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Supplementary Figure 1. The seeds and plants of eight B. napus accessions in 2018-2019 growing season in Wuhan. Plant pictures were taken at 116 days and 151

days after sowing. These plants were transplanted from the field to the pot at 106 days after sowing. Due to transplant, the growth and flowering were delayed compared
to those grown 1n the field. Bar: 10 cm.
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Supplementary Figure 2. The pipeline for genome assembly in this study. 3D-
DNA was used to correct, order, orientate and cluster the contigs. Bionano hybrid

scaffolds were used to evaluate the final assembly (see Method).
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Supplementary Figure 3. Large segmental HEs of eight assembled accessions. Coverage depth obtained along genome after mapping Illumina sequence reads from eight assembled
accessions to the ‘ZS11° genome. The x-axis represents the 100kb regions of chromosomes A01-C09 in genome and the y-axis represents the coverage of these regions. Segmental HEs

are revealed based on sequence read coverage analysis, where a duplication (red) is revealed by significantly greater coverage for a given segment than the rest of the genome (grey) and a

deletion (blue) by little or no coverage for the corresponding homeologous segment.



BAC distribution in ZS11

C09
C08
CO7 -
C 06 | For b A A e o e
C05
C04 < [T e e T PRI e T e A P "R T
C03
© C02
€ co14
8 A10_ LUl | | N R AN ]
g Aog - L | I 1 LT Il | | H‘II 11 U,LIJJIH\H’\H T T T I\w z L1 1 | LD g 1 L O
£ A08 -
o AO7 - | TN Il 1l | | i
A06 — | LI (I | I\“H”HIMHH LR T 111 11T T T iw‘l HI‘\HIMIW\\H\\‘HIJ‘wl 0 H AT Ll \I
A05 — LT 11l “MH IV\ (NN N H\If\ ‘HHHHI Wl I | HMMIMWHMM
A04 - a1 ! ‘I 11| HII 1 WI\‘ WHII \II‘"H\ NI I
AO3 — Ll LTI 1 il | [N 1 T} [ A T AT 10l . ZS11
A02 - MWWINHIH I\ ‘\‘W‘\I\HHW\‘I‘\“HWIM_IJ\ | \MLU"W EI 1 LU 1 ' JBnY
AOQ1 [T ow I  To GBI O P I T ]
[ I I I I I I I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
b Location(Mb)
500,000 o
:
o
< 400,000- @
(O] .
(8] 8
C
S :
8 8
-2 300,000/ : :
o s+ n=4533 o n= 71890
% ¢ mean = 79,592 ¢ mean = 115,091
O : :
< 200,000-
o
100,000
0
JBnY . ZS11
BAC library

Supplementary Figure 4. Mapping results of paired BAC-end data on ZS11 assembly
genome. a, The distribution of ZS11 and JBnY BAC mapped to genome. b, The distance
of BAC pairs end. Additional details about the statistics can be found in Supplementary
Notes (for all Supplementary Figures).
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No2127 pseudo-chromosomes (based on Hi-C)

No2127 reference genome (based on ZS11)

Supplementary Figure 6. The illustration of dot plots showing synteny regions
between N02127 pseudo-chromosomes generated by Hi-C data and the pseudo-
chromosomes of N02127 based on ZS11 genome. Horizontal axis shows the pseudo-
chromosomes of No2127 based on ZS11 genome and the vertical axis shows N02127
pseudo-chromosomes (based on Hi-C) coordinate. Synteny regions were identified by
Mummer (-c¢ 90 -1 40).
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performed with the hybridscaffold module in Solve (version 3.1).
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Supplementary Figure 9. The insertion time of high-confidence intact LTR
retrotransposons in ZS11 genome. a, The frequency distribution of all intact LTRs
insertion time. The C genome has an LTR insertion outbreak in 1-2 million years. b, The
distribution of identified intact LTR on the genome. Blue to red represents insertion time
from near to far. There are more distantly inserted LTRs on the C genome and the
distribution is more uniform. Most of the LTRs in the A subgenome are recently inserted
and tend to be clustered.
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Supplementary Figure 10. The evolutionary history of the B. napus genome. a,
Evolutionary scenario and genome duplication of B.napus. a. Grape has experienced WGT
relative to the ancient genome (4. trichopoda). Subsequently, A. thaliana experienced two
WGDs. Brassica (B. napus) experienced WGT again. Finally, the rapeseed genome was
formed by allopolyploidy. b, Paralog retention (1-6 chromosomal relationships in blue
circles) illustrates Brassica WGT and allopolyploidy events.
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Supplementary Figure 11. Frequency distributions of synonymous substitution rates
(Ks) between collinear genes in syntenic blocks. The K values between different
genomes or sub-genomes are represented by columns of different colors. Arrows are
marked at the peak of K, and arrows from left to right represent the differentiation time of
B. napus and B. rapal/B. oleracea (allotetraploidy) (Kg=2.8%10*-4.2*10"*, about 10,000
years ago); the differentiation time of B. rapa and B. oleracea (Ks= 0.089, about 3
million years ago); Brassica tripled time (Kgs = 0.328, about 11 million years ago); the
differentiation time of 4. thaliana vs B. napus (Ks = 0.417, about 14 million years ago).
The synonymous replacement rate r is chosen to be 1.5*10-® mutations site/year.
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Supplementary Figure 12. Segmental colinearity among the genomes of B.
oleracea, B. rapa , B. napus and A. thaliana. Syntenic blocks are defined and labelled
from A to X (coloured) previously reported in A. thaliana. Subgenomic (LF, MF1 and
MF2) and genes in each of blocks (see Supplementary Table 20).
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Supplementary Figure 13. Phylogenetic tree of MADS-box proteins in B.napus .
Phylogenetic analysis of 405 MADS-box proteins from A. thaliana (108) and B. napus
(297) showed similar groupings between B. napus and A4. thaliana. Referring to the A4.
thaliana classification, the colors of inner circle represent different subfamily. Further,
the MIKCc subfamily is futher divided into 12 subgroups.



Robirab
HW

Supplementary Figure 14. A neighbor-joining tree of all 216 B. napus accessions and 119 B.
oleracea accessions inferred from C subgenome SNPs. The eight reference accessions are
represented by pentagrams. The outer ring indicates the group name of each clade.
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Supplementary Figure 15. The illustration of dot plots showing synteny regions
between each of the other 8 B. napus genomes and ZS11 genomes. Horizontal axis
shows reference coordinate and the vertical axis shows query coordinate. Red dots
represent collinear regions above 1 kb, blue dots represent reverse alignments.
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Supplementary Figure 16. Whole-genome comparison between ZS11 and
No02127. Gray lines represent synteny blocks larger than 1 kb. Green lines represent
reverse alignment. Total syntenic region between ZS11 and No2127 was 759.6 Mb. A
~430 kb inversion was observed near 10.5 Mb in C07. At C05: 27.4-29.9 Mb, No2127
has a ~3 Mb unique sequence.
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Supplementary Figure 17. The density of SNPs and InDels in seven B. napus genomes
compared with ZS11 genome. A: Zheyou, B: Shengli, C: Gangan, D: Westar, E: No2127, F:
Tapidor, G: Quinta. The correlation between the density of SNPs and InDels (R = 0.92) was
caculated by R package ‘cor.test’.
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Supplementary Figure 18. The size distribution of insertions and deletions. Left panels
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indel size increasing.
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Supplementary Figure 19. Illustration of a 193 kb inversion in Westar C08
chromosome. The subreads of ZS11 and Westar were mapped back to reference genome
Westar, and significant breakpoints were observed in the ZS11 reads at the boundaries
of identified inversion. The subreads in different colors in the figure represent those
from different zero-mode waveguides (ZMWs).
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evaluate the number of coding genes in the pan genome. Orthologous gene clusters are
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Supplementary Figure 21. The clustering of enriched GO terms of specific genes in Gangan.
The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy
reduction) in a two dimensional space derived by applying multidimensional scaling to a matrix of
the GO terms semantic similarities. Plot_size indicates the frequency of the GO term.
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Supplementary Figure 22. The clustering of enriched GO terms of specific genes in No2127.
The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy
reduction) in a two dimensional space derived by applying multidimensional scaling to a matrix of
the GO terms semantic similarities. Plot_size indicates the frequency of the GO term.
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Supplementary Figure 23. The clustering of enriched GO terms of specific genes in Quinta.
The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy
reduction) in a two dimensional space derived by applying multidimensional scaling to a matrix of
the GO terms semantic similarities. Plot_size indicates the frequency of the GO term.
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Supplementary Figure 24. The clustering of enriched GO terms of specific genes in Shengli.
The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy
reduction) in a two dimensional space derived by applying multidimensional scaling to a matrix of
the GO terms semantic similarities. Plot _size indicates the frequency of the GO term.
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Supplementary Figure 25. The clustering of enriched GO terms of specific genes in Tapidor.
The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy
reduction) in a two dimensional space derived by applying multidimensional scaling to a matrix of
the GO terms semantic similarities. Plot_size indicates the frequency of the GO term.
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Supplementary Figure 26. The clustering of enriched GO terms of specific genes in Westar.
The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy
reduction) in a two dimensional space derived by applying multidimensional scaling to a matrix of
the GO terms semantic similarities. Plot_size indicates the frequency of the GO term.



10]
Biological
Process
O
X
> 5
8 protein metabolic) process
Q.
n organoph t
9
e
% respi ctron transport chain
GE) iological
@ 0 biological_process
1 generation o metabolites and energy
log10_p_value
anatomical re homeaostasis _1
" sulfur compound metabolic process
glycerol—3—pe metab cess . . Q . -2
biological regulation
-3
5 -4
-5
5
plot_size
® -
Molecular : -
. e amidohydrolase activity
Function 5
5]
-
< dfranspocter activity
: iy ‘ ’
o y
©
Q.
7] alaninease activity
.f:) NADH dehydrogenase (ubigyi
% 0. sthyltet ydropteroyltriglutamate—homocysteine 7
£ [ AlSipase activity molec regulator
)
b \
\ structur of ribosome
ding
enzyme regulator activity
-5,

semantic space y

Supplementary Figure 27. The clustering of enriched GO terms of specific genes in
Zheyou7. The scatterplot shows the cluster representatives (i.e. terms remaining after the
redundancy reduction) in a two dimensional space derived by applying multidimensional scaling
to a matrix of the GO terms semantic similarities. Plot_size indicates the frequency of the GO
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Supplementary Figure 28. Manhattan plots of SNP-GWAS and PAV-GWAS of
silique length. a, Manhattan plot of SNP-GWAS of silique length for association using
3,971,412 SNPs. The gray dashed lines indicate the significance threshold (-log, P =
4.94). b, Manhattan plot of PAV-GWAS of silique length for association using 27,146
PAVs. The gray dashed lines indicate the significance threshold (-log, P = 4).
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Supplementary Figure 29. Manhattan plots of SNP GWAS and PAV-GWAS of
thousand seed weight. a, Manhattan plot of GWAS of thousand seed weight for association of
3,971,412 SNPs. The gray dashed lines indicate the significance threshold (-log, P =
4.94). b, Manhattan plot of GWAS of thousand seed weight for association of 27,146
PAVs. The gray dashed lines indicate the significance threshold (-log, P = 4).
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Supplementary Figure 30. The lead PAV on chromosome A10 identified by PAV-
GWAS of flowering time in the NAM population. a, The Manhatton plots of SNP-
GWAS (left vertical axis) and PAV-GWAS (right vertical axis) indicate the associations
and the lead PAVs in the region from 23.0 to 25.0 Mb on chromosome A10. There were two
PAVs in BnaAl10.FLC (4.4 kb hAT and 5.6 kb LINE). b, The flowering time of RILs with
different BnaA10.FLC genotypes in spring cropped environments. The flowering time of
individuals with reference allele (with hAT insertion) was significantly longer than the
individuals with Alt.
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Supplementary Figure 31. The Quantile-quantile (Q-Q) and Manhattan plots of
GWAS of flowering time with phenotypic data from multiple environments using
genome-wide SNPs. The black dotted line marks the threshold for genome-wide
significance (-log (p-value) = 4.94). From a-h, Manhattan and Q-Q plots are the results
of Wuhan in 2015 (winter environment), Caidian in 2015 (winter environment), Ezhou in
2015 (winter environment), Yangluo in 2015 (winter environment), Hezheng in 2016
(spring environment), Ezou in 2017 (winter environment) and Hezheng in 2017 (spring
environment), respectively.
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Supplementary Figure 32. Annotation and classification of transposable elements inserted in
the promoter and genebody of BnaA10.FLC. The sequences of all insertions were used as queries
to search a database of transposable elements using CENSOR. The four insertions are named as P
(Promoter) 1-LTR, P2-hAT, P3-MITE and G (Genebody) 1-LINE based on their locations relative
to Bnal0.FLC.
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Supplementary Figure 33. Validation of BnaA10.FLC structural variation using
raw long reads. a, Reads mapped to the Tapidor genome. b, Reads mapped to the
Westar genome. ¢, Reads mapped to the ZS11 genome.
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Supplementary Figure 34. The contribution of unique sites around BnaA10.FLC to the
principal components. a, Visualization of the contribution of raw 30 candidate sites around
BnaAl0.FLC. b, Visualization of the contribution of final unique sites. ¢, PCA result of different
ecotype B. napus resequence data. For a-c, the sample size (n) was 210.
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Supplementary Figure 35. PCR validation of structure variations in BnaA10.FLC. a, The
locations of designed primers. b, PCR products amplified with multiple primers for each of the
transposable elements in 21 B.napus accessions. From left to right, the ID of samples was Bn044,
Bn025, Bn039, Bn022, Bn036, Bn026, g031, Bn037, No2127, gl167, g168, g091, n003, Bn007,
Bn049, g138, g015, g104, g107, Shengli, g179, g177, g052 and g080. These experiments were
repeated once.
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Supplementary Figure 36. Flowering time of natural population lines with
different insertions in BnaA10.FLC. Flowering time data was collected in Lanzhou in
2014. The flowering time of individuals which can not flower was set to 200.
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Supplementary Figure 37. The statistic of three insertions in B. rapa population (n=199).
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Supplementary Figure 38. The structrue variations of BnaA02. FLC in eight reference
genomes and B.napus natural population. a, Structural variation of 8 B. napus genomes
around BnaA402.FLC. An insertion about 824 bp (yellow block) was found in 2 spring B. napus
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Supplementary Figure 39. Homologous exchange events detected between
chromosome A02 and C02 of the eight B. napus genomes. Red bar represents a
window whose coverage is larger than chromosome average coverage * 1.5. Blue bar
represents a window whose coverage is less than 5. Homologous exchanges (HE) result
in the presence of two copies of BnaA02.FLC and removal of BnaC02.FLC in the
genomes of Shengli, Tapidor and Zheyou?7.
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Supplementary Figure 40. Correlations between the expression levels of individual FLC and
FT genes based on RNA-seq data. This color-coded correlation matrix illustrates pairwise
correlations between the levels of gene expression in all individuals. Asterisks represent different
significant levels (p-value < 0.1, 0.05 and 0.001).R package ‘rcorr’ was used to compute the
matrix of Pearson's correlation coefficients. BnaA02.FT, BnaA07.F1a and BnaC06.FT were
expressed FTs (average FPKM >=1 in each accession) and mainly associated F'7Ts with FLC.
Pearson's correlation coefficient was performed to determine the p-values. The sample size (n)
was 80.
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Supplementary Figure 41. Expression levels of individual Brna. FLCs and Bna.FTs in the
eight reference accessions before and after vernalization as detected by RNA-seq. The left
Y-axis and the right Y-axis are Bna.FLCs and Bna.FTs expression levels, respectively. The X-axis

1-5 indicates five stages TO-T4.
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Supplementary Notes

RNA-seq. For each accession, tissues including roots, stems, leaves before vernalization,
leaves after vernalization, buds, flowers and siliques 25-day-after pollination were pooled in
one RNA-seq library. Eight RNA-seq libraries were sequenced by the [llumina HiSeq platform
with 150-bp paired-end reads for gene annotation. RNA-seq for leaves of all eight sequenced
rapeseed accessions at five stages with one month interval including TO stage before
vernalization (the lowest temperature was higher than 1007), T1-T3 stage during vernalization
(the lowest temperature was lower than 107), and T4 stage post vernalization (low temperature

lower than 1000 more than 100 days).

BioNano sequencing and assembly. High-molecular weight DNA was isolated and labelled
from leaf tissue of three-week old B. napus plants according to BioNano’s standard protocols
using the single-stranded nicking endonuclease Nt.BspQI. Labelled DNA was imaged
automatically using the BioNano Irys system and de novo assembled into consensus physical
maps using the BioNano IrysView analysis software (URL). The final de novo assembly used
only single molecules with a minimum length of 150 kb and eight labels per molecule.
PacBio-BioNano hybrid scaffolds were identified using IrysView’s hybrid scaffold alignment

subprogram.

Merge the assemblies of Canu and Falcon. MUMmer' was used to perform reciprocal
alignment between Falcon® and Canu® assemblies with the parameters “-1 90 -d 40”. Then the
unaligned contigs in Canu assembly were filtered by Illumina reads coverage (mean coverage
< 50X) to identify the final unique sequences in Canu assembly. The final assembly was
generated by combining the unique sequences in Canu assembly and the whole Falcon

assembly.

Annotation of repeats. The method of repetitive sequence annotation was divided into two
types: homologous sequence alignment and de novo prediction. Homologous sequence
alignment was based on repetitive sequence database (RepBase database)’ and software
Repeatmasker’ to identify sequences similar to known repetitive sequences. De novo

prediction was used to build up the de novo repetitive sequences database using software



LTR_FINDER®, PILER’, RepeatScout® and RepeatModeler
(http://www.repeatmasker.org/RepeatModeler.html). For predicted database, we carried out
the improvement of database by RepBase Database with Uclust based on 80-80-80 rules and

Repeatmask. In addition, de novo prediction could obtain tandem repeat in genome with TRF’.

Gene annotation. Prediction of gene structure was combined with multiple prediction
methods, mainly homologous prediction, de novo prediction and evidence-based prediction.
Augustus'’, GlimmerHMM'' and SNAP'? were used for de novo prediction depending on the
genome sequence data statistical characteristics. Homologous prediction was performed by
aligning proteins of homologous species (A. thaliana, B. oleracea capitata, B. oleracea
TO1000, B. rapa Chiifu, B. napus Darmor and B. napus ZS11) through Genewise'® to predict
gene structure. For each accession, RNA-Seq data of mixed tissues were used as transcript
evidence. According to the prediction and transcriptome comparison data, we used
EVidenceModeler'* to integrate gene sets by different methods into a non-redundant and more
complete gene set. Finally, we used PASA' to correct the EVM annotation based on
transcriptome assembly, and added UTR, variable clipping and other information to obtain the

final gene set.

NcRNA annotation. The annotation of non-coding RNA includes tRNA, rRNA, miRNA and
snRNA. According to the structure characteristics of tRNA, tRNAscan-SE“was used to obtain
tRNA in the genome. Considering that rRNA was highly conserved, blast was employed to
identify rRNA sequences by aligning to related species. Sequences of miRNA and snRNA
were obtained by Rfam family covariance model using INFERNAL'

Centromere regions. Centromere-specific repeats (CentBrl and CentBr2)'’ were aligned to

the ZS11 genome by BLAST (E-value: 1¢”) to identify centromere-related sequences.

Hi-C data processing and analysis. The Hi-C reads were mapped to ZS11 genome and
filtered using Juicer pipeline'®. The following read pairs were removed: duplicated and
near-duplicated read pairs, read pairs mapped to the same fragment or mapping quality score
below 30. The contact matrices were built at 10-, 50-, 100- and 500-kb resolutions using

Juicer tools'’. Normalized contact matrices were produced at all resolutions with the KR



method®’. For compartment analysis, each chromosome was divided into consecutive 500-kb
regions from normalized contact matrices. The eigenvectors of all regions were analyzed
using the Juicer tools. Finally, all regions were aligned to A/B compartment according to the
gene density due to the fact that genomic regions belonging to the A compartments usually

contain more genes than those of B compartments”'.

Genome blocks construction. We used the same method as Wang et al.” to construct the
genome blocks. We first got the syntenic blocks of the ZS11 genome and A. thaliana genomes
by MCScanX with default parameters™. Then LF, MF1 and MF2 were separately classified in

A and C sub-genome according to gene retention of these blocks.

Divergence time. In order to ensure the high homology of gene pairs in K calculation, we
searched for orthologous pairs and paralogous pairs within species based on colinear region
and reciprocal best blast hit (RBH). In order to call ortholog blocks, we performed
all-against-all blastp (E < ). We identified putative homologous chromosomal regions using
MCScanX based on blastp results. Each block contained at least 5 genes, and the maximum gap
between genes was allowed to be less than 25. On the other hand, Python scripts
(https://github.com/peterjc/galaxy blast/blob/master/tools/blast rbh/blast rbh.py) were used
to obtain RBH between two genomes. Finally, the intersection of the gene pairs in homologous
region and RBH gene pairs were used for K analysis. For homologous gene pairs, we screened
sequence difference by protein and CDS alignment with ParaAT**. For orthologous gene pairs
and paralogous gene pairs (B. napus, A. thaliana Initiative A G, 2000)>, B. rapa and B.
oleracea®™, KaKS caculator’’ was used for calculating KS based on maximum likelihood and
the model parameter was NG. In general, the peak of KS in intraspecific (orthologous) was
considered to be related to genome duplication events, and the peak of KS in intraspecific was
the divergence events. The peak of A. thaliana and B. napus were observed at 0.417, so the
divergence time between A. thaliana and Cruciferae was approximately ~14 MY. The positive
selection of K,/ K gene is the ratio between the heterotopic (K,) and the homotopic (Ks). This
ratio can be used to determine whether there is selection pressure acting on the protein-coding
gene. If K,/K>1, it was considered that there was a positive selection effect. If K,/K=1, neutral

selection was considered. If K,/K<1, it was considered to have purification selectivity. K,/K;



value was calculated between A sub-genome of B. napus and B. rapa, C sub-genome of B.

napus and B. rapa, respectively.

Identification and classification of MADS-box gene family. The gene with MADS-box
domain was identified using InterProScan®®. Using the MADS-box genes” in A. thaliana as
reference, pariwise distance tool in MEGA7*" was used to identify conserved genes in B.
napus. Clustal W (version 2.1)*' was used to compare the B. napus and A. thaliana
MADS-box genes. MEGA7 was employed to construct a phylogenetic tree based on the
comparison results with the neighbor joining (NJ) method. Parameter model was Poisson

model and the bootstrap was 1000 replications.

OrthoMCL clustering. To identify and estimate the number of potential ortholog gene
families between ZS11, Gangan, Zheyou7, Shengli, Tapidor, Westar, No2127 and Darmor, the
OrthoMCL pipeline32 was applied to compute the all-to-all similarities with standard settings
(blastp E value <1 x 10~ and inflation factor =1.5). For the un-clustered genes, considering the
influence of gene length and different genome annotations, the gene sequence was mapped to
other genomes to verify whether there were homologous sequences (blastn E value <1 x 107,
identity>90% and coverage>90%). Finally, the orphan genes of each species were determined,

and specific genes were combined into specific gene families.

Field environments and phenotype of BN-NAM population. The BN-NAM population
contained 15 RIL families and a total of 2,141 RILs which was generated as previously
described”. The RIL families were planted in the field at five different locations over a period
of four years with one replication and a randomized complete block design, which included six
winter environments in or near Wuhan City and two spring environments at Hezheng county,
Gansu Province. The six winter environments are 14WH (grown at the experimental station at
Huazhong Agricultural University in the 2013-2014 growing season), 15CD (grown in Caidian
City in the 2014-2015 growing season), 15EZ, 16EZ and 17EZ (grown in Ezhou City in the
2014-2015, 2015-2016 and 2016-2017 growing season, respectively) and 15YL (grown in
Yangluo City in the 2014-2015 growing season). The two spring environments are 16HZ and
17HZ (grown in Hezheng county in the 2016 and 2017 growing seasons). RIL seeds were sown

in early October and harvested in late April or early May of next year, or sown in middle May



and harvested in middle September of the same year. Each RIL was grown in one plot with one
row of 10 plants. The distance between plants was 20 cm within each row and the distance
between rows was 30 cm. Silique length (SL) was measured as the average length of 10
siliques, and Thousand-seed weight (TSW) or seed weight (SW) was measured as the total
weight of 1000 seeds. Flowering time in each environment was recorded as the number of days
from the sowing to 50% plants in one plot bloomed. The SL ranged from 2.69 to 12.70 cm and
the SW ranged from 1.97 to 7.65g (TSW) in five winter environments (15CD, 15EZ, 15YL,
16EZ, 17EZ), while the flowering time ranged from 46 to 174 days in the six winter
environments and 37 to 114 days in two spring environments. In GWAS, the flowering time for
each RIL was represented by the best linear unbiased prediction (BLUP) value of the six winter
environments (W-BLUP) or by the two spring environments (S-BLUP). The BLUP values

were calculated separately using an R package LME4>".

Identification of candidate genes for flowering time. To identify candidate genes for
flowering time, we first collected all genes involved in regulating flowering time in A. thaliana.
The predicted protein sequences in the association regions in ZS11 were used as query to blast
all flowering time genes in A. thaliana. The genes with E-value below 1¢” were considered as
orthologous candidate genes in B. napus (Supplementary Table 50). The association region was

inferred by extending 300 kb to upstream and downstream regions from the peak SNP.

Verification of the variations in BnaA10.FLC using PCR. Four panels of primers were used
to genotype the presence and absence of the transposable elements, MITE, hAT, LTR and
LINE, in the promoter and gene regions in BnaAl10.FLC in B. napus accessions. PCR products
were visualized on 2% agarose gel. The primers and their corresponding products are listed in

Supplementary Table 50.

Statistics. The R package Density was used to calculate the peak value of Kg by gaussian
distribution fitting of the original Kg distribution. GO enrichment analysis was carried out
using GOATOOLS based on Fisher's exact test”. Only GO terms with a P value of less than
0.05 were retained. REVIGO™ was used to remove redundant GO terms. The significance
thresholds for SNP-GWAS and PAV-GWAS are log (P value) <-4.94 and log (P value) <-4,

respectively. Unique fragments were found on both sides of the BnaA10.FLC related insertion



fragment, and a total of 30 candidate sites were selected from three genomes. Then R package

PCA function was used to perform Principal Component Analysis to screen the locations which

contributed more to present variation in resequencing data.
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