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Supplementary Fig. 1 Working hypothesis of the present study and its translational and transformative potential.
 (Continued next page) 



Supplementary Fig. 1 (continued)
A We propose a mechanism whereby normal functioning chaperomes within vulnerable brain regions reconfigure to 
pathological epichaperomes that appear to underlie neurodegenerative disorders with significant stress-
related pathobiology, including AD. We propose the switch of the chaperome into epichaperomes supports 
proteome-wide connectivity dysfunction, and that such dysfunction progresses into global disturbances in dynamic 
intra- and inter-neuronal networks, and ultimately reverberates at a target organ level. We posit that functionally 
AD is a protein connectivity based dysfunction (PCBD), a previously unappreciated aspect of AD biology. 
Specifically, a functional outcome of protein connectivity disruption occurs in vulnerable neocortical regions directly 
leading to cognitive decline, especially in memory and executive function domains. The present study proposes a 
linear paradigm shift whereby structural changes in the epichaperome directly lead to deleterious functional outcomes 
in terms of PCBD, and we provide evidence for how protein connectivity dysfunctions alter protein-to-neuronal circuit-
to-organ level changes in the context of AD. Thus, AD can be considered a disorder whereby dynamic protein 
networks are rewired, which leads to pathological changes in brain circuitry (both loss of normal function and gain of 
aberrant function). 
From a translational perspective, epichaperomes, and in turn the associated protein connectivity disruption, are 
targetable in vivo through delivery of a therapeutic, PU-AD, in clinical evaluation first in healthy volunteers, then in AD 
patients (NCT03935568). We provide proof-of-principle that PU-AD reverses synaptic network imbalances, and improves 
learning and memory. From a transformative perspective, imaging with PU-AD PET-CT reveals epichaperomes 
in living patients diagnosed with AD and not in age-matched cognitively normal controls. This exciting finding may 
prove to be a therapeutic strategy, alone or in combination with other proposed AD-pathology reducing treatments, 
that corrects one of the basic hallmarks of AD, namely synaptic dysfunction within vulnerable memory and executive 
function circuits. This provides a proof-of-concept for a new avenue of rational therapeutics aimed at correcting PCBD 
through de-connecting aberrant epichaperome structures and the proteome-wide pathways they rewire, especially those 
that drive synaptic dysfunction in vulnerable areas critical for normative cognitive processes including memory and 
executive function. 
B This work applies novel, unbiased large-scale chemical biology and bioinformatics analyses pipelines and 
chemical probes (ex. PU-AD, PU-H71, 124I-PU-H71, PU-FITC and PU-beads) to uncover a new mechanism of disease 
– protein connectivity dysfunction – and then validates these provocative findings in cellular and animal models as
well as in humans (both in live patients and postmortem biospecimens). In this chemical biology approach to AD,
PU-H71 and PU-AD are used to inhibit the epichaperome, and in turn probe the dependence of proteome alterations
on the epichaperome. PU-beads are used to isolate the epichaperome and its interactome, which are then analysed
unbiasedly through mass spectrometry and a bioinformatics pipeline to inform on the function of epichaperome-
mediated proteome alterations (i.e. the basis of chemical chaperomics). PU-FITC is used to identify the epichaperome
through fluorescence polarization, fluorescence microscopy or flow cytometry, whereas radiolabeled PU-AD is used to
detect the epichaperome by autoradiography (131I-PU-AD) or by positron emission tomography (124I-PU-AD for PU-AD
PET).
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Supplementary  Fig. 2 Tau pathology and its relationship to the epichaperome. A Age-dependent expression of tau, 
hyperphosphorylated tau and individual chaperome members within indicated brain regions of WT (n = 8) and age-matched 
PS19 (n = 6) mice. H = hippocampus; C = frontal cortex; X = cerebellum. B Representative AT8 immunostaining of indicated 
brain areas and graphed data for PS19 mice treated with vehicle or PU-AD, as indicated in Fig. 8A. Epichaperome inhibition 
in PS19 mice blocked the formation of AT8 human tau species (see PU-AD treatment of mice from 3 mo to 7 mo of age) but 
also reduced the already formed AT8 species (see PU-AD treatment of mice from 8-9 mo to 11-12 mo of age). Graph, mean 
± SEM one-way ANOVA, Tukey’s post-hoc. Slides (n as indicated for each group) were counterstained with hematoxylin. 
Scale bars, 200µm for HIP, 50µm for all other. C,D Western blot showing the expression of soluble tau species C and 
insoluble (FA extracted, panel D) in individual AD mice treated with vehicle or PU-AD, as indicated in Fig. 8A (Group 2). β-
actin, loading control. WT, non-Tg control for mouse tau and antibody cross-reactivity. Graph, mean ± SEM, unpaired two-
tailed t-test, with Welch’s correction, n = 5 vehicle, n = 6 PU-AD for panel C and n = 6 vehicle, n = 6 PU-AD for panel D. 
Source data are provided as a Source Data file. 
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Supplementary Fig. 3 The epichaperome is specific to the AD brain and is independent of the expression levels of 
individual units. A-C 124I-PUAD PET-CT image sets from two different patients show the spatial epichaperome 
expression within the live human brain. A,B show corresponding axial planes through the brain, and C sagittal planes 
through the brainstem. Images were performed 3 h after 124I-PU-AD tracer injection. The AD patient’s bilateral 
parahippocampal region (e.g., left uncus, arrow), brainstem (arrow) and bilateral temporal lobes (arrows) demonstrate 
high radiotracer retention relative to the control patient, indicating epichaperome expression. Thalami (arrows) and 
basal ganglia (arrows) also show mild tracer uptake. The control patient, with no history of neurologic disease or 
cognitive decline, demonstrates no epichaperome signal above background (i.e. noise artifact). Numbers in the scale 
bars indicate upper and lower SUV thresholds that define pixel intensity on PET images. PET, positron emission 
tomography; CT, computerized tomography. D Same as in Fig. 2B with epichaperome levels normalized to total 
chaperone expression levels. Graph, mean ± SEM, unpaired two-tailed t-test, with Welch’s correction, n = 15 for AD 
and n = 8 for ND. Source data are provided as a Source Data file.    
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Supplementary Fig. 4 Characterization of PU-AD: pharmacokinetics and pharmacodynamics in normal and AD brains. 
A-D AD and WT mouse brain exposure after single-dose PU-AD. In the normal brain, the residence time of PU-AD was 
less than 4 h, and similar to that seen in plasma, while in the AD brain (i.e. 3xTg and PS19), PU-AD was retained for over 
24 h. At 24 h after injection, the brain concentration of PU-AD in the 3xTg mice was 250 nM (i.e. 50-fold greater than its 
affinity for the epichaperome measured in these mice). At this time, PU-AD was largely undetected in plasma (B) or in the 
normal brain (D).   Continued next page
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Supplementary Fig. 4 (continued)
D A radiolabeled PU-AD (131I-PU-AD or 124I-PU-AD, tracer amount) was injected i.v. and PU-AD levels were determined 
by autoradiography at 24 h post injection in brain sections obtained from PS19 and WT mice (11mo F), to demonstrate 
specific AD brain retention of PU-AD. The retention of PU-AD in the AD brain is due to kinetic selectivity for 
epichaperomes with a long binding half-life (slow koff). i.p., intraperitoneally, i.v. intravenously. B Each data point 
represents the mean of 3 individual mice (8-10mo M 3xTg, n = 15). C Error bars show mean ± SD. D Error bars show 
mean ± SEM, unpaired two-tailed t-test, PS19 (n = 27) and WT (n = 26). P < 0.0001. See also Fig. 1 for the anatomical 
localization of PU-AD in the PS19 brain and Supplementary Fig. 3, in a representative human AD brain. E Inhibition of 
hyperphosphorylated tau was observed at doses of PU-AD ranging from 30 to 75 mg kg-1 with saturation reached at 
50-75 mg kg-1 under i.p. administration, which corresponds to the dose we also observed maximal epichaperome 
suppression by PU-AD (see Fig. 7B). 12-months old (mo) 3xTg (male) M mice were administered the indicated doses of 
PU-AD and mice were sacrificed 24 h post single injection. Each data point represents an individual mouse (M1 through 
Mn). Error bars show mean ± SEM, one-way ANOVA, Dunnett’s post-hoc, n = 3 per dose. ****P < 0.0001; ***P < 0.001; 
**P < 0.01; *P < 0.05. Source data are provided as a Source Data file.
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Supplementary  Fig. 5 Epichaperome inhibition restores the function of synaptic protein pathways in PS19 mice to WT 
levels. A Western blot of PS19 mice (hippocampus) treated with vehicle or PU-AD as indicated in Fig. 8A. Mice were 
sacrificed 48h post-last injected dose. See also Fig. 7C. B A rebalance in the function of synaptic protein pathways to WT 
levels is observed in PS19 mice treated with PU-AD. Same as in A for mice sacrificed at 24h post-last injected dose of 
the 6-week treatment paradigm. See also Fig. 7D. Source data are provided as a Source Data file.
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Supplementary Fig. 6 Behavioral studies in PS19 mice. A Cognitive defects associated with hippocampal function in 
PS19 mice at ages 6, 8 and 10-11 mo, specifically in spatial learning and memory, were observed using the Barnes 
maze. This test requires mice to learn and remember how to escape the maze using visual cues. All WT mice learned 
to locate the escape hole through training, as indicated by a progressive reduction in the number of errors made before 
identifying the escape hole (measured as ‘Number of errors’). When compared to WT, PS19 mice demonstrated an 
increase in the number of errors, a deficit that became more robust with age (probe memory retention trial: P = 0.7557 
and P = 0.0017, at 6 mo and 8 mo, respectively). Error bars show mean ± SEM, unpaired t-test, wild-type (WT) mice, n 
= 8, 17 and 9 for 6, 8 and 10 mo, respectively, and PS19 n = 9, 18 and 8 for 6, 8 and 10 mo, respectively. B Spatial 
learning and memory evaluated in the Barnes maze in vehicle or PU-AD treated PS19 mice (PS19v and PS19d, 
respectively), and WT mice (Group 1, see also Fig. 8A). Probe memory-retention trial was performed 24h after the last 
acquisition session. Error bars show mean ± SEM, one-way ANOVA; n = 8 WTv, n = 9 PS19v, n = 15 PS19d. C Open 
field locomotor activity. PS19 and WT mice treated with PU-AD or vehicle as described in Fig. 8A were monitored for 4 
min and distance traveled was recorded. Error bars show mean ± SEM, one-way ANOVA with Dunnett’s post-hoc, 
Group 1: WTv, n = 5; PS19v, n = 8; PS19d, n = 8; Group 2: WTv, n = 9; WTd, n = 9; PS19v, n = 8; PS19d, n = 8.  D 
Spatial learning and memory evaluated in the Barnes maze following PU-AD or vehicle treatment of WT mice. Error 
bars show mean ± SEM, two-way ANOVA, n = 18 WTv, n = 17 WTd. Pooled data from 2 experiments. Source data are 
provided as a Source Data file.
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Supplementary Fig. 7 Epichaperome inhibition restores spatial learning and memory in 3xTg mice. 
(Continued next page)



Supplementary  Fig. 7 (continued) 
A Schematic of the treatment and testing paradigm. B,C 3xTg mice demonstrate impaired spatial memory recorded in the 
Barnes maze. PU-AD treatment restores memory in 3xTg mice to WT levels. B Acquisition phase: Error bars show mean 
± SEM, two-way ANOVA, Bonferroni post-hoc. C Probe memory retention trial: Error bars show mean ± SEM, one-way 
ANOVA with Dunnett’s post-hoc. Group 1, males. n  = 6 vehicle treated 3xTg mice (3TGv), n = 6 PU-AD treated 3xTg 
(3TGd) and n = 5 vehicle treated (WTv). Group 2, males. n = 18 WTv, n = 10 3TGv and n = 12 3TGd. D Number of errors 
determined in the Barnes maze for 11mo 3xTg mice (males and females). Acquisition phase: Error bars show mean ± 
SEM, two-way ANOVA, P  < 0.0001, F (1, 165) = 18.55; n = 10M+5F 3TGv and n = 12M+8F 3TGd. Probe memory 
retention trial: Error bars show mean ± SEM, one-way ANOVA with Dunnett’s post-hoc, n = 18M+8F WTv, n = 10M+5F 
3TGv and n = 12M+8F 3TGd. Pooled data from 3 experiments. E Western blot analysis showing the expression of 
human soluble tau species in individual mice treated with Vehicle or PU-AD as indicated in A. Error bars show mean ± 
SD, unpaired t-test with Welch’s correction, n = 5 3TGv, n = 10 3TGd. In accord with a function of the epichaperome in 
mediating pathologic proteostasis changes, but normal proteostasis, we found normal mouse tau phosphorylated at 
Thr231 and Ser262 to be largely unaffected by PU-AD. WT mouse, non-Tg used as a control for mouse tau and antibody 
cross-reactivity; β-actin, loading control; Graph data, mean ± SD, unpaired t-test, n = 3 3TGv, n = 6 3TGd. Source data 
are provided as a Source Data file.
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Supplementary Fig. 8 Chronic epichaperome inhibition by PU-AD is non-toxic in mice. A Changes in body weight, B 
clinical chemistry parameters and C tissue morphology (hematoxylin and eosin stained tissues) of C57/BL6 mice that 
received PU-AD (n = 7) or vehicle (n = 6) for the duration indicated in panel A. Graph, each data point is the mean of 
an individual mouse group. Scale bars in C, 1000µm for lung, brain and heart, 200µm for all other. D Kaplan-Meier 
plots demonstrate that PU-AD significantly extends survival of PS19 mice. WT, average survival for non-Tg mice. Mice 
were administered PU-AD intraperitoneally at 75mg kg-1 on a three-times per week schedule. P value by two-sided log-
rank test is shown. Source data are provided as a Source Data file. 
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