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In this Appendix we first provide a technical treatment of simulation-based Bayesian experimental design.
Next, we describe Bayesian optimization in the context of experimental design. Lastly, we give the full
specification of the associative learning models used in simulated scenarios described in the main text of the
article (Scenarios 1, 2, and 3).

1 Bayesian experimental design
Bayesian experimental design is the application of Bayesian decision theory to the problem of designing
optimal experiments, i.e., finding the optimal values of tunable design variables. The problem is formalized
as a maximization of expected design utility EU(η), with respect to design variables η:

η∗ = arg max
η∈H

EU(η), (1)

where η∗ denotes optimal values for the design variables and H denotes the space of possible designs (i.e.,
design space). Although we are ultimately interested in the dependence of the experiment utility on the
design variables (captured by the utility function U(η)), often it is easier to express the goal of the study by
using a more general utility function with additional direct dependence on study outcomes (observed data d

and analysis results r), and possibly on the unobserved ground truth generative model m and its parameters
θm, yielding U(r, d, θm, m, η). Evaluating a particular design requires calculating expected design utility, i.e.,
marginalizing across the uncertain variables in the utility function (here we assume that analysis results r
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are deterministically dependent on data d):

EU(η) = Ed,θm,m[U(r, d, θm, m, η)]

=
∫
D

∑
M

∫
Θm

U(r, d, θm, m, η)p(d, θm, m | η) dθm dd

=
∫
D

∑
M

∫
Θm

U(r, d, θm, m, η)p(d | θm, m, η)pe(θm, m) dθm dd,

(2)

where D is the space of datasets, M is the space of candidate models, Θm is the parameter space of model
m, p(d | θm, m, η) is the conditional probability of the dataset, and pe(θm, m) is the joint prior probability
of the model and its parameters (which we term the evaluation prior). Here we made the assumption that
the evaluation prior is independent of the design variables (i.e., pe(θm, m | η) = pe(θm, m) for all η); this
assumption needs to be carefully considered on a case-by-case basis, and might not hold if, for example,
different values of design variables result in experiments which engage different cognitive mechanisms.

1.1 Evaluating design utility through simulation

Unfortunately, the expected design utility EU(η), calculated according to eq. 2, will have no closed-form
solution for almost any design problem of practical interest. To tackle this issue, we adopt the simulation-
based approach to design evaluation, i.e., Monte Carlo integration (Müller and Parmigiani 1995; Wang and
Gelfand 2002). Each simulation iteration consists of three steps: simulating a dataset, analyzing the simulated
dataset, and calculating the utility of the simulated experiment.

To simulate a dataset, we first sample the ground truth model m and its parameters θm from the evaluation
prior pe(θm, m). Next, using the evaluated values of design variables η and the ground truth, we sample the
dataset d from the data probability distribution p(d | θm, m, η). In classical conditioning, experiment realiza-
tions (i.e., stimuli and outcomes, together denoted x) are independent of model responses (i.e., conditioned
responses, denoted y); hence, we can decompose the dataset simulation into sampling an experiment realiza-
tion from the experiment structure pexp(x | η) and sampling the model responses from the model likelihood
function pm(y | x, θm), thus yielding the full simulated dataset d = {x, y}.

We can now perform the planned analysis on the simulated dataset. We conceptualize this with a functional
mapping from the data to the results, i.e., r = a(d), where a(·) represents the planned analysis (e.g., model
comparison or parameter estimation) and r represents the analysis results (e.g., the selected winning model,
the parameter point estimate, or a posterior distribution over parameters and/or models). In scenarios where
we consider parameter estimation within a single model, we can obtain the maximum a posteriori (MAP)
point estimate of the parameter as the analysis result r, using Bayes’ rule:

r = θ̂MAP = arg max
θ

p(y | x, θ)pa(θ)∫
p(y | x, θ)pa(θ) dθ

, (3)

where pa(θ) is the analysis prior, which, importantly, does not need to coincide with the evaluation prior
pe(θ). Since the evaluation prior describes experimenter’s state of knowledge at the planning stage, and the
analysis prior needs to be acceptable even to the skeptical consumer of the analysis results, the evaluation
prior will usually be more informative than the analysis prior. In scenarios presented in the paper, we used
the uniform prior as a non-informative analysis prior pa(θ) ∝ 1; this makes the MAP parameter estimate
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equal to the maximum (log)likelihood estimate (MLE):

θ̂MAP = θ̂MLE = arg max
θ

log p(y | x, θ). (4)

In model selection scenarios, we can similarly obtain the analysis result by employing the Bayes’ rule to select
the a posteriori most probable model, based on maximizing model evidence:

r = m̂ = arg max
m

p(m | y, x)

= arg max
m

p(y | x, m)

= arg max
m

∫
pm(y | x, θm)pa(θm | m) dθm,

(5)

where we assumed a uniform analysis prior over the models, i.e., pa(m) ∝ 1. Again, the integral necessary to
calculate model evidence will generally not be tractable, but can be approximated in various ways (Penny et
al. 2004).

Having obtained the analysis result from the simulated dataset, we can now calculate the experiment utility
U(r, d, θm, m, η) of the current simulation iteration. In general, the utility function is dependent on the goal
of the study and therefore its form is up to the user; here we provide two utility functions as examples - one
for parameter estimation scenarios and one for model selection scenarios. In scenarios featuring parameter
estimation within a single model, we decided to minimize the absolute parameter estimation error (i.e.,
maximizing negative absolute error), due to its robustness to outliers:

U(r = θ̂, θ) = −|θ − θ̂|. (6)

Similarly, in scenarios featuring model selection, we decided to maximize model selection accuracy:

U(r = m̂, m) =

1 if m̂ = m,

0 otherwise.
(7)

Thus far, we have described calculating the experiment utility for a single simulation. To obtain the Monte
Carlo approximation of the expected design utility EU(η) (eq. 2), we run NS simulations and average
experiment utilities across them:

EU(η) ≈ 1
NS

NS∑
i=1

U(r(i), d(i), θ(i)
m , m(i), η). (8)

1.2 Maximizing design utility through Bayesian optimization

Using the Monte Carlo approximation to the expected design utility (eq. 8), we can now search the design
space H for the optimal design η∗ that maximizes expected utility EU(η) (eq. 1). We refer to the evaluation
prior pe(θm, m) used during optimization as the design prior pd(θm, m). In practice, the design prior and
the evaluation prior will generally coincide, since we want to use the best existing information to design
the experiment and to evaluate it. However, the distinction between the design prior and the evaluation
prior allows us to investigate the effect of varying levels of prior knowledge included in the optimization (i.e.,
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different design priors), while evaluating the obtained designs using the same evaluation prior (which here
represents the ground truth and will usually be a point prior).

To find the values of design variables that maximize expected design utility, we employ the Bayesian optimiza-
tion (BO) algorithm (Brochu, Cora, and de Freitas 2010), as implemented by the bayesopt function in the
‘Statistics and Machine Learning Toolbox’ in MATLAB R2018a (version 9.4.0.813654). Since optimization
algorithms are usually formulated in terms of minimizing an objective function g(x), we equate the objective
function with negative expected design utility, i.e., g(x) = −EU(η). BO is a global optimization algorithm
which minimizes a deterministic or stochastic objective function g(x), with respect to x within a bounded
domain. BO is especially appropriate for optimization problems where the objective function is expensive to
evaluate and where the gradients of the objective function are not available; both of these conditions are true
for simulation-based experimental design. Although the BO algorithm has polynomial time complexity, for
expensive objective functions and for typical numbers of iterations, the running time will be dominated by
the evaluations of the objective function, thus justifying the use of a relatively costly search algorithm.

In order to efficiently search for the optimal x, BO approximates the true objective function g(x) using
a probabilistic model f(x), called the surrogate function (or response surface). A common choice for the
surrogate function (also featured in the MATLAB BO implementation) is a Gaussian process:

f(x) ∼ GP(µ(x), k(x, x′; θ)), (9)

where µ(x) is the mean function and k(x, x′; θ) is the covariance kernel function with hyperparameters θ. BO
implementation in MATLAB uses the ARD Matern 5/2 form of the kernel function. In order to choose the
next solution x to evaluate, the surrogate function needs to be supplemented with an acquisition function
u(x), which governs the exploration-exploitation trade-off. The acquisition function represents the utility of
evaluating a solution x, based on the current posterior probability distribution over the objective function,
Q(f). Out of various acquisition functions that are available in the MATLAB implementation of BO, we have
chosen the ‘expected improvement plus’ option. The expected improvement acquisition functions evaluate the
expected decrease in the objective function, ignoring values that cause an increase in the objective. Expected
improvement (EI) is given by:

EI(x, Q) = EQ[max(0, µQ(xbest) − f(x))], (10)

where xbest is the solution with the lowest posterior mean value µQ(xbest). The EI-plus version of the
acquisition function dynamically modifies the kernel function to prevent overexploiting of a particular area
of the solution space. This modification is governed by the ‘exploration ratio’ option, which was set to the
default value of 0.5.

Having specified the surrogate and acquisition functions, the BO algorithm proceeds as follows. The algorithm
is first initialized by evaluating yi = g(xi) for a fixed number of solutions xi sampled randomly within
variable bounds (i indexes objective function evaluations); we used 10 solutions in initialization. Hereafter,
the algorithm repeats the following steps in each iteration t:

1. Update the surrogate function using the Bayes’ rule, i.e., calculate the posterior over functions, condi-
tioned on the objective values observed thus far (Q(f | xi, yi, for i = 1, . . . , t)).

2. Find the new solution xt+1 that maximizes the acquisition function u(x) and evaluate the objective
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function for this solution to obtain yt+1 = g(xt+1).

As the stopping criterion for the algorithm, we used a fixed number of iterations (300), regardless of the
elapsed time. The BO algorithm returns both the solution at which the lowest objective function value was
observed, as well as the solution at which the final surrogate function has the lowest mean. As the optimized
design, we chose the solution based on the surrogate function.

2 Associative learning models

2.1 Scenario 1

In Scenario 1 we consider the case of estimating the learning rate parameter of the Rescorla-Wagner (RW)
model (Rescorla and Wagner 1972). For this model, the update rule for the associative weights between the
stimuli s and outcome o is:

wt+1 = wt + αδtst, (11)

where wt is the vector of associative weights at the end of trial t, α is the learning rate, δt is the prediction
error, and st is the vector of binary indicator variables for the stimuli (i.e., conditioned stimuli, CSs). The
prediction error is given by:

δt = ot − w⊤
t st, (12)

where ot is the binary indicator variable for the outcome (i.e., unconditioned stimulus, US). The mapping
from the associative weights wt, to the model responses yt (i.e., conditioned responses, CRs) is assumed to
be linear with added Gaussian noise:

yt = β0 + β1s⊤
t wt + ϵ,

ϵ
i.i.d.∼ N (0, σ2

y).
(13)

The parameters of the model are therefore α, w0, β0, β1, and σy. We make the simplifying assumption that
all initial values of associative weights are the same (w0 = w01). In all the simulations, parameters other
than α were kept constant (w0 = 0 , β0 = 0, β1 = 1, σy = 0.2). The parameters were estimated using
the maximum likelihood approach, which is equivalent to the maximum a posteriori approach with uniform
priors on the whole domain of permissible values for the parameter (eq. 4). To perform the estimation we
used the mfit_optimize function from the ‘mfit’ toolbox (Gershman 2018).

Three evaluation priors, with different values for α were used: low alpha (LA, α = 0.1), middle alpha (MA,
α = 0.2), and high alpha (HA, α = 0.3). The designs were optimized using either a point prior (PA-OPT
designs) or a vague prior (VA-OPT designs) on alpha. The PA-OPT design priors coincided with evaluation
priors, and the VA-OPT design prior was a uniform distribution on the [0, 1] interval. The designs were
optimized for accuracy in estimating the learning rate α, with the utility function being specified as the
negative absolute estimation error (eq. 6).

2.2 Scenario 2

Scenario 2 involves model comparison between the RW model and its probabilistic extension, the Kalman RW
(KRW) model (Dayan and Kakade 2000; Kruschke 2008; Gershman 2015). The RW model is implemented the
same as in Scenario 1 (equations 11–13). KRW model maintains a probabilistic representation of associative
weights using a multivariate Gaussian distribution, with mean vector wt and covariance matrix Σt. These
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state variables are updated using the Kalman filter equations:

wt+1 = wt + ktδt, (14)

Σt+1 = Σt + τ2I − kts⊤
t (Σt + τ2I), (15)

where τ2 is the variance that governs the diffusion of weights over time, and kt is the Kalman gain, which
acts as a stimulus-specific learning rate. Kalman gain is given by:

kt = (Σt + τ2I)st

s⊤
t (Σt + τ2I)st + σ2

o

, (16)

where σ2
o is the variance of the outcome noise distribution. The model responses yt for KRW are obtained

as a linear mapping of associative weights wt (eq. 13). Hence, the parameters of the model are w0, Σ0, β0,
β1, τ , σo, and σy. We simplify the parameterization by assuming w0 = w01 and Σ0 = σ2

wI.

The evaluation prior was a uniform prior over RW and KRW models, combined with a point prior on
model parameters, with the parameter values taken from the simulation study of Kruschke (2008). For RW,
parameter values were w0 = 0 and α = 0.08. For KRW, we set the parameters at w0 = 0, log σ2

w = 0 (σ2
w = 1),

log τ2 = −20 (τ2 ≈ 0), log σ2
o = 1.3863 (σ2

o ≈ 4). For both models, the parameters of the model response
mapping were set at β0 = 0, β1 = 1, and σy = 0.2.

The design prior was either a precise point prior coinciding with the evaluation prior (PP-OPT), or a vague
prior (VP-OPT). The vague prior for the RW model was implemented as:

α ∼ U(0, 1),

σy ∼ U(0.05, 0.5).
(17)

For the KRW model, the vague prior was:

log σ2
w ∼ N (0, 2),

log σ2
o ∼ N (0, 2),

σy ∼ U(0.05, 0.5).

(18)

The rest of the parameters of both models were fixed to the same values as in the evaluation prior.

Parameter estimates in Scenario 2 were obtained using a maximum likelihood approach, as in Scenario 1.
Models were compared using the Bayesian Information Criterion (BIC; (Schwarz 1978)):

BIC = −2 log(L̂) + log(n)k, (19)

where L̂ is the value of the likelihood function for the maximum likelihood parameter estimates, n is the
number of data points, and k is the number of estimated parameters. The model with the lowest BIC was
selected as the winning model. When conducting design optimization, proportion of cases where the winning
model was also the ground truth model - i.e., model selection accuracy - was transformed to the log-odds scale
in order to better conform with the normality assumption we used in optimization (we assumed a Gaussian
process as a surrogate model of the utility function in Bayesian optimization).
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2.3 Scenario 3

Scenario 3 again features model comparison between the RW model and its variant - namely, the Rescorla-
Wagner-Pearce-Hall (RWPH) hybrid model (Li et al. 2011). Whereas the RW model assumes a fixed learning
rate, the RWPH model assumes stimulus-specific learning rate that is modulated over time depending on
observed prediction errors. In particular, the RW weight updating is supplemented with the Pearce-Hall rule
for updating the learning rates (i.e., associabilities):

α
(s)
t+1 =

η|δt| + (1 − η)α(s)
t if st = 1,

α
(s)
t if st = 0,

(20)

where α
(s)
t is the associability of stimulus s at trial t and η is the forgetting factor. The corresponding weight

update equation is:
w

(s)
t+1 = w

(s)
t + κα

(s)
t δtst, (21)

where κ is the fixed learning rate. Additionally, in Scenario 3 we included variants of the RWPH model
that have different mappings between the latent states of the models (i.e., weights and associabilities) and
the model responses (i.e., conditioned responses). The most general version of the model, RWPH(V + α),
features a linear mapping from a mixture of active weights and associabilities:

yt = β0 + β1s⊤
t (λwt + (1 − λ)αt) + ϵ, (22)

where λ is the mixing factor. The parameters of the model are α0, w0, η, β0, β1, λ, and σy. Again, we make
the simplifying assumption about the initial associabilities and weights (all initial associabilities and weights
are equal to α0 and w0, respectively). The other variations of the RWPH model - RWPH(V ) and RWPH(α)
- are obtained by setting the output mixing factor λ to 1 or 0, respectively.

As in Scenario 2, the evaluation prior was a uniform prior over all compared models (RW, RWPH(V ),
RWPH(α), RWPH(V +α)), combined with a point prior on model parameters. The parameters of RWPH(V +
α) update equations were set to the maximum likelihood values obtained in the empirical study of Li et al.
(2011); specifically, w0 = 0, α0 = 0.926, η = 0.166, and κ = 0.857. For the other models - which are nested
within the RWPH(V +α) model - corresponding subsets of these maximum likelihood values were used. Study
of Li et al. (2011) did not specify the maximum likelihood values of output mapping parameters, so they
were arbitrarily set at β0 = 0, β1 = 1, and σy = 0.2. The mixing factor λ was set to 0.5 in RWPH(V + α),
to 0 in RWPH(α), and to 1 in RWPH(V ) and RW.

The design prior - as in Scenario 2 - was either a point prior coinciding with the evaluation prior (PP-OPT),
or a vague prior (VP-OPT). The vague prior for the RWPH(V + α) model was:

α0 ∼ U(0, 1),

η ∼ U(0, 1),

κ ∼ U(0, 1),

λ ∼ U(0, 1),

σy ∼ U(0.05, 0.5).

(23)

For the other models we used the appropriate subset of priors. The rest of the parameters of all the mod-
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els were fixed to the same values as in the evaluation prior. Model fitting, model selection, and design
optimization were performed in the same manner as in Scenario 2.
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