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Supplementary Figure 1. The seeds and plants of eight B. napus accessions in 2018-2019 growing season in Wuhan. Plant pictures were taken at 116 days and 151 
days after sowing. These plants were transplanted from the field to the pot at 106 days after sowing. Due to transplant, the growth and flowering were delayed compared 
to those grown in the field. Bar: 10 cm.
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Supplementary Figure 2. The pipeline for genome assembly in this study.  3D-
DNA was used to correct, order, orientate and cluster the contigs. Bionano hybrid 
scaffolds were used to evaluate the final assembly (see Method).



Supplementary Figure 3. Large segmental HEs of eight assembled accessions. Coverage depth obtained along genome after mapping Illumina sequence reads from eight assembled 
accessions to the ‘ZS11’ genome. The x-axis represents the 100kb regions of chromosomes A01-C09 in genome and the y-axis represents the coverage of these regions. Segmental HEs 
are revealed based on sequence read coverage analysis, where a duplication (red) is revealed by significantly greater coverage for a given segment than the rest of the genome (grey) and a 
deletion (blue) by little or no coverage for the corresponding homeologous segment.
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Supplementary Figure 4. Mapping results of paired BAC-end data on ZS11 assembly 
genome. a, The distribution of ZS11 and JBnY BAC mapped to genome. b, The distance 
of  BAC pairs end. Additional details about the statistics can be found in Supplementary 
Notes (for all Supplementary Figures).
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Supplementary Figure 5. Colinearity between genetic map and physical map. The genetic map 
was generated with a RIL population (ZS11 x Quantum), which including 7,158 SNP makers. A 
subset of 7,103 markers were uniquely mapped to the ZS11 physical map and constructed physical 
map.
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Supplementary Figure 6. The illustration of dot plots showing synteny regions 
between No2127 pseudo-chromosomes generated by Hi-C data and the pseudo-
chromosomes of No2127 based on ZS11 genome. Horizontal axis shows the pseudo-
chromosomes of No2127 based on ZS11 genome and the vertical axis shows No2127 
pseudo-chromosomes (based on Hi-C) coordinate. Synteny regions were identified by 
Mummer (-c 90 -l 40).
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Supplementary Figure 7. Bionano alignment images of Westar assembly. Green 
represents the Westar assembly results, blue represents the assembly scaffolds by optical 
mapping, and gray lines represent the collinear regions. The alignment was performed 
with the hybridscaffold module in Solve (version 3.1).
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Supplementary Figure 8. Bionano alignment images of No2127 assembly. Green 
represents the No2127 assembly results, blue represents the assembly scaffolds by 
optical mapping, and gray lines represent the collinear regions. The alignment was 
performed with the hybridscaffold module in Solve (version 3.1).



Location(Mb)
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
hr

om
os

om
e

0 1.5

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5

Insertion Time (Mya)

de
ns

ity Genome
A
C

C09
C08
C07
C06
C05
C04
C03
C02
C01
A10
A09
A08
A07
A06
A05
A04
A03
A02
A01

a

b

Mya

Supplementary Figure 9. The insertion time of high-confidence intact LTR 
retrotransposons in ZS11 genome. a, The frequency distribution of all intact LTRs 
insertion time. The C genome has an LTR insertion outbreak in 1-2 million years. b, The 
distribution of identified intact LTR on the genome. Blue to red represents insertion time 
from near to far. There are more distantly inserted LTRs on the C genome and the 
distribution is more uniform.  Most of the LTRs in the A subgenome are recently inserted  
and tend to be clustered. 
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Supplementary Figure 10. The  evolutionary history of the B. napus genome. a, 
Evolutionary scenario and genome duplication of B.napus. a. Grape has experienced WGT 
relative to the ancient genome (A. trichopoda). Subsequently, A. thaliana experienced two 
WGDs. Brassica (B. napus) experienced WGT again. Finally, the rapeseed genome was 
formed by allopolyploidy. b, Paralog retention (1-6 chromosomal relationships in blue 
circles) illustrates Brassica WGT and allopolyploidy events.
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Supplementary Figure 11. Frequency distributions of synonymous substitution rates 
(Ks) between collinear genes in syntenic blocks. The KS values between different 
genomes or sub-genomes are represented by columns of different colors. Arrows are 
marked at the peak of KS, and arrows from left to right represent the differentiation time of 
B. napus and B. rapa/B. oleracea (allotetraploidy)  (KS = 2.8*10-4 - 4.2*10-4, about 10,000
years ago); the differentiation time of B. rapa and B. oleracea  (KS = 0.089, about 3
million years ago); Brassica tripled time (KS = 0.328, about 11 million years ago); the
differentiation time of A. thaliana vs B. napus (KS = 0.417, about 14 million years ago).
The synonymous replacement rate r is chosen to be 1.5*10-8 mutations site/year.
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Supplementary Figure 12. Segmental colinearity among the genomes of B. 
oleracea, B. rapa , B. napus and A. thaliana. Syntenic blocks are defined and labelled 
from A to X (coloured) previously reported in A. thaliana.  Subgenomic (LF, MF1 and 
MF2) and genes in each of blocks (see Supplementary Table 20).



AT1G26310.1

AT
5G

27
07

0.
1

AT3G61120.1

BnaC02T0039100ZS

Bn
aC

06
T0

29
43

00
ZS

BnaA07T0125400ZS

BnaA08T0030800ZS

AT
1G

48
15

0.1

BnaA03T0571300ZS

BnaA08T0128700ZS

BnaA05T0471300ZS

BnaA07T0100900ZS

Bn
aC

01
T0

19
01

00
ZS

BnaA09T0164300ZS

AT1G69540.1

Bna
C08

T04
73

90
0Z

S

BnaA03T0144400ZS

BnaC09T0063100ZS

Bna
A02

T03
97

90
0Z

S

AT3G02310.1
BnaC03T0075900ZS

BnaA04T0012300ZS

Bn
aC

08
T0

38
54

00
ZS

BnaC
01T0045300ZS

AT5G
27810.1

AT5G
26580.1

AT5G23260.2BnaA08T0240000ZS

BnaA03T0054900ZS

AT5G65070.3

BnaC
01T0013100ZS

BnaC04T0462500ZS

AT
5G

37
41

5.
1

BnaC
07T0458500ZS

AT5G60440.1

Bn
aC

09
T0

42
27

00
ZS

BnaC06T0205200ZS

BnaC09T0064500ZS

Bna
A06

T02
75

00
0Z

S

Bn
aA

09
T0

38
03

00
ZS

BnaC03T0260300ZS

BnaC06T0356400ZS

BnaC04T0195500ZS

BnaC09T0557000ZS

BnaC02T0119100ZS

Bn
aA

09
T0

53
82

00
ZS

AT
5G

55
69

0.
1

BnaC06T0360500ZS

BnaA04T0055500ZS

BnaA01T0014500ZS

AT1G
65330.1

Bna
C03

T0
16

01
00

ZS

AT2G03060.2 BnaA03T0221300ZS

AT
5G

27
09

0.
1

BnaA09T0245500ZS

BnaA06T0397900ZS

BnaC
05T0532000ZS

Bn
aC

02
T0

52
73

00
ZS

BnaA02T0035100ZS

AT5G
26880.1

AT1G65360.1

AT2G40210.1

AT2G
14210.1 Bn

aC
06

T0
38

26
00

ZS

BnaA05T0113200ZS

AT
3G

66
65

6.1

BnaC04T0485900ZS

AT1G01530.1

BnaC05T0271400ZS

Bna
A04

T0
22

13
00

ZS

BnaA09T0528500ZS

BnaC09T0462700ZS

BnaA08T0189800ZS Bn
aA

07
T0

26
32

00
ZS

BnaC09T0439500ZS

AT
3G

58
78

0.
3

AT1G
17

31
0.1

Bn
aA

09
T0

25
98

00
ZS

Bn
aC

07
T0

51
94

00
ZS

AT1G
31640.1

BnaC03T0732700ZS
BnaA01T0265700ZS

Bna
C09

T0
33

99
00

ZS

BnaC09T0263400ZS

Bna
A10

T0
08

92
00

ZS

BnaA10T0175200ZS

AT
4G

09
96

0.
3

AT4G
37940.1

BnaA02T0179200ZS

BnaC09T0556100ZS

BnaA02T0411200ZS

BnaA10T0281700ZS

Bn
aA

04
T0

11
40

00
ZS

AT1G24260.2

BnaC06T0030100ZS

BnaA07T0371100ZS

Bn
aA

02
T0

19
38

00
ZS

Bn
aC

03
T0

30
04

00
ZS

Bn
aA

04
T0

11
31

00
ZS

BnaC02T0523700ZS

BnaC02T0443500ZS
AT1G72350.1

Bn
aC

04
T0

39
88

00
ZS

BnaA04T0057400ZS

AT4G36590.1

BnaA07T0310400ZS

Bn
aC

09
T0

30
62

00
ZS

BnaC03T0063200ZS

BnaA06T0358600ZS
Bn

aC
02

T0
25

77
00

ZS

Bn
aC

05
T0

41
20

00
ZS

BnaC06T0308500ZS

BnaA03T0543200ZS

Bn
aA

03
T0

25
30

00
ZS

Bn
aA

05
T0

03
35

00
ZS

BnaC07T0377400ZS

BnaA07T0272400ZS

BnaA01T0141400ZS

AT1G18750.1

AT5G
27960.1

BnaC
03T0684300ZS

Bn
aC

03
T0

43
02

00
ZSAT

5G
41

20
0.

1

BnaC02T0545600ZS

BnaC09T0080700ZS

AT
5G

39
81

0.
1

BnaA02T0357100ZS

AT2G45660.1

BnaC02T0263500ZS

BnaA05T0364300ZS

BnaA06T0355800ZS

AT2G45650.1

AT
5G

39
75

0.
1

Bn
aC

04
T0

39
56

00
ZS

AT5G
48670.1

BnaC
09T0283000ZS

AT2G
22540.1

Bn
aC

04
T0

39
86

00
ZS

BnaC03T0627700ZS

BnaA04T0147200ZS
BnaA01T0318800ZS

Bn
aC

08
T0

16
54

00
ZS

BnaA10T0175500ZS

BnaA06T0400100ZS

AT3G54340.1

BnaA02T0391500ZS

BnaA01T0416700ZS
BnaA08T0221500ZS

BnaC09T0506000ZS

Bn
aC

07
T0

38
19

00
ZS

AT
5G

58
89

0.
1

BnaC08T0343800ZSAT1G22130.1
BnaC04T0325300ZS

AT5G38620.1

BnaC01T0394100ZS

BnaA03T0221200ZS

AT
1G

71
69

2.
1

BnaC05T0556100ZS

Bn
aA

01
T0

32
55

00
ZS

BnaC09T0289100ZS

Bna
C04

T0
53

30
00

ZS
Bn

aC
04

T0
39

80
00

ZS

BnascaffT0000200ZS

BnaC07T0152600ZS

BnaC02T0521400ZS

Bn
aC

07
T0

42
71

00
ZS

BnaA09T0222900ZS
BnaA05T0430500ZS

AT
5G

27
58

0.
1

Bn
aA

01
T0

36
69

00
ZS

BnaC09T0599800ZS

BnaC06T0042200ZS

AT5G60910.1

BnaA09T0073100ZS

BnaA09T0074000ZS

BnaC07T0184200ZS

AT
3G

18
65

0.
1

BnaA07T0047700ZS

Bna
C03

T0
55

78
00

ZS

AT1G77950.1

BnaC04T0060400ZS

Bn
aA

07
T0

20
62

00
ZS

BnaC01T0323400ZS

BnaA07T0198700ZS

BnaA03T0470000ZS

Bn
aC

09
T0

33
98

00
ZS

BnaA09T0431300ZS

BnaC08T0037200ZS

BnaA10T0244800ZS

Bn
aA

09
T0

51
00

00
ZS

BnaA04T0165500ZS

AT
4G

11
25

0.
1

BnaC02T0118900ZS

AT5G49420.1

BnaC01T0498700ZS

BnaA10T0219200ZS

Bn
aA

03
T0

13
82

00
ZS

BnaC
08T0443200ZS

BnaC05T0570600ZS

AT5G
62

16
5.1

Bn
aA

09
T0

38
04

00
ZS

BnaA04T0048400ZS

BnaC06T0390200ZS

AT1G
59810.1

AT1G54760.1

AT3G
05860.1

BnaA07T0259500ZS

AT1G69120.1

BnaC04T0299700ZS

Bna
C09

T00
68

70
0Z

S

AT
2G

34
44

0.1

AT4G
24540.1

BnaA06T0300300ZS

Bn
aC

09
T0

30
59

00
ZS

BnaC02T0233300ZS

BnaC04T0060300ZS

BnaC07T0446200ZS

AT2G
28700.1

BnaA09T0163400ZS

AT5G65080.1

BnaA05T0054300ZS

BnaA08T0229400ZS

Bn
aA

07
T0

27
84

00
ZS

AT
4G

18
96

0.
1

AT4G11880.1
BnaC02T0024300ZS

BnaC05T0396700ZS

BnaA09T0464000ZS

BnaA03T0064900ZS

AT5G49490.1

BnaC02T0119400ZS

BnaA06T0344400ZS

BnaC07T0373800ZS

BnaC05T0234000ZS

AT
5G

27
13

0.1

Bn
aA

03
T0

45
15

00
ZS

AT2G26320.1

Bn
aA

02
T0

41
31

00
ZS

BnaA03T0087600ZS

BnaA09T0578200ZS

BnaC06T0074900ZS

AT5G13790.1

BnaA05T0362400ZS

BnaC04T0606600ZS

Bn
aC

08
T0

35
14

00
ZS

BnaC04T0353000ZS

AT2G24840.1
BnaA03T0402100ZS

AT
5G

26
95

0.
1

Bn
aC

03
T0

70
82

00
ZS

AT
5G

65
33

0.
1

AT3G57390.1

Bn
aA

04
T0

02
27

00
ZS

AT
5G

51
87

0.3
BnaA04T0184900ZS

BnaC09T0182100ZS

Bn
aC

07
T0

46
52

00
ZS

Bna
C02

T05
30

10
0Z

S

BnaA09T0591400ZS

AT
5G

51
86

0.1
Bna

A03
T0

13
81

00
ZS

Bn
aA

05
T0

37
26

00
ZS AT5G

26650.1

AT
5G

40
22

0.
1

BnaA04T0287900ZS

BnaC08T0484400ZS

BnaA05T0054200ZS

BnaC
02T0353200ZS

Bna
A09

T00
77

40
0Z

S

Bna
C02

T0
49

68
00

ZS

BnaC03T0100100ZS

BnaC
07T0350700ZS

AT1G77080.4

BnaC02T0480300ZS

BnaC
01T0180300ZS

AT5G
26630.1

BnaC07T0281600ZS

AT5G65050.3

BnaC05T0302400ZS

BnascafT0000200ZS

Bn
aC

02
T0

54
86

00
ZS

BnaC09T0181100ZS

AT1G
65300.1

BnaC06T0290100ZS

BnaC08T0248300ZS

AT5G15800.2

AT
4G

02
23

5.
1

AT5G04640.1

Bn
aC

08
T0

16
57

00
ZS

AT3G04100.1
AT1G31140.2

BnaC08T0271400ZS

BnaC03T0637400ZS

BnaC03T0526000ZS

Bna
A09

T06
18

50
0Z

S

BnaC03T0046300ZS

BnaC07T0337000ZS

BnaC08T0430200ZS

Bn
aA

02
T0

39
45

00
ZS

BnaC05T0567900ZS

BnaA09T0225800ZS

BnaA02T0084500ZS

AT
5G

27
05

0.
1

BnaA05T0495900ZS

AT5G10140.1

Bn
aA

03
T0

40
98

00
ZS

AT2G
22630.1

BnaC06T0074700ZS
BnaA02T0260300ZS

AT
5G

38
74

0.
1

BnaC07T0351000ZS

BnaC06T0436300ZS

BnaA09T0086400ZS

BnaA09T0503200ZS

BnaC02T0100400ZS

BnascafT0050600ZS

BnaA06T0013900ZS

BnaC01T0159600ZS

AT1G46408.1

AT1G28450.1

BnaA01T0395000ZS

BnaC03T0167700ZS

BnascafT0000100ZS

AT1G60920.1

BnaC08T0035200ZS

AT1G28460.1

BnaC05T0532100ZS

Bn
aC

03
T0

13
89

00
ZS

BnaA03T0039200ZS

BnaA01T0128100ZS

AT
2G

42
83

0.
2

BnaC08T0373200ZS

AT1G
33070.1

AT1G47760.1

BnaC04T0271500ZS

Bn
aA

04
T0

11
13

00
ZS

AT5G
20240.1

BnaA02T0389900ZS

Bna
A02

T0
37

07
00

ZS

BnaA06T0040900ZS

BnaA09T0414100ZS

BnaA08T0029600ZS

Bn
aA

04
T0

11
42

00
ZS

BnaC
07T0077300ZS

Bn
aA

01
T0

09
95

00
ZS

AT4G22950.1

BnaA10T0206600ZS

AT5G06500.1

AT1G60880.1
Bn

aC
04

T0
03

62
00

ZS

Bn
aC

03
T0

16
02

00
ZS

BnaA07T0307000ZS

Bn
aC

06
T0

21
62

00
ZS

BnaA07T0332400ZS

AT
5G

27
94

4.
1

BnaC06T0436500ZS

AT1G
60040.1

AT1G
22590.2

BnaC01T0510900ZS

BnaC01T0485500ZS

AT1G29962.1

BnaC07T0334400ZS

BnaA02T0328400ZS

AT3G
57230.1

AT3G30260.1

BnaA01T0404400ZS

BnaA03T0404700ZS

BnaA04T0029400ZS

Bn
aA

10
T0

14
43

00
ZS

BnaC02T0546100ZS

AT1G
31630.1

BnaA05T0471400ZS

BnaC02T0546300ZS

BnaC09T0556700ZS

BnaA07T0371300ZS

BnaC
04T0438900ZS

BnaC09T0523100ZSBnaC06T0028900ZS

AT5G65060.1

AT1G77980.1

Bna
A03

T03
04

50
0Z

S

Bn
aA

07
T0

32
68

00
ZS

BnaA09T0240900ZS

BnaA09T0045700ZS

BnaA03T0480400ZS

BnaC09T0259500ZS

BnaA01T0039600ZS

BnaA07T0163200ZS

Bnasca
fT0011500ZS

BnaA09T0627000ZS

AT2G03710.1

Bn
aA

03
T0

11
99

00
ZS

BnaC05T0256400ZS

BnaC03T0260200ZS

Bn
aA

10
T0

08
91

00
ZS

Bn
aA

03
T0

48
65

00
ZS

Bn
aC

04
T0

28
89

00
ZS

BnaC05T0483700ZS

Bn
aC

01
T0

12
17

00
ZS

BnaA06T0300200ZS

AT
5G

40
12

0.
1

Bna
C03

T03
65

70
0Z

S

BnaC07T0285300ZS

MADS-box Family

Mβ MγMIKCcMIKC* Mα

AP3/P1-like

STMADS11-like
AGL17-like AGL12-like

AG-like

AGL71-like

TM3-like

AGL6-like

AGL15-like

FLC-like

SQUA-like

SEP-like

Supplementary Figure 13. Phylogenetic tree of MADS-box proteins in B.napus . 
Phylogenetic analysis of 405 MADS-box proteins from A. thaliana (108) and B. napus 
(297) showed similar groupings between B. napus and A. thaliana. Referring to the A.
thaliana classification,  the colors of inner circle represent different subfamily. Further,
the MIKCc subfamily is futher divided into 12 subgroups.



Supplementary Figure 14. A neighbor-joining tree of all 216 B. napus accessions and 119 B. 
oleracea accessions inferred from C subgenome SNPs. The eight reference accessions are
represented by pentagrams. The outer ring indicates the group name of each clade.
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Supplementary Figure 15. The illustration of dot plots showing synteny regions 
between each of the other 8 B. napus genomes and ZS11 genomes. Horizontal axis 
shows reference coordinate and the vertical axis shows query coordinate. Red dots 
represent collinear regions above 1 kb, blue dots represent reverse alignments.
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Supplementary Figure 16. Whole-genome comparison between ZS11 and 
No2127. Gray lines represent synteny blocks larger than 1 kb. Green lines represent 
reverse alignment. Total syntenic region between ZS11 and No2127 was 759.6 Mb. A 
~430 kb inversion was observed near 10.5 Mb in C07. At C05: 27.4-29.9 Mb, No2127 
has a ~3 Mb unique sequence.



Supplementary Figure 17. The density of SNPs and InDels in seven B. napus genomes 
compared with ZS11 genome.  A: Zheyou, B: Shengli, C: Gangan, D: Westar, E: No2127, F: 
Tapidor, G: Quinta. The correlation between the density of SNPs and InDels (R = 0.92) was 
caculated by R package ‘cor.test’.
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Supplementary Figure 18. The size distribution of insertions and deletions. Left panels 
show indels within or overlapping with coding regions, in which multiples of three bases are 
overrepresented. Right panels show indels in noncoding regions, with a declining trend as 
indel size increasing.
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Supplementary Figure 19. Illustration of  a 193 kb inversion in Westar C08 
chromosome. The subreads of ZS11 and Westar were mapped back to reference genome 
Westar, and significant breakpoints were observed in the ZS11 reads at the boundaries 
of identified inversion. The subreads in different colors in the figure represent those
from different zero-mode waveguides (ZMWs).
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Supplementary Figure 20. Evaluation of the number of protein coding genes in the pan 
genome. Stepwise addition of B. napus accessions from n = 1 to n = 9 was performed to 
evaluate the number of coding genes in the pan genome. Orthologous gene clusters are 
defined as coding genes present in at least two B.  napus accessions.
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Supplementary Figure 21. The clustering of enriched GO terms of specific genes in Gangan. 
The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy 
reduction) in a two dimensional space derived by applying multidimensional scaling to a matrix of 
the GO terms semantic similarities. Plot_size indicates the frequency of the GO term.
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Supplementary Figure 22. The clustering of enriched GO terms of specific genes in No2127. 
The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy 
reduction) in a two dimensional space derived by applying multidimensional scaling to a matrix of 
the GO terms semantic similarities. Plot_size indicates the frequency of the GO term.
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Supplementary Figure 23. The clustering of enriched GO terms of specific genes in Quinta. 
The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy 
reduction) in a two dimensional space derived by applying multidimensional scaling to a matrix of 
the GO terms semantic similarities. Plot_size indicates the frequency of the GO term.
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Supplementary Figure 24. The clustering of enriched GO terms of specific genes in Shengli. 
The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy 
reduction) in a two dimensional space derived by applying multidimensional scaling to a matrix of 
the GO terms semantic similarities. Plot_size indicates the frequency of the GO term.
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Supplementary Figure 25. The clustering of enriched GO terms of specific genes in Tapidor. 
The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy 
reduction) in a two dimensional space derived by applying multidimensional scaling to a matrix of 
the GO terms semantic similarities. Plot_size indicates the frequency of the GO term.
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Supplementary Figure 26. The clustering of enriched GO terms of specific genes in Westar. 
The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy 
reduction) in a two dimensional space derived by applying multidimensional scaling to a matrix of 
the GO terms semantic similarities. Plot_size indicates the frequency of the GO term.
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Supplementary Figure 27. The clustering of enriched GO terms of specific genes in 
Zheyou7. The scatterplot shows the cluster representatives (i.e. terms remaining after the 
redundancy reduction) in a two dimensional space derived by applying multidimensional scaling 
to a matrix of the GO terms semantic similarities. Plot_size indicates the frequency of the GO 
term.
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Supplementary Figure 28. Manhattan plots of SNP-GWAS and PAV-GWAS of 
silique length. a,  Manhattan plot of SNP-GWAS of silique length for association using 
3,971,412 SNPs. The gray dashed lines indicate the significance threshold (-log10P = 
4.94). b, Manhattan plot of PAV-GWAS of silique length for association using 27,146 
PAVs. The gray dashed lines indicate the significance threshold (-log10P = 4).
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Supplementary Figure 29. Manhattan plots of SNP GWAS and PAV-GWAS of 
thousand seed weight. a,  Manhattan plot of GWAS of thousand seed weight for association of 
3,971,412 SNPs. The gray dashed lines indicate the significance threshold (-log10P = 
4.94). b, Manhattan plot of GWAS of  thousand seed weight for association of 27,146 
PAVs. The gray dashed lines indicate the significance threshold (-log10P = 4).
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Supplementary Figure 30. The lead PAV on chromosome A10 identified by PAV-
GWAS of flowering time in the NAM population. a, The Manhatton plots of SNP-
GWAS (left vertical axis) and PAV-GWAS (right vertical axis) indicate the associations 
and the lead PAVs in the region from 23.0 to 25.0 Mb on chromosome A10. There were two 
PAVs in BnaA10.FLC (4.4 kb hAT and 5.6 kb LINE). b, The flowering time of RILs with 
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Supplementary Figure 31. The Quantile-quantile (Q-Q) and Manhattan plots of
GWAS of flowering time with phenotypic data from multiple environments using 
genome-wide SNPs. The black dotted line marks the threshold for genome-wide 
significance (-log10(p-value) = 4.94). From a-h, Manhattan and Q-Q plots are the results 
of  Wuhan in 2015 (winter environment), Caidian in 2015 (winter environment), Ezhou in 
2015 (winter environment), Yangluo in 2015 (winter environment), Hezheng in 2016 
(spring environment), Ezou in 2017 (winter environment) and Hezheng in 2017 (spring 
environment), respectively.  
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Supplementary Figure 32. Annotation and classification of transposable elements inserted in 
the promoter and genebody of BnaA10.FLC. The sequences of all insertions were used as queries 
to search a database of transposable elements using CENSOR. The four insertions are named as P
(Promoter) 1-LTR, P2-hAT, P3-MITE and G (Genebody) 1-LINE based on their locations relative 
to Bna10.FLC.



a

b

c

Supplementary Figure 33. Validation of BnaA10.FLC structural variation using 
raw long reads. a, Reads mapped to the Tapidor genome. b, Reads mapped to the 
Westar genome. c, Reads mapped to the ZS11 genome.
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Supplementary Figure 34. The contribution of unique sites around BnaA10.FLC to the 
principal components. a, Visualization of the contribution of raw 30 candidate sites around 
BnaA10.FLC. b, Visualization of the contribution of final unique sites. c, PCA result of different 
ecotype B. napus resequence data. For a-c, the sample size (n) was 210.
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Supplementary Figure 35. PCR validation of structure variations in BnaA10.FLC. a, The 
locations of designed primers. b, PCR products amplified with multiple primers for each of the 
transposable elements in 21 B.napus accessions. From left to right, the ID of samples was Bn044, 
Bn025, Bn039, Bn022, Bn036, Bn026, g031, Bn037, No2127, g167, g168, g091, n003, Bn007, 
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repeated once.
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Supplementary Figure 36. Flowering time of natural population lines with 
different insertions in BnaA10.FLC. Flowering time data was collected in Lanzhou in 
2014. The flowering time of individuals which can not flower was set to 200.
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Supplementary Figure 37. The statistic of three insertions in B. rapa population (n=199). 
MITE insertion was detected in 25 B. rapa varieties. hAT insertion was detected in 127 B. rapa 
varieties. LINE insertion was not detected in the B. rapa population. Obeseved sites were the 
same as B. napus.
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Supplementary Figure 38. The structrue variations of BnaA02.FLC in eight reference 
genomes and B.napus natural population. a, Structural variation of 8 B. napus genomes 
around BnaA02.FLC. An insertion about 824 bp (yellow block) was found in 2 spring B. napus 
on the last exon of BnaA02.FLC. Approximately 310 bp specific fragment (blue block) was 
present at 250 bp downstream of the BnaA02.FLC in the other 6 B. napus. b, Coverage of 310 
bp specific fragments in the population. Accessions which do not have effective coverage 
(<0.25) for blue block specific fragments are considered to be spring-type BnaA02.FLC 
(BnaA02.FLCs). c, The intersection of accession between BnaA02.FLCs and spring ecotype B. 
napus. 57% of the BnaA02.FLCs  accessions are spring ecotype B. napus.
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Supplementary Figure 39. Homologous exchange events detected between 
chromosome A02 and C02 of the eight B. napus genomes. Red bar represents a 
window whose coverage is larger than chromosome average coverage * 1.5. Blue bar 
represents a window whose coverage is less than 5. Homologous exchanges (HE) result 
in the presence of two copies of BnaA02.FLC and removal of BnaC02.FLC in the 
genomes of Shengli, Tapidor and Zheyou7.
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Supplementary Figure 40. Correlations between the expression levels of individual FLC and 
FT genes based on RNA-seq data. This color-coded correlation matrix illustrates pairwise 
correlations between the levels of gene expression in all individuals. Asterisks represent different 
significant levels (p-value < 0.1, 0.05 and 0.001).R package ‘rcorr’ was used to compute the 
matrix of Pearson's correlation coefficients. BnaA02.FT, BnaA07.FTa and BnaC06.FT were 
expressed FTs (average FPKM >=1 in each accession) and mainly associated FTs with FLC. 
Pearson's correlation coefficient was performed to determine the p-values. The sample size (n) 
was 80.
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Supplementary Figure 41. Expression levels of individual Bna.FLCs and Bna.FTs in the 
eight reference accessions before and after vernalization as detected by RNA-seq.  The left 
Y-axis and the right Y-axis are Bna.FLCs and Bna.FTs expression levels, respectively. The X-axis 
1-5 indicates five stages T0-T4.
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Supplementary Notes 

RNA-seq. For each accession, tissues including roots, stems, leaves before vernalization, 

leaves after vernalization, buds, flowers and siliques 25-day-after pollination were pooled in 

one RNA-seq library. Eight RNA-seq libraries were sequenced by the Illumina HiSeq platform 

with 150-bp paired-end reads for gene annotation. RNA-seq for leaves of all eight sequenced 

rapeseed accessions at five stages with one month interval including T0 stage before 

vernalization (the lowest temperature was higher than 10�), T1-T3 stage during vernalization 

(the lowest temperature was lower than 10�), and T4 stage post vernalization (low temperature 

lower than 10� more than 100 days). 

BioNano sequencing and assembly. High-molecular weight DNA was isolated and labelled 

from leaf tissue of three-week old B. napus plants according to BioNano’s standard protocols 

using the single-stranded nicking endonuclease Nt.BspQI. Labelled DNA was imaged 

automatically using the BioNano Irys system and de novo assembled into consensus physical 

maps using the BioNano IrysView analysis software (URL). The final de novo assembly used 

only single molecules with a minimum length of 150 kb and eight labels per molecule. 

PacBio-BioNano hybrid scaffolds were identified using IrysView’s hybrid scaffold alignment 

subprogram. 

Merge the assemblies of Canu and Falcon. MUMmer1 was used to perform reciprocal 

alignment between Falcon2 and Canu3 assemblies with the parameters “-l 90 -d 40”. Then the 

unaligned contigs in Canu assembly were filtered by Illumina reads coverage (mean coverage 

< 50X) to identify the final unique sequences in Canu assembly. The final assembly was 

generated by combining the unique sequences in Canu assembly and the whole Falcon 

assembly. 

Annotation of repeats. The method of repetitive sequence annotation was divided into two 

types: homologous sequence alignment and de novo prediction. Homologous sequence 

alignment was based on repetitive sequence database (RepBase database)4 and software 

Repeatmasker5 to identify sequences similar to known repetitive sequences. De novo 

prediction was used to build up the de novo repetitive sequences database using software 



LTR_FINDER6, PILER7, RepeatScout8 and RepeatModeler 

(http://www.repeatmasker.org/RepeatModeler.html). For predicted database, we carried out 

the improvement of database by RepBase Database with Uclust based on 80-80-80 rules and 

Repeatmask. In addition, de novo prediction could obtain tandem repeat in genome with TRF9. 

Gene annotation. Prediction of gene structure was combined with multiple prediction 

methods, mainly homologous prediction, de novo prediction and evidence-based prediction. 

Augustus10, GlimmerHMM11 and SNAP12 were used for de novo prediction depending on the 

genome sequence data statistical characteristics. Homologous prediction was performed by 

aligning proteins of homologous species (A. thaliana, B. oleracea capitata, B. oleracea 

TO1000, B. rapa Chiifu, B. napus Darmor and B. napus ZS11) through Genewise13 to predict 

gene structure. For each accession, RNA-Seq data of mixed tissues were used as transcript 

evidence. According to the prediction and transcriptome comparison data, we used 

EVidenceModeler14 to integrate gene sets by different methods into a non-redundant and more 

complete gene set. Finally, we used PASA14 to correct the EVM annotation based on 

transcriptome assembly, and added UTR, variable clipping and other information to obtain the 

final gene set.  

ncRNA annotation. The annotation of non-coding RNA includes tRNA, rRNA, miRNA and 

snRNA. According to the structure characteristics of tRNA, tRNAscan-SE15was used to obtain 

tRNA in the genome. Considering that rRNA was highly conserved, blast was employed to 

identify rRNA sequences by aligning to related species. Sequences of miRNA and snRNA 

were obtained by Rfam family covariance model using INFERNAL16 

Centromere regions. Centromere-specific repeats (CentBr1 and CentBr2)17 were aligned to 

the ZS11 genome by BLAST (E-value: 1e-5) to identify centromere-related sequences. 

Hi-C data processing and analysis. The Hi-C reads were mapped to ZS11 genome and 

filtered using Juicer pipeline18. The following read pairs were removed: duplicated and 

near-duplicated read pairs, read pairs mapped to the same fragment or mapping quality score 

below 30. The contact matrices were built at 10-, 50-, 100- and 500-kb resolutions using 

Juicer_tools19. Normalized contact matrices were produced at all resolutions with the KR 



method20. For compartment analysis, each chromosome was divided into consecutive 500-kb 

regions from normalized contact matrices. The eigenvectors of all regions were analyzed 

using the Juicer_tools. Finally, all regions were aligned to A/B compartment according to the 

gene density due to the fact that genomic regions belonging to the A compartments usually 

contain more genes than those of B compartments21. 

Genome blocks construction. We used the same method as Wang et al.22 to construct the 

genome blocks. We first got the syntenic blocks of the ZS11 genome and A. thaliana genomes 

by MCScanX with default parameters23. Then LF, MF1 and MF2 were separately classified in 

A and C sub-genome according to gene retention of these blocks. 

Divergence time. In order to ensure the high homology of gene pairs in Ks calculation, we 

searched for orthologous pairs and paralogous pairs within species based on colinear region 

and reciprocal best blast hit (RBH). In order to call ortholog blocks, we performed 

all-against-all blastp (E < e-10). We identified putative homologous chromosomal regions using 

MCScanX based on blastp results. Each block contained at least 5 genes, and the maximum gap 

between genes was allowed to be less than 25. On the other hand, Python scripts 

(https://github.com/peterjc/galaxy_blast/blob/master/tools/blast_rbh/blast_rbh.py) were used 

to obtain RBH between two genomes. Finally, the intersection of the gene pairs in homologous 

region and RBH gene pairs were used for Ks analysis. For homologous gene pairs, we screened 

sequence difference by protein and CDS alignment with ParaAT24. For orthologous gene pairs 

and paralogous gene pairs (B. napus, A. thaliana Initiative A G, 2000)25, B. rapa and B. 

oleracea26, KaKS_caculator27 was used for calculating KS based on maximum likelihood and 

the model parameter was NG. In general, the peak of KS in intraspecific (orthologous) was 

considered to be related to genome duplication events, and the peak of KS in intraspecific was 

the divergence events. The peak of A. thaliana and B. napus were observed at 0.417, so the 

divergence time between A. thaliana and Cruciferae was approximately ~14 MY. The positive 

selection of Ka / Ks gene is the ratio between the heterotopic (Ka) and the homotopic (Ks). This 

ratio can be used to determine whether there is selection pressure acting on the protein-coding 

gene. If Ka/Ks>1, it was considered that there was a positive selection effect. If Ka/Ks=1, neutral 

selection was considered. If Ka/Ks<1, it was considered to have purification selectivity. Ka/Ks 



value was calculated between A sub-genome of B. napus and B. rapa, C sub-genome of B. 

napus and B. rapa, respectively. 

Identification and classification of MADS-box gene family. The gene with MADS-box 

domain was identified using InterProScan28. Using the MADS-box genes29 in A. thaliana as 

reference, pariwise distance tool in MEGA730 was used to identify conserved genes in B. 

napus. Clustal W (version 2.1)31 was used to compare the B. napus and A. thaliana 

MADS-box genes. MEGA7 was employed to construct a phylogenetic tree based on the 

comparison results with the neighbor joining (NJ) method. Parameter model was Poisson 

model and the bootstrap was 1000 replications. 

OrthoMCL clustering. To identify and estimate the number of potential ortholog gene 

families between ZS11, Gangan, Zheyou7, Shengli, Tapidor, Westar, No2127 and Darmor, the 

OrthoMCL pipeline32 was applied to compute the all-to-all similarities with standard settings 

(blastp E value <1 × 10−5 and inflation factor =1.5). For the un-clustered genes, considering the 

influence of gene length and different genome annotations, the gene sequence was mapped to 

other genomes to verify whether there were homologous sequences (blastn E value <1 × 10−5, 

identity>90% and coverage>90%). Finally, the orphan genes of each species were determined, 

and specific genes were combined into specific gene families. 

Field environments and phenotype of BN-NAM population. The BN-NAM population 

contained 15 RIL families and a total of 2,141 RILs which was generated as previously 

described33. The RIL families were planted in the field at five different locations over a period 

of four years with one replication and a randomized complete block design, which included six 

winter environments in or near Wuhan City and two spring environments at Hezheng county, 

Gansu Province. The six winter environments are 14WH (grown at the experimental station at 

Huazhong Agricultural University in the 2013-2014 growing season), 15CD (grown in Caidian 

City in the 2014-2015 growing season), 15EZ, 16EZ and 17EZ (grown in Ezhou City in the 

2014-2015, 2015-2016 and 2016-2017 growing season, respectively) and 15YL (grown in 

Yangluo City in the 2014-2015 growing season). The two spring environments are 16HZ and 

17HZ (grown in Hezheng county in the 2016 and 2017 growing seasons). RIL seeds were sown 

in early October and harvested in late April or early May of next year, or sown in middle May 



and harvested in middle September of the same year. Each RIL was grown in one plot with one 

row of 10 plants. The distance between plants was 20 cm within each row and the distance 

between rows was 30 cm. Silique length (SL) was measured as the average length of 10 

siliques, and Thousand-seed weight (TSW) or seed weight (SW) was measured as the total 

weight of 1000 seeds. Flowering time in each environment was recorded as the number of days 

from the sowing to 50% plants in one plot bloomed. The SL ranged from 2.69 to 12.70 cm and 

the SW ranged from 1.97 to 7.65g (TSW) in five winter environments (15CD, 15EZ, 15YL, 

16EZ, 17EZ), while the flowering time ranged from 46 to 174 days in the six winter 

environments and 37 to 114 days in two spring environments. In GWAS, the flowering time for 

each RIL was represented by the best linear unbiased prediction (BLUP) value of the six winter 

environments (W-BLUP) or by the two spring environments (S-BLUP). The BLUP values 

were calculated separately using an R package LME434. 

Identification of candidate genes for flowering time. To identify candidate genes for 

flowering time, we first collected all genes involved in regulating flowering time in A. thaliana. 

The predicted protein sequences in the association regions in ZS11 were used as query to blast 

all flowering time genes in A. thaliana. The genes with E-value below 1e-5 were considered as 

orthologous candidate genes in B. napus (Supplementary Table 50). The association region was 

inferred by extending 300 kb to upstream and downstream regions from the peak SNP. 

Verification of the variations in BnaA10.FLC using PCR. Four panels of primers were used 

to genotype the presence and absence of the transposable elements, MITE, hAT, LTR and 

LINE, in the promoter and gene regions in BnaA10.FLC in B. napus accessions. PCR products 

were visualized on 2% agarose gel. The primers and their corresponding products are listed in 

Supplementary Table 50. 

Statistics. The R package Density was used to calculate the peak value of KS by gaussian 

distribution fitting of the original KS distribution. GO enrichment analysis was carried out 

using GOATOOLS based on Fisher's exact test35. Only GO terms with a P value of less than 

0.05 were retained. REVIGO36 was used to remove redundant GO terms. The significance 

thresholds for SNP-GWAS and PAV-GWAS are log (P value) <-4.94 and log (P value) <-4, 

respectively. Unique fragments were found on both sides of the BnaA10.FLC related insertion 



fragment, and a total of 30 candidate sites were selected from three genomes. Then R package 

PCA function was used to perform Principal Component Analysis to screen the locations which 

contributed more to present variation in resequencing data. 
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