate in 100 mM Tris-HCl, pH 8.5.



Α


	Protein (mg)	Activity (U)	Sp. activity (U/mg)	Yield (%)	Purification (fold)
Cell extract	601	0.145	0.00024	100	1
Phenyl-Sepharose	2.81	0.0302	0.0108	20.8	45
Superdex 200	0.121	0.0072	0.06	5	250

Supplemental Figure S7 Growth of the Δ HVO_B0038A mutant from *Haloferax volcanii* that was complemented with rrnAC0575 and rrnAC3032 from *Haloarcula marismortui*. Growth on 20 mM L-arabinose (**A**) and 20 mM D-xylose (**B**). Δ HVO_B0038A mutant (diamonds); wild type (squares), and the Δ HVO_B0038A mutant complemented with rrnAC0575 (circles) or rrnAC3032 (triangles). Expression of the *Haloarcula marismortui* genes was induced by the addition of 0.1 mM tryptophan.

Supplemental Figure S8 Purification of α -ketoglutarate semialdehyde dehydrogenase from *Haloarcula marismortui*. (A) Purification as analyzed by SDS-PAGE, Coomassie blue stained. Lanes: 1, molecular mass standard; 2, cell extract; 3, after Phenyl-Sepharose; 4, after Superdex 200. (B) Enzyme activity was measured at 37°C as NADP⁺ dependent oxidation of glutardialdehyde. The assay mixture contained 1.5 M KCl, 1 mM NADP⁺ and 5 mM glutardialdehyde in 100 mM Tris-HCl, pH 8.5.

Α

В

	Protein (mg)	Activity (U)	Sp. activity (U/mg)	Yield (%)	Purification (fold)
Cell extract	695.4	44.4	0.056	100	1
Phenyl Sepharose	28.62	13	0.454	29.3	8.1
Superdex 200	0.581	1.29	2.2	2.9	39.3

Supplemental Table S1 Primer used in this study. F = forward; R = reverse; 5'-flanking region of target gene, fragment 1; 3'-flanking region of target gene, fragment 2.

gene		sequence 5'->3'			
rrnAC3032		F_CAATCACGCGGAAACTATTCGGCG			
		R_GTGTTCGGTCTGGAGAATCGGTG			
rrnAC3033		F_CGACTGGTTCGTCCGCGACG			
		R_TGGAGCACCTTCGGGTCGCC			
rrnAC3034		F_GTACGAGGAGTTCCACGACG			
		R_ACTCCGTCTCGGATGCTTCG			
rrnAC3036		F_GGACGCGGACGAAGCGGTTG			
		R_GCTCGGCATGACGACGGTCG			
rrnAC1339		F_CTGGGGACGGTGTGTACGATTTG			
		R_CTCACAGGTGCGTTTCATCTCGC			
rrnAC0575		F_ GAAGAGGCTGACCCCGAGGC			
		R_ CCCGGCTCCTCCGGAATCTC			
Primer used for	generation of d	leletion mutants			
gene flanking fragments		sequence 5'->3'			
∆HAH_1276	fragment1	F_GCGTCGTGGACTGTCTCTGAATCG			
		R_CTCGACGACCAGGTCAGCGTAGTCTACGTCG			
	fragment2	F_CTGACCTGGTCGTCGAGGGCGACACCG			
		R_CGGCAACTGTTCGAGAACCTCATCC			
∆HAH_0289	fragment1	F_CGCGGATCCCCGGTGGGGTACGTCATC			
		R_CCCAAGCTTTTGCCGGACATACTGTGGTG			
	fragment2	F_CCCAAGCTTCGGCACTGTTTTTCCCGGTA			
		R_ATAGGGTACCCGCGGTCGCTTGCCAGATG			
∆HAH_0291	fragment1	F_CGCGGATCCGGCGAGAAACGGGACCGGTATC			
		R_CCCAAGCTTGCCACTGCCATCGACTGGCT			
	fragment2	F_CCCAAGCTTATGCGGTACGAGATTTTTTG			
		R_CATGCCATGGCGGGGTCGTTGGTGCCAGTAA			
Primer used for	cloning of plas	mids for overexpression and/or complementation			
gene		sequence 5'->3'			
rrnAC0771		F_ATTGCGCATATGCACCACCACCACCACCACCATGCATCTCGAAAAAGTAG ACAC			
		R_CCGGGTATCGGATCCGGCCTG			
HAH_0290		F_GTTCGGCCCATGGTTCAG			
		R_GCCACCGGATCCACGGTC			
rrnAC3036		F_GAATTAAACTCATGACGCAGACG			
		R_CTGTAACAAGGATCCACTTCACG			

rrnAC0575	F_CAAGCGGGGCCATGGGAAAGGC
	R_ACGATGGGGGTGGATCCTTACGC
rrnAC3032	F_TATGTCCGGCACATGTCGCCAAC
	R_TCTATGACGGATCCGTACGCAGC
rrnAC3034	F_CGACAGTGTCATGAACGTTGAC
	R_CGTTGACGGATCCATGTGCC