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1. Methods for Stability and Bifurcation Analyses
Basic methods

Changes in topological properties of solutions in ordinary differential equations, e.g., a
change in the number of equilibrium points (EPs) or limit cycles (LCs), a change in the stability of
an EP or LC, and a transition from a periodic to quiescent state, may be caused by altering
parameters. This phenomenon is called bifurcation and the investigation of bifurcations depending
on parameters is called bifurcation analysis. In physiological terms, EPs and LCs correspond to
stationary states (resting states) and oscillatory states (spontaneous oscillations), respectively, and
bifurcation phenomena that can be observed in cardiac cells include a cessation or generation of
pacemaker activity and occurrence of arrhythmic dynamics (Landau et al. 1990; Vinet & Roberge,
1990; Guevara & Jongsma, 1992). For practical bifurcation analysis, we used 1) a MATLAB
nonlinear equation solver (fsolve) implementing the Newton-Raphson algorithm to locate EPs and
detect bifurcations of EPs; 2) MATLAB ODE solvers (odel5s and ode45) to calculate stable LCs
and detect bifurcations of LCs; and 3) CL_MATCONT, a continuation toolbox for MATLAB
(Dhooge et al. 2006), to locate EPs and LCs as well as to detect bifurcation points. The stability and
types of bifurcations of EPs and LCs were determined by calculating eigenvalues of Jacobian

matrices for EPs and characteristic multipliers for LCs (Parker & Chua, 1989; Tsumoto et al. 2012).



Bifurcations to occur in the mTP06 model were as follows: 1) Hopf bifurcation (HB) of EPs at
which the stability of an EP reverses with emergence or disappearance of a LC; 2) saddle-node
bifurcation (SNB) of EPs and LCs at which two EPs (steady-state branches) or two LCs (periodic
branches) coalesce and disappear (or de novo creation of two EPs or periodic orbits occur); 3)
period-doubling bifurcation (PDB) of LCs at which a stable period-K solution becomes unstable
and spawns a stable period-2K solution; 4) Neimark-Sacker bifurcation (NSB) of LCs at which a
stable LC becomes unstable with emergence of torus trajectories; and 5) homoclinic bifurcation
(hom) of LCs at which a periodic solution is born from a homoclinic orbit that comes infinitely
close to a single equilibrium point at infinity in time (Kuznetsov, 2003; Kurata et al. 2017).
Construction of one- and two-parameter bifurcation diagrams and phase diagrams

The information obtained from the bifurcation analysis enables us to know a parameter
range over which the HVM model is in a stable stationary state or stable oscillatory state, the initial
value dependency of the AP in the HVM model, and mechanisms of transitions between the
stationary state and oscillatory one. A set of parameter values that cause bifurcations is called
bifurcation set and a graph of these sets is called bifurcation diagram.

Non-paced model cells are quiescent at an EP (resting state and/or depolarized steady state)
and/or exhibit a LC (spontaneous oscillation) depending on parameter values and initial conditions.
For constructing one-parameter bifurcation diagrams, V., values at EPs (Vg), potential
minimum/maximum of LCs (LCnin/LCmax) and bifurcation points, as well as periods of LCs, were
determined and plotted as functions of a given parameter. For construction of two-parameter
bifurcation diagrams, the critical values of a first parameter for bifurcations to occur were
determined by the one-parameter bifurcation analysis at each second parameter value. The sets of
individual bifurcation points of the first parameter were plotted against the second parameter on a

two-dimensional parameter plane.



In two-parameter phase diagrams, critical points of the first parameter at which a qualitative
change in the AP of the paced cell model, e.g., a change from an AP without EAD to AP with EAD,
first occurred were obtained by AP simulations utilizing the aforementioned numerical integration
method. Then, we changed the second parameter value slightly and executed AP simulations again
using the preceding results as the new initial conditions. These critical points collected as a
parameter set were plotted on the first and second parameter plane.

Slow-fast decomposition analysis

Stability and bifurcations of a fast subsystem are determined as functions of a slow variable
by the slow-fast decomposition analysis (Doi et al. 2001; Tran et al. 2009; Qu et al. 2013; Xie et al.
2014; Kugler et al. 2018). This method can define EAD formation as transient trapping of a
trajectory of the full system into the quasi-attractor, i.e., quasi-EPs (qEPs) and/or quasi-LCs (qLCs),
transiently emerged in the fast subsystem (Qu et al. 2013). The gating variable for I activation
(xs) and Ca?* concentration in the SR (Casr) were chosen as slow variables; bifurcation diagrams
consisting of steady-state branches (for gEPs) and periodic branches (for gqLCs) for the fast
subsystem were constructed as functions of a slow variable (xs? or Cagg), With trajectories of the

full system superimposed on the diagrams.

2. Additional Discussion
Comparisons with Other HVM Models for Effects of Modulating SR Ca** Cycling and Incx

The effects on EAD formation of modulating SR Ca?* uptake/release in the mTP06 model
were different from those in the other HVYM models (Kurata et al. 2017). With respect to the onset
of EADs during Ik, inhibition or Ic. enhancement, our previous study using the KO5 model showed
that enhancing SR Ca®" uptake/release facilitated EAD generation via an inward shift of Iycx and
reduction of lIca. Which lowered the plateau V, and thereby limited Ixs activation during the

preconditioning phase before EAD formation (Kurata et al. 2017). In the mTP06 model, however,



the effects of modulating SR Ca*" uptake/release (changing Puw) on the onset of EADs were
opposite to those in the KO5 model, while similar to those in the O11 model; inhibition of SR Ca**
uptake/release or Ca®* transient did not prevent but slightly facilitated lc,. reactivation-dependent
EAD formation during Ik, inhibition or Ic,. increments (Figure 6A). This inconsistency is mainly
due to the differences in SR Ca®" uptake/release mechanisms and Ca;-dependent behaviors of lca.
and Incx. The effects on EP stability in the three HVM models were completely different: SR Ca**
cycling destabilized EPs and induced spontaneous oscillations in the mTP06 model (Figure 6 and
Supplementary Figure S7), exerted no effect on EP stability (and little affected LC oscillation) in
the KO5 model, and broadened the parameter regions of stable EPs in the O11 model. Thus, the
influences of SR Ca* cycling on bifurcations and EAD formation are model dependent; further
studies using more sophisticated HVM models as well as experimental verifications are required.

In previous experimental studies, enhancing Incx tended to promote EADs (Pott et al. 2012),
while inhibition of Incx prevented EADs (Nagy et al. 2004; Milberg et al. 2008; Milberg, Pott, et
al. 2012; Zhao et al. 2012). The mTP06 model predicted facilitation of EAD formation by enhanced
Incx, qualitatively consistent with the experimental finding (Pott et al. 2012) and our previous
report for the K05 and O11 models (Kurata et al. 2017). This promotion of EAD generation was not
only via enhancing inward Incx but also via secondary reductions in Icy. inactivation and resultant
increases of Ica. window currents, as in the KO5 and O11 models (Kurata et al. 2017). In the
mTP06 model, small inhibition of Incx yielded the suppression of phase-2 EADs by primary
reductions of inward Incx and secondary decreases of Ica, as in the other HVM models. However,
greater inhibition of Incx led to facilitated EAD formation, inconsistent with experimental reports
(Milberg et al. 2008; Milberg, Pott, et al. 2012) and our previous report for the other HVM models
(Kurata et al. 2017). Thus, influences of Incx modifications were also model dependent; more
quantitative experimental verifications and theoretical studies using more elaborate HVM models

are needed.
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4. Supplementary Tables

Table S1: Parameter values for the M cell versions of the mTP06a and mTP06b models relative to those for the original TP06 model.

Parameters Units Original TPO6 mTP06a mTP06b
Maximum conductance of lca. (gcal) cm®/ms/pF 0.0000000398 0.0000000398 0.0000000796
Time constant of voltage-dependent Ic,. inactivation (ratio) 1 1 0.5
Maximum conductance of Ik, (gkr) nS/pF 0.153 0.2295 0.2295
Maximum conductance of Ixs (gks) nS/pF 0.098 0.0392 0.0392
Maximum rate of Ca?* uptake to SR mM/ms 0.006375 0.003825 0.003825

Table S2: Modifications of parameters for the conditions of B-adrenergic stimulation (B-AS)

Parameters Units Control (mTPO6b) B-AS (*ratio)
Maximum conductance of Ica (car) cm®/ms/uF 0.0000000796 1.4-1.8%
Maximum conductance of Ixs (gks) nS/pF 0.0392 2.0*
Voltage shift in Iks activation gate mvV 0 -8.0
Maximum Na*-K* pump current (Inax) pA/pF 2.724 1.20*

Maximum rate of Ca* uptake to SR mM/ms 0.003825 1.41*




Table S3: Initial conditions of state variables for

mTPO06b models as shown in Figure 1.

computing dynamic behaviors of the M cell versions of the original TP06, mTP06a and

Variables Definitions Units Original TP06 mTP06a mTP06b
\% Membrane potential (mV) mvV -86.596524 -86.596551 -86.580995
m Activation gating variable for Iy, 0.00128231 0.00128230- 0.00128657
h Inactivation gating variable for Iy, 0.78040927 0.78040994 0.78002868
j Recovery gating variable for Iy, 0.78040927 0.78040994 0.78002868
o Activation gating variable for Ic, 0.0000281050 0.0000281049: 0.0000281632
fL V-dependent inactivation gating variable for Ic, 0.99992618 0.99992618 0.99992601
fLo 2nd V,-dependent inactivation gating variable for I, 0.99957865 0.99957865 0.99957771
fca Ca’*-dependent inactivation gating variable for lc, 0.99999826 0.99999826 0.99999572
r Activation gating variable for Iy, 0.0000000192435  0.0000000192435  0.0000000192934
S Inactivation gating variable for I, 0.99999836 0.99999836 0.99999835
Xry 1st activation gating variable for I, 0.000173937 0.000173935- 0.000174323
XIy 2nd activation gating variable for Iy, 0.48538462 0.48538491 0.48522301
XS Activation gating variable for Iy 0.00293437 0.00293437- 0.00293762
R_prime  Activation gating variable for SR Ca*" release channel 0.998160785 0.998116636 0.99704737
Cag Subspace Ca?" concentration mM 0.0000850477 0.0000850454- 0.000133586
Ca Cytoplasmic Ca** concentration mM 0.0000372687 0.0000372687- 0.0000378481
Cagr Ca?* concentration in SR mM 0.385019 0.231026 0.238101237
Na Intracellular Na" concentration mM 10.3550 10.3550 10.3550
Ki Intracellular K* concentration mM 140 140 140




5. Supplementary Figure Legends

Supplementary Figure S1: Ix-dependent EAD generations and bifurcations in the Ixs-normal and
Iks-eliminated mTPO6a/b models.

Potential extrema of simulated action potential (AP) and EADs, and the AP duration (APD)
measured at 90% repolarization (APDy) are plotted as functions of normalized gk, for the Ixs-
normal mTP06a (A) and lxs-removed mTP06a/b (B) model cells paced at 0.2 Hz (i). AP dynamics
were computed for 1 min at each gk, value, which was reduced from 1.0 to —0.2 or 1.2 to 0 at an
interval of 0.001. The minimum V,, during AP phase 4 (Vi) and the maximum V,, during AP
phase 2 before EAD formation (V) are represented by black dots for rhythmic APs, and by
orange (Vmin) and light green (Vmax) dots for arrhythmic APs. When EADs appeared, their local
potential minimum (EADpi,) and maximum (EADmas) were plotted by blue and red dots,
respectively. In the diagram for APDgg, the black, blue and magenta dots represent APDg, values for
regular APs without EAD, regular APs with EADs, and arrhythmic APs with EADs, respectively
(no-EAD: APs without EAD, +EAD: APs with EADs). One-parameter bifurcation diagrams with
the steady-state branches as loci of Vi, at equilibrium points (Vgi.3) and periodic branches as the
potential minimum (LCpin) and maximum (LCrax) of limit cycles (LCs) as well as the period of
LCs plotted against gk, are also shown for the non-paced mTP06a/b model cells (ii). The steady-
state branches consist of the stable (green solid lines) and unstable (black dashed lines) segments;
the periodic branches are almost always unstable, while stable between the Hopf bifurcation (H)
and Neimark-Sacker bifurcation (NS) points in Panel A-(ii). The inset in Panel B-(ii) for the Ixs-
removed mTPO6b model is the expanded scale view of the vicinity of the Hopf bifurcation point
(rectangular area). Representations and symbols are the same as in Figure 2B. SN, saddle-node

bifurcation of LCs.



Supplementary Figure S2: Ik/Ixs-dependent EAD generations and bifurcations in the mTP06a
model.

(A) A phase diagram indicating the region of EAD formation (and local responses) in the paced
model cell (i) and two-parameter bifurcation diagrams for the non-paced model cell (ii) on the gks—
gkr parameter plane. The panel (iii) is the diagram for which the phase diagram (i) is superimposed
upon the two-parameter bifurcation diagram (ii). In the diagram for the paced model cell (i), the
thick red solid, black dashed and thin black solid lines respectively indicate parameter sets of
critical points at which short-term EADs (fast repolarization type of APs with EADSs), long-term or
sustained EADs (repolarization failure type of APs with EADs), and local responses emerged;
parameter regions in which short-term EADSs, long-term or sustained EADs, and local responses can
be observed are shown as the light gray (fR), blue (RF) and dotted regions, respectively. In the
diagram for the non-paced model cell (ii), H, SO;, and SO, indicate parameter sets of Hopf
bifurcation points, critical points at which SOs emerged, and critical points at which SOs switched
into quiescence, respectively. The parameter region in which convergence to the steady-state (Vg3)
can occur is denoted as the orange region. The labels “SEP” and “UEP” indicate the areas of stable
and unstable equilibrium points (EPSs), respectively, divided by the Hopf bifurcation curves (H). The
points labeled as “N”, “LQT1” and “LQT2” denote the normal, LQTI1, and LQT2 condition,
respectively. The asterisks in the panels (i) and (iii) indicate the condition under which the paced
model cell behaved as shown in Panel B.

(B) Simulated behaviors of APs, sarcolemmal ionic currents (Ixs, Ica, Incx) and intracellular Ca?*
concentrations (Ca;, Cass, Casgr) during 0.2-Hz pacing in the model cell with the parameter set as
indicated by the asterisks in Panel A. Temporal behaviors of the variables were computed for 30

min; those for 10 s elicited by additional 2 stimuli are shown.

Supplementary Figure S3: Rate dependence of EAD generation in the mTP06b model.



The phase diagrams indicating the region of EAD formation (and local responses) for the paced
model cell are superimposed on the two-parameter bifurcation diagrams for the non-paced model
cell on the gks—Qk: parameter plane. The Na;-variable (A) and Na;-fixed (B) versions were tested for
comparison. The pacing cycle lengths (CLs) were set to 5 s (left) and 1 s (right). The thick red solid,
black dashed and thin black solid lines represent the parameter sets of critical points for occurrences
of short-term EADs (APDg < 5 s), long-term or sustained EADs (APDgy > 5 s) and local responses,
respectively; parameter regions of short-term EADSs, long-term or sustained EADs and local
responses are shown as the light-gray area labeled as “fR” (fast repolarization), blue area labeled as
“RF” (repolarization failure) and dotted area, respectively. H, SOy, and SO, indicate parameter sets
of Hopf bifurcation points, critical points at which SOs emerged, and critical points at which SOs
switched into quiescence, respectively; parameter regions in which SOs and convergence to the
steady state (Ves), i.e., arrest, can be observed are shown as the shaded and orange regions,

respectively. The points labeled as “N” denote the normal condition.

Supplementary Figure S4: Time course of APD changes and timing of EAD generation in the Na;-
variable gg,-reduced mTP06b model after slowing of pacing.

(A) Simulated AP dynamics of the model cell with gx, = 0.721 when a pacing CL (PCL) was
increased from 1 s to 3 s. Temporal behaviors of the model cell paced at 1 Hz (CL = 1 s) were
computed for 30 min to determine steady-state dynamics at 1 Hz, and then the pacing CL was
abruptly increased to 3 s. Shown are an AP evoked by an additional (1801th) stimulus after 30-min
pacing at 1 Hz, and those evoked by the Ist, 170th and 171th pacing stimuli with CL =3 s.

(B) Temporal behaviors of the model cell when a pacing CL (PCL) was increased from 1 s to 3 s.
APs elicited by the 4 stimuli, as well as changes in Ca;, Casg, Naj, Icar, Iks, Inak and Incx during the

APs, are shown to clearly demonstrate their time-series behaviors during the slower pacing.



Supplementary Figure S5: Simulated temporal behaviors of Ca; in the Ixs-normal and Ixs-reduced
(LQT1-type) mTP0O6b model cells under the basal and 3-AS conditions.
Model cells were paced at 1 Hz for 30 min under the normal and B-AS conditions as indicated by

the points and arrows in Figure 5B. The dots represent Ca; elevations evoked by spontaneous SR

Ca®" releases.

Supplementary Figure S6: Influences of Py, and Incx on EAD formation in the mTP0O6b model
with an increased gcal .

Simulated dynamics of the model cells with various P, (A) or Incx (B) values and an increased gcar.
(1.31) are shown. Py, values were 0 (red), 1.0 (black) and 2.0 (blue) times the control value. Incx
values were 0.67 (red), 1.0 (black) and 1.5 (blue) times the control value. Temporal behaviors of the
model cells were computed for 30 min with pacing at 0.2 Hz; the responses to an extra stimulus of
Vi, Cai, Incx, and I, for 1.6 s are shown as steady-state dynamics. The dashed ellipses are to
focus on the differences in Incx and Icar during the preconditioning phase just before initiation of
the first EAD. The inset in the Ic,p window shows an expanded scale view of I¢,r behaviors in the

ellipse. The vertical arrows indicate the changes with decreasing P, (A) or Incx (B).

Supplementary Figure S7: AP behaviors and bifurcations on the Py—gkr (A) and Pyy—0gcaL (B)
parameter planes in the mTP0O6b model.

Shown are phase diagrams depicting displacements of critical points for occurrences of short-term
EADs (red solid lines), long-term or sustained EADs (black dashed lines) and local responses
(black solid lines) in the paced model cell (i), and two-parameter bifurcation diagrams with Hopf
(H) and saddle-node (SN) bifurcation curves, and the critical curves for the occurrence (SO;) and

disappearance (SO,) of SOs for the non-paced model cell (ii), as well as the merged diagrams (iii)



for which the phase diagrams are superimposed on the two-parameter bifurcation diagrams.

Representations and symbols are the same as in Figure 3A and Supplementary Figure S3.

Supplementary Figure S8: AP behaviors and bifurcations on the Incx—gkr (A) and Incx—0caL (B)
parameter planes in the mTP06b model.

Shown are phase diagrams depicting displacements of critical points for occurrences of short term
EADs (red solid lines) and long-term or sustained EADs (black dashed lines) in the paced model
cells (i) and two-parameter bifurcation diagrams with the Hopf (H) or saddle-node (SN) bifurcation
curve and the critical curve for the occurrence of SOs (SO;) for the non-paced model cell (ii), as
well as the merged diagrams (iii) of the phase diagram (i) superimposed on the two-parameter
bifurcation diagram (ii). Incx density is given as the common logarithm of ratios to the control

value. Representations and symbols are the same as in Figure 3A and Supplementary Figure S3.

Supplementary Figure S9: lc, —dependent EAD generation and bifurcations in the mTP06b
models.

(A) Potential extrema of simulated AP and EAD behaviors and APDg, for the paced model cell (i),
as well as one-parameter bifurcation diagrams with steady-state V, (Vg1 3), potential extrema of
LCs and SOs, and the periods of LCs and SOs for the non-paced model cell (ii), plotted as functions
of normalized gca.. Representations and symbols are the same as in Figure 2B and Supplementary
Figure S1.

(B) A phase diagram (i) for the paced model cell, a two-parameter bifurcation diagram (ii) for the
non-paced model cell, and the merged diagram for which the phase diagram is superimposed upon
the two-parameter bifurcation diagram on the gca.—0xs parameter plane, depicting displacements of
critical points at which EADs and local responses emerged, HB points (H), SNB points where

unstable Vg, and Vs coalesced and vanished (SN), critical points at which SOs emerged (SO;) or



switched into quiescence (SOy), and critical points at which repolarization failure occurred. In the
panel (i), the gcai—Qgks parameter plane is divided into the areas of APs without EAD, APs with
EADs repolarization of which occurred within 5 s after the last stimulus (fR), and repolarization
failure (RF), as in Fig. 3A-(i). The points labeled as “N” denote the normal condition. In the panel

(ii), SOs appeared in the shaded region surrounded by SO;, SO, and H curves.

Supplementary Figure S10: Iy —dependent EAD generations and bifurcations in the Ixs-normal
and lks-eliminated mTPO6a/b models.

Potential extrema of simulated APs and EADs, and APDgy, are plotted as functions of normalized
gcav for the Ixs-normal mTPO6a (A) and Ixs-removed mTPO06a/b (B) model cells paced at 0.2 Hz (i).
AP dynamics during 0.2-Hz pacing were computed for 1 min at each gc, Vvalue, which was
increased from 0 to 2.5 or 5.0 at an interval of 0.002. The black dots indicate Vi, and Vo for
rhythmic APs, while orange and light green dots in Panel A indicate Vin and Vmax, respectively, for
arrhythmic APs. EADnmin and EADmax Were plotted by blue and red dots, respectively. In the
diagram for APDgy, the black dots represent APDg, values for regular APs without EAD (no-EAD).
One-parameter bifurcation diagrams depicting steady-state V', at EPs (Vg1-3) and potential extrema
of LCs (LCminmax), and the period of LCs plotted against gca. are also shown for the non-paced
mTPO06a/b model cells (ii). The steady-state branches (Vei-3) consist of the stable (green solid lines)
and unstable (black dashed lines) segments; the periodic branches are almost always unstable, while

stable between the Hopf (H) and Neimark-Sacker (NS) or period-doubling (PD) bifurcation points.
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Supplementary Figure S2
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Supplementary Figure S3
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Supplementary Figure S4
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Supplementary Figure S5
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Supplementary Figure S6
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Supplementary Figure S7
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Supplementary Figure S8
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Supplementary Figure S9
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Supplementary Figure S10
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