Supplementary Information

Crystal structures of fukutin-related protein (FKRP), a ribitol-phosphate transferase related to muscular dystrophy

Naoyuki Kuwabara, Rieko Imae et al.

Supplementary Figure 1.

Structural comparison of FKRP and NTase. A) Catalytic domains of FKRP (left panel) and ANT(2")-la (right panel, PDB ID; 5KQJ) as a representative NTase are shown. The bound Ba²⁺, Zn²⁺ and CDP-Rbo are shown as green spheres, a purple sphere and a stick model, respectively. The FKRP-specific structures (the zinc finger loop, a loop ordered by acceptor binding, and the C-terminal loop region) are colored blue. In both panels, the NTase core domains are colored grey. B) Structural comparison around the active sites. The left panel shows the structure of active site of sFKRP in Mg²⁺ (orange balls) and CMP-bound state. D360, D362, D364, D416 and CMP are shown as stick models. The right panel shows the structure of the active site of ANT(2")-la in gentamicin C1, Mn²⁺ (purple balls) and AMPCPP (adenosine-5'-[(α , β)-methyleno]-triphosphate) bound state (PDB ID; 5CFT). Carbon atoms are shown in white in AMPCPP. H42, D44, D46, D86 and kanamycin are shown as stick models. The residues excluding H42 (which corresponds to D360 in FKRP, and does not interact with Mn²⁺) are conserved.

Stem domain

human_FKRP bovine_FKRP mouse_FKRP rat_FKRP fish_FKRP frog_FKRP fly_FKRP

	_																																						
										β3										η	1			<mark>η</mark> 2					β4	L I				β5					
							т	т		-	-						тı	C i	1	ف	فع	Q	Q	ė	ع			-	÷	->	•	п	CT.	->	•			2	20
	90							1	οė								11	ιọ						12	٠ọ					1	. 3	ò					1	4 Q	
human FKRP	ΡP	LA	LI	R			ΙP	N	VR	L	ΑL	L	ΟP			A	LΙ	R	Ρž	ΑA	A	SF	۲P	EТ	'Y	VA	T	ΕF	V.	ΑI	v	ΡD	G	AF	۲A	ΕA	P	GΙ	LE
bovine FKRP	ΡP	LA	LE	P R			ΙP	Ν	VR	Ъž	ΑL	L	QΡ			А	LI	D R	Ρi	AS	A	SF	RΡ	ΕΊ	'Y	VA	T	ЕY	v.	ΑI	v	ΡĽ	0 G	ΑF	۲A	ΕA	P	GQ	LE
mouse_FKRP	ΡP	LA	LE	۲R		•	ΙP	Ν	VR	Ъž	ΑL	ьç	QΡ			А	LΙ	D R	Ρž	ΑA	A	SF	RΡ	ΕΊ	Y.	VA	Т	ΕF	V.	ΑI	٧	ΡĽ	G	ΑF	łА	E S	Р	GΗ	LE
rat_FKRP	ΡP	LA	LE	۲R		•	ΙP	N	VR	ьı	ΑL	ьç	QΡ	•		А	LΙ) R	si	ΑA	A	SF	۲P	ΕΊ	'Y	VA	Т	ΕF	۷.	ΑI	۰V	ΡĽ	0 G	ΑF	łА	E S	\mathbf{P}	GΗ	LE
fish_FKRP	ΡP	LA	LE	ΡE		•		G	AR	LI	ιv	М :	SΡ	•		S	ΡI	QC	Ρl	PQ	T :	ΗF	۲P	ΕF	'N	VQ	T	ΕF	S	LI	۰V	ΡĽ	0 G	VE	Ľ	DH	G	RQ	VΕ
frog_FKRP	ΡP	v.	• •	•		•	. Q	G	LΗ	II	R	гı	ΗP	•		s	ΡE	<u>Q</u>	A	5 S	S	ΓF	۲L	ΕΊ	Y Y	ΙH	Т	RI	V.	ΑI	۰V	ΡĽ	Ġ	тs	S L	DP	\mathbf{P}	DL	LD
fly_FKRP	ΡP	VN	ΥE	R	ΝL	Т	A G	E	E R	Т	γL	F	<mark>o</mark> S	L	S F	'D	VF	R R	Τl	RQ	Е.	ΓN	I P	LΑ	١S	IR	Т	ΚY	A	LΙ	M	ΡĽ	G	VF	۲L	NS	K	ΝI	ЪQ

TT 60

α1 0000000000

70

β2

80

β1

50

	α2	β6	β7	β8
	0000000	\rightarrow	→	-
	150	160	170	180
human_FKRP	RMVEALRAGS	ARLVAAPVAT AN	PARCLALNVS	REWTARY
bovine_FKRP	RMVEVLRAGG	ARLVAAPIASAN	PARCLALNVS	REWTARY
mouse_FKRP	RMVEALRGSS	ARLVAAPVAT AN	PARCLALNVS	L R E WTARY
rat_FKRP	RMVEALRGSS	ARLVAAPVAT TN	PARCLALNVS	L R E W T A R Y
fish_FKRP	RLIRELEGEG.GGP	VRLVAAPVLTRS	SVQCLHLRVN	REWTATY
frog_FKRP	RMARELRDAS.PG	VKIIAAAAGK	ELQCLYLNVS	REWISVY
fly_FKRP	<u>KIL</u> REINSMGLPGQPKEQRPPVPPEQ	LV <u>RRMVLVPFA</u> GNLK <mark>S</mark>	FSSCVKMNLD	PDWILEL
			1	

human_FKRP	→ <u>–</u>	$\beta ^{\beta 9} \longrightarrow \beta ^{\beta 10}$	β11 200	α3 <u>000</u> ΤΤ 210	α4 <u>000000000</u> 220	<u>β12</u> 230
human FKRP	GAAPAAPR	CDALDO	DAVVLLRA	R D <mark>L</mark> F N L S A <mark>P</mark> L A R	PVGTSLFLQTA	LRGWAVQLLD.L
bovine FKRP	GPAPSAPR	CDALDO	DAVV <mark>L</mark> LRA	R D <mark>L</mark> F N L S A <mark>P</mark> L A R	PVGTGLFLQTA	LRGWTVQMLD.L
mouse_FKRP	DPAPSAPR	CDALDO	DAVL <mark>L</mark> MRS	R D <mark>L</mark> F N L S V <mark>P</mark> L A R	PLATSLFLQT	LRGWAVQLLD.L
rat_FKRP	GPAPSAPR	CDALDO	DAVL <mark>L</mark> MRS	R D <mark>L</mark> F N L S V <mark>P</mark> L A R	PLATSLFLQT	LRGWAVQLLD.L
fish_FKRP	SPAASGSS	GSVCTALQC	DAVV <mark>L</mark> IRT	E D <mark>L</mark> F N L S V <mark>P</mark> L G R	PLMSSLFVQTS	LRGWKVKLLEGP
frog_FKRP	RPATAQET	CRAVAC	TAVLLRS	R D <mark>L</mark> F E L P F <mark>P</mark> L M R	PLQPALFIQTA	LRGWGVQMLKDA
fly_FKRP	VATNDTRR	CDLFL(OKHAI <mark>L</mark> LDA	A A <mark>L</mark> A A M P E <mark>P</mark> F S L	PFPEM <mark>LYMO</mark> AH	IANLSTTVFP.Q

	β13		α5		β14	
	240	250	260	270	280	
human FKRP	TFAA	ARQPPLAT	AHARWKAEREGF	RARRAALLRALG	IRLVSWEGGR	
bovine_FKRP	P F G V	ARQPPLAT	AHARWKAEREGF	ARRAALLRALG	VRLVSWEGGR	
mouse_FKRP	TFAA	ARQPPLAT	A H A R W K A E R E G F	RRAALLRSLG	IRLVSWEGGR	
rat_FKRP	TFAS	ARQPPLAT	A H A R W K A E R E G F	RSRRAALLRSLG	IRLVSWEGGR	
fish_FKRP	SFSA	SHRPLFSS	A H N Q W K A D S R L F	DATNHLMRSFG	LKRLILPD <mark>GR</mark>	
frog_FKRP	SF	PRTPMPNT	D <mark>H</mark> GRWKAEQAEF	REEALTMKALN	VRLIKGLD <mark>G</mark> G	
fly_FKRP	AFQE	GRR.LFAS	FHTKQRRMDLRF	RQFREMYKKLQ	IKRIVRRAYR	/PGKAQAREVWGQGH

Catalytic domain

	β15			α.6	
	\rightarrow	TT	тт	2222	22222222
		290	300	310	320
	LEWF	GCNKETTRC	FGTVVGDT	PAYLYEERW	FPPCCL <mark>RA</mark> LR
	LEWF	GCNKETPRCI	FGTVVGDT	PAYLYEERWI	FPPCCL <mark>RA</mark> LR
	LEWF	GC SKE SARCI	FGTVAGDT	PAYLYEGRWI	FPPCCL <mark>RA</mark> LR
	LEWF	GCSKESPRCI	FGTVVGDT	PAYLYEGRWI	FPPCCL <mark>RA</mark> LR
	• DQWF	GCSKETARCI	FGTVRDDT	PEYLYIERWI	CPPCCLRALR
	. DRLF	GCSKDTQRC	FGTVVEGT	PQYLYNNQWI	CPPCCLRALR
GLVLDGQFSSSNTSLPLIT	DIDLF	GCERTTKSC	IGSVYNER	YYSYLG <u>KH</u>	<u>FPPCCLDK</u> LR
	GLVLDGQFSSSNTSLPLIT	βIS LEWE LEWE LEWE LEWE LEWE DQWE GLVLDGQFSSSNTSLPLITDIDIS	β15 290 LEWFGCNKETTRC LEWFGCNKETPRC LEWFGCSKESARC LEWFGCSKESARC DQWFGCSKETRC DQWFGCSKESARC DQWFGCSKETRC DQWFGCSKETRC DQFGCSKETRC DQFGCSKETRC DQFGCSKETRC	βI5 TT TT 299 309	615 66 TT TT 0.000 290 300 310 LEWFGCNKETTRCFGTVVGDTPAYLYEERW LEWFGCSKESARCFGTVVGDTPAYLYEERW LEWFGCSKESARCFGTVVGDTPAYLYEERW LEWFGCSKESARCFGTVVGDTPAYLYEERW DEWFGCSKESARCFGTVVGDTPAYLYEERW DEWFGCSKESARCFGTVRDTPEYLYLIT DEWFGCSKETARCFGTVRDTPEYLYLIT DEWFGCSKETARCFGTVRDTPEYLYLIT DEWFGCSKETARCFGTVRDTPEYLYLIT DEWFGCSKETARCFGTVRDTPEYLYLIT DEWFGCSKETARCFGTVRDTPEYLYLIT DEWFGCSKETARCFGTVRDTPEYLYLIT DEWFGCSKETARCFGTVRDTPEYLYLIT

		α7								β	16				α.8	3									β1	7		r	3				α9		
	22	22	٥٥	2	20	٥٥	20	2		÷	->	• _	20	20	20	٥٥	e	٥٥			т	т		-	-		⊳٥	د ف	ىغ	22	Q	22	20	e	20
			33	ò					34	ŧŎ					3	5 Q)				3	60					37	ò				3	80)	
human FKRP	ΕT	AR	ΥV	V	σV	LÞ	ΑA	١G	V	₹¥	WL	ΕC	G	S	L	GΑ	A	RΗ	GI		I P	WD	ΥD	V	L	GΙ	ΥL	ΕĒ	vo	3 N	СE	ΟL	RG	AE	A
bovine FKRP	ET	AR	ΥV	V	σV	LÞ	ΑA	١G	V	R Y	WL	ΕC	G	sī	L	GΑ	A	RН	GI	II	I P	WD	ΥD	v	L	GΙ	ΥL	ΕI	ve	ΞN	СE	QГ	RG	AE	A
mouse FKRP	$\mathbf{E}\mathbf{T}$	AR	ΥV	V	σV	LÞ	ΑA	۱G	V	R Y	WL	ΕC	G	s	L	GΑ	A	RH	GI	IIC	I P	WD	ΥD	V	L	GΙ	ΥL	ΕI	vo	ΞN	СE	QL	RG	AE	А
rat_FKRP	ΕT	AR	ΥV	V	σV	LÞ	ΑA	۱G	VI	R Y	WL	ΕC	GG	sī	Ŀ	GΑ	A	RΗ	GI	II	I P	WD	ΥD	VΙ	L	GΙ	ΥL	ΕI	vo	G N (СE	QГ	RG	AE	А
fish_FKRP	ET.	ΤK	ΥV	ΙI	ΙI	LÞ	SS	G	VI	R Y	WL	ΕC	GG	S	L	GΑ	A	RΗ	QI	ΓIC	I P	WD	ΥD	VI	L	GΙ	ΥL	ΕI	VI	? N	CD	ΥL	ΚN	LD	s
frog_FKRP	Τ <mark>Τ</mark> Ϊ	ΑH	ΗV	ΙI	۲X	Lэ	ΑS	G	V	R Y	WL	ΕC	G	S	L	GΑ	Α	R N	GI	ΓIC	I P	WD	ΥD	VI	L	GΙ	ΥL	ΕI	ΓV	٢L	CA	ΕL	RG	ΑÇ	įS
flv FKRP	T = 1	FN	ΗV	LI	ΞE	FP	ΝV	7 G	I	RΥ	WL	DI	JR.	A	0	SA	I	ΕТ	NF	ILS	5 P	DA	ΥD	ΙĪ	I	SF	NV	0	LE	E R	SN	ΑM	KK	SC	s

Supplementary Figure 2

	β18 → TT 390	β19 400	β20 410	β21	β22 4 3 0	β23 → <u>∞</u>
human_FKRP bovine_FKRP mouse_FKRP rat_FKRP fish_FKRP frog_FKRP fly_FKRP	GSVVDERG GSVVDERG GSVVDERG GSVVDERG GSLVDARG GSLVDARG KPYVDNEG	FVWEKAVEGDE FVWEKAVEGDE FVWEKAVEGDE FVWERAVEGDE YVWERAVEGDE YVWERAVEGDE FYWIKATDGHE	YFRVQYSESNHL YFRVQYSESNHL YFRVQYSESNHL YFRVQYSESNHL YRVQYSESNHL YFRVQFSQSNHL IFRVQFSQSNHL IFRVQFSXPNQV	HVDLWPFYPRI HVDLWPFYPRI HVDLWPFYPRI HVDLWPFYPRI HVDLWPFYPRI HVDLWPFYPRI GVNLLP.YSI:	NGVMTKDTW NGVMTKDTW NGVMTKDTW NGVMTKDTW NGVMTRDTW NGVMTRDTW SGTEAKASG	DHRQDVE PPE DHRQDVE PPE DHRQDVE PPE DHRQDVE PPE CHRQDVE PE CHRQDVE PE CHRQDVE PE CHRQDVE PE CHRQDVE PE
	η4 β 222 450	$\frac{\beta 24}{460}$	α10 <u>00000000</u> 470	480	α11 <u>000000</u> 490	
human_FKRP bovine_FKRP mouse_FKRP rat_FKRP fish_FKRP frog_FKRP fly_FKRP	HFLQPLVH HFLQPLVH HFLQPLVH HFLQPLVH HFLQPLVH SFLQPLQT DYLHPMST	PLPFAGFVAQA PLPFAGFVAQA PLPFAGFMAQA PLAFAGFMAQA PMPFAGITTYG LHFAGGFAQA VIFLGKSVMC	NYRRFLELKF PNNYRRFLELKF NNYRRFLELKF NNYRRFLELKF NNHRAFLELKF NHHVQLLRMKF NHHVQLLRMKF NNHVQLLRMKF	G PGVIENPQYI G PGVIENPEYI G PGVIENPEYI G PGVIENPEYI G EGVIENPQYI G EKVIEEPEYI	PNPALLSLT PNPALLSLG PNPALLSLT PNPALLSLT PNPAKKRLD PNPALLTMR RIRVK	SSG SSS SGS SGS SGS SGS SADLDADED

Supplementary Figure 2.

Structure-based sequence alignment of FKRP homologues, calculated using the program MAFFT [1]. White letters on red boxes represent identical amino-acid residues; red letters boxed by blue represent homologous residues. Arrows (β -strand), TTs (turn), coil symbols (α -helix) above the sequences, and green 1 characters (S-S bond) below the sequence are determined and drawn using ENDscript server [2] and the program ESPRIPT 3.0 (http://endscript.ibcp.fr). The aligned proteins sequences are from human (Q9H955), bovine (F1MN71), mouse (Q8CG64), rat (Q4KLJ4), fish (Q0PIP5), frog (A0A1L8F835), and fly (Q9W2P2). UniprotKB/Swiss-Prot entries are indicated in parentheses.

Supplementary Figure 3.

Mutation sites in the protomeric dimer. The dimer structure of sFKRP is shown in cartoon model. Three disease-related mutation sites analyzed in this study are shown in red spheres.

Supplementary Figure 4.

Divalent cation requirements for the enzymatic activity of sFKRP with CDP-Rbo and the RboP-(phospho-)core M3 peptide. A reaction buffer containing no divalent cations or containing 10 mM EDTA, MgCl₂, MnCl₂, CaCl₂ or BaCl₂ was used respectively. Average values \pm SE of three independent experiments are shown. Each dot represents one data point. Source data are provided as a Source Data file.

Supplementary Figure 5.

Confirmation of the preparation of the RboP-core M3 peptide by MALDI-TOF-MS. The peak 1915.9 corresponds to the $[M + H]^+$ ion of the RboP-core M3 peptide (RboP-GalNAc-GlcNAc-Man peptide). The peak 1937.8 corresponds to the $[M + Na]^+$ ion of the same peptide. Asterisks represent fragment ions formed during the MS experiment.

Supplementary Figure 6.

MALDI-TOF-MS spectra of the eluate around peak S2 in Figure 5B. The peak 1915.9 corresponding to the $[M + H]^+$ ion of the RboP-core M3 peptide (RboP-GalNAc-GlcNAc-Man peptide) was detected but the peak corresponding to the RboP-transferred RboP-RboP-core M3 peptide (calculated *m*/*z* value, 2129.9) was not detected in the presence of sFKRP (lower). Asterisks represent fragment ions formed during the MS experiment.

Supplementary Figure 7.

The anomalous difference Fourier map around the Barium ion for the Ba-SAD data set (blue mesh). The contour level is 5.0 σ . The color configuration is the same as in Figure 3B.

Supplementary Figure 8.

A) Superimposition of the CDP-Rbo-bound and CMP-bound structures. The color configuration is the same as in Figure 3C and D, except for CMP and CDP-Rbo. Carbon atoms in CDP-Rbo and CMP are colored green and yellow, respectively. Dotted lines indicate proximity between CDP-Rbo (in the Ba²⁺ and CDP-Rbo-bound structure) and Mg²⁺ (the Mg²⁺ and CMP-bound structure). The distances between Ob and Mg²⁺ (site I), and between Ob and Mg²⁺ (site I), and between Ob and Mg²⁺ (site II) were 2.9 and 2.8 Å, respectively. B) Comparison of substrate-free forms. The Mg²⁺-bound structure (Figure 3A) and Ba²⁺-bound structure (Figure 3B) are superimposed. At site I, the long coordination distances observed in the Mg²⁺-bound form permit the binding of Ba²⁺, which has a larger ionic radius. However, site II has a small coordination sphere and it cannot accommodate a Ba²⁺.

Supplementary Figure 9.

A) Homology model of the catalytic domain of FKTN (E249–Y461). Three Asp residues (D317, D319, and D366) are shown as stick models. CDP-Rbo and Ba²⁺ were placed according to the template structure. This model was prepared by SWISS-MODEL (https://swissmodel.expasy.org). B) Structure of the catalytic domain of FKRP (G288-L491) with CDP-Rbo and Ba²⁺ used as a template model. The colors are assigned as in Figure 3C.

Supplementary Figure 10.

Proposed catalytic mechanism of FKRP revealed in this study. In this figure, the catalytic domain (green) and stem domain from another protomer (light blue) are picked up for clarity. Mg²⁺ and Zn²⁺ are shown as orange and gray balls, respectively. A) In the substrate-free state (two Mg²⁺ are bound in this figure, versus one Ba²⁺ at site I), the Rbo-interacting loop is disordered and the C-terminal fragment locates far from the CDP-Rbo binding site. B) When CDP-Rbo binds, the Rbo-interacting loop covers the Rbo moiety and the C-terminal fragment moves to interact with the CDP moiety. In accompaniment with these conformational changes, the zinc-finger loop moves toward the active site to form an acceptor-binding site. The acceptor glycopeptide interacts with both the catalytic and stem domains from different protomers. Then, RboP is transferred to RboP-(phospho-)core M3 from CDP-Rbo. The regions where conformational changes are evoked are colored grey. R295 is shown by stick model. C) After releasing the product (tandem RboP-(phospho-)core M3), the conformation of FKRP returns to the substrate-free form to release CMP.

	Ba ²⁺ bound form	Ba-SAD data	Mg ²⁺ bound form	Mg ²⁺ and	Ba ²⁺ and	Ba ²⁺ , CDP-ribitol
				CMP complex	CDP-ribitol complex	and acceptor complex
data statistics						
Wavelength (angstrom)	1.0000	1,9000	1.0000	1.0000	1.0000	0.9800
Resolution range	48.92 - 2.25 (2.33 - 2.25)	48.93 - 2.24 (2.28-2.24)	45.65 - 2.06(2.13 - 2.06)	47.13 - 2.60(2.69 - 2.60)	43.31 - 2.23 (2.31 - 2.23)	42.74 - 2.47 (2.55 - 2.47)
Space group	$P2_{1}2_{1}2_{1}$	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	P212121
Unit cell a,b,c	77.1, 119.0, 257.6	77.2, 119.2, 255.8	76.8, 119.4,258.1	77.6, 118.7, 252.7	77.4, 118.8, 253.1	78.6, 119.2, 254.6
Total reflections	836111	3249448	1025492	485564	752011	574111
Unique reflections	112891	114256	147623	72606	114810	86984
Multiplicity	7.4	28.4	6.9	6.7	6.5	6.6
Completeness	1.00 (0.99)	1.00 (1.00)	1.00 (0.97)	1.00 (1.00)	1.00 (0.97)	1.00 (0.99)
Mean I/sigma(I)	14.47 (1.59)	22.40 (2.40)	18.68 (1.75)	13.56 (1.56)	14.36 (1.61)	16.18 (1.62)
Wilson B-factor	45.39	43.36	37.00	51.64	39.56	55.28
R-merge	0.099	0.140	0.066	0.119	0.098	0.087
R-meas	0.107	0.143	0.071	0.130	0.106	0.094
CC1/2	0.999 (0.708)	0.999 (0.838)	0.999 (0.633)	0.998 (0.718)	0.999 (0.699)	0.999 (0.765)
refinement statistics						
PDB ID	6KAN	6L7U	6KAK	6KAL	6KAJ	6KAM
R-work	0.196	0.200	0.196	0.195	0.209	0.208
R-free	0.232	0.234	0.227	0.241	0.244	0.249
Number of non-hydrogen atoms	14132	14108	14589	14174	14571	14279
macromolecules	13541	13531	13523	13805	13780	13796
ligands	107	78	123	110	256	290
solvent	484	499	943	259	535	193
Protein residues	1762	1758	1767	1772	1779	1779
RMS(bonds)	0.010	0.005	0.006	0.010	0.005	0.007
RMS(angles)	1.05	0.767	0.724	1.002	0.868	0.949
Ramachandran favored (%)	97.6	97.1	97.8	96.8	96.9	96.8
Ramachandran allowed (%)	2.3	2.7	2.1	3.0	3.0	3.1
Ramachandran outliers (%)	0.1	0.2	0.1	0.2	0.1	0.2
Rotamer outliers (%)	0.2	0.1	0.0	0.1	0.0	0.0
Average B-factor	57.47	59.56	46.61	65.16	56.71	75.35
macromolecules	57.52	59.67	46.44	65.27	56.82	75.09
ligands	82.05	84.35	65.02	80.53	68.38	97.92
solvent	50.39	52.70	46.69	52.99	49.38	60.36

Supplementary Table 1. X-ray crystallographic data collection and refinement statistics

Statistics for the highest-resolution shell are shown in parentheses.

Supplementary Table 1. X-ray crystallographic data collection and refinement statistics (continued)

	Mg ²⁺ bound form	Mg ²⁺ bound form
	Zinc peak data*	Zinc remote low data*
data statistics		
Wavelength (angstrom)	1.2825	1.2898
Resolution range	47.30 - 2.41 (2.49 - 2.41)	49.05 - 2.41 (2.49 - 2.41)
Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁
Unit ce ll	76.9, 119.4, 257.6	77.0, 119.5, 257.8
Total reflections	610687	611519
Unique reflections	177224	177585
Multiplicity	3.4	3.4
Completeness (%)	1.00 (0.98)	1.00 (0.98)
Mean I/sigma(I)	12.97 (2.18)	12.15 (1.74)
Wilson B-factor	38.25	40.49
R-merge	0.074	0.081
R-meas	0.088	0.096
CC1/2	0.998 (0.788)	0.998 (0.694)
refinement statistics		
PDB ID	6L7S	6L7T
R-work	0.182	0.177
R-free	0.211	0.210
Number of non-hydrogen atoms	14524	14642
macromolecules	13562	13562
ligands	108	108
solvent	854	972
Protein residues	1759	1759
RMS(bonds)	0.007	0.006
RMS(angles)	0.782	0.832
Ramachandran favored (%)	97.4	97.7
Ramachandran allowed (%)	2.6	2.2
Ramachandran outliers (%)	0.1	0.1
Rotamer outliers (%)	0.0	0.2
Average B-factor	49.5	49.95
macromolecules	49.48	49.81
ligands	66.54	65.87
solvent	47.41	50.11

Statistics for the highest-resolution shell are shown in parentheses.

* Friedel mates were counted separately.

chain	Α	B	С	D	A+B	C+D
Α	-	1496 (931)	774 (0)	85(9)	-	859 (9)
В	1496 (931)	-	91(24)	697 (697)	-	788(721)
С	774 (0)	91(24)	-	1463(926)	865 (24)	-
D	85(9)	697 (697)	1463(926)	-	782 (706)	-
A+B	-	-	865 (24)	782 (706)	-	1647 (730)
C+D	859 (9)	788(721)	-	-	1647 (730)	-

Supplementary Table 2. Buried Surface Area $(Å^2)$

	Ligand bound	l state		
	Mg ²⁺ bound		Mg ²⁺ and CMP	
Mg ²⁺ (site I) *1	Asp360(Oδ)	3.61	Asp360(Οδ)	3.37
	Asp362(Oδ)	3.40	Asp362(Οδ)	2.16
	Asp364(Oδ)	3.00	Asp364(Οδ)	2.06
			CMP (Ο1α)	2.61
Mg ²⁺ (site II)	Asp362(Oδ)	2.22	Asp362(Οδ)	2.15
			Asp364(Οδ)	2.80
			Asp416(Οδ)	2.25

Supplementary Table 3. Summary of metal ion interaction in each state

	Ligand bound	Istate		
	Ba ²⁺ bound		Ba ²⁺ and CDP-Rbo)
Ba ²⁺ (site I)	Asp360(Oδ)	4.38	Asp360(Οδ)	3.05
	Asp362(Oδ)	3.92	Asp362(Οδ)	2.78
	Asp364(Oδ)	3.90	Asp364(Οδ)	2.90
			CDP-Rbo(O α)	2.72
			CDP-Rbo(O β)	2.96
Ba ²⁺ (site II) *2	Asp362(Oδ)	2.98		
	Asp364(Oδ)	3.18	Not found	
	Asp416(Οδ)	4.34		

*1) Mg^{2+} (site I) in Mg^{2+} bound state is only found in chain A and B.

*2) Ba²⁺ (site II) in Ba²⁺ bound state is only found in chain B.

Supplementary Table 4. Sequences of used primers

Oligonucleotide	Sequence 5'-3'
FKRP_pPA_A45_F	GTACTTCCAGGGAGGCCGGCCTGCCGGCCCCCGTGTCACCGTCC
FKRP_pPA_Ct(G495)_R	CTTAAGCGCTAGAGGCCGGCCTCAGCCGCTTCCCGTCAGACTCAG
Y88F-F	GTGGCAGCCGACACGCTCCCCttcCCGCCCTGGCCCTGCCCCGC
Y88F-R	GCGGGGCAGGGCCAGGGGGGGGGGGGGGGGGGGGGGGGG
S221R-F	CGCGCCCGCGACCTCTTCAACCTCagaGCGCCCCTGGCCCGGCCGG
S221R-R	CCGGCCGGGCCAGGGGCGCtctGAGGTTGAAGAGGTCGCGGGCGCG
L276I-F	CTGCTCCGCGCGCTGGGCATCCGCattGTGAGCTGGGAAGGCGGGCGGCTG
L276I-R	CAGCCGCCCGCCTTCCCAGCTCACaatGCGGATGCCCAGCGCGCGGAGCAG
D360A-F	GGACATCATCCCATGGgccTACGACGTGGACCTGG
D360A-R	CCAGGTCCACGTCGTAggcCCATGGGATGATGTCC
D362A-F	CGGGGACATCATCCCATGGGACTACgccGTGGACCTGGGCATCTACTTGGAGG
D362A-R	CCTCCAAGTAGATGCCCAGGTCCACggcGTAGTCCCATGGGATGATGTCCCCG
D364A-F	CATCATCCCATGGGACTACGACGTGgccCTGGGCATCTACTTGGAGGACGTGG
D364A-R	CCACGTCCTCCAAGTAGATGCCCAGggcCACGTCGTAGTCCCATGGGATGATG
D416A-F	CAGCGAAAGCAACCACTTGCACGTGgccCTGTGGCCCTTCTACCCCCGCAATG
D416A-R	CATTGCGGGGGTAGAAGGGCCACAGggcCACGTGCAAGTGGTTGCTTTCGCTG
H252A-F	GCCCCCGCTGGCCACGGCCgcgGCGCGCTGGAAGGCTGAGCG
H252A-R	CGCTCAGCCTTCCAGCGCGCCgcGGCCGTGGCCAGCGGGGGC
K256A-F	CCACGGCCCACGCGCGCGGGGGGCGGGGGGGGGGGGGGG
K256A-R	GCGCGTCCCTCGCGCTCAGCcgcCCAGCGCGCGTGGGCCGTGG
R295A-F	GCTGCAACAAGGAGACCACGgcgTGCTTCGGAACCGTGGTGGG
R295A-R	CCCACCACGGTTCCGAAGCAcgcCGTGGTCTCCTTGTTGCAGC

Mutational codons were indicated as lower cases.

Supplementary References

- 1. Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics*, 1. 7. [doi: 10.1093/bib/bbx108]
- Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res* 42:W320.W324. [doi: 10.1093/nar/gku316]