Supplementary Material

Theoretical Studies on the Selectivity Mechanisms of Glycogen Synthase Kinase 3β (GSK3 β) with Pyrazine ATP-competitive inhibitors by 3D-QSAR, Molecular Docking, Molecular Dynamics Simulation and Free Energy Calculations

Jingyu Zhu,1,†,* Yuanqing Wu,1,† Lei Xu,2 Jian Jin,1,*

¹School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China; ²Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou213001, P.R. China

Fig. (S1). (a) the structure of the template molecule Cpd25; (b) a molecular overlay of all compounds based on a common backbone using Cpd25 as a template.

Fig. (S2). The overlap of the best docking results with the original ligands in the experimental crystal structure by CDOCKER (a) 4ACC/Cpd23; (b) 4ACD/Cpd18; (c) 4ACG/Cpd25; (d) 4ACH/Cpd51; the overlap of the best docking results with the original ligands in the experimental crystal structure by Flexible docking (e) 4ACD/Cpd18; (f) the Flexible docking conformational overlay of 31 compounds.

Fig. (S3). The root-mean-square deviations (RMSDs) of the four studied complexes.

Fig. (S4). 2D presentations of the interactions between GSK3β and **(a)** Cpd23; **(b)** Cpd25; **(c)** Cpd51; **(d)** 2D presentations of the interactions between CDK2 and Cpd23.

No. Actual pIC₅₀ Pred pIC₅₀ Res 5 7.387 7.457 0.007 8 7.131 7.020 0.111 9 6.523 6.482 0.041 10 9.114 9.151 -0.037 11 9.337 9.324 0.013 12 8.959 8.907 0.052 0.023 13 8.824 8.801 14 8.046 8.334 -0.288 -0.002 15 8.201 8.203 0.048 16 8.699 8.651 *17 7.745 7.729 0.016 *18 8.31 8.465 -0.155 *19 8.357 9.051 -0.694 20 9.398 9.078 0.320 21 7.921 7.967 -0.046 22 9.174 9.456 -0.282 *23 7.699 8.021 0.023 *24 8.076 8.546 0.102 25 9.658 9.539 0.119 9.319 9.238 0.081 26 27 6.921 7.140 -0.219 28 7.194 7.225 -0.031 37 8.509 8.617 -0.108 7.796 7.784 0.012 38 41 6.991 6.782 -0.350 44 7.921 7.899 0.022 45 6.161 6.002 0.159 46 9.004 8.903 0.101 49 7.131 6.799 0.332 *50 0.746 7.046 6.300 *51 7.658 6.311 1.347

Table S1. The predicted activities by CoMFA(1) model and the biological activity of the compounds

Table S2. Structural alignment based on molecular docking statistical results of the CoMFA models.

CoMFA(1)		CoMFA(2)	CoMFA(3)	CoMFA(4)	CoMFA(5)
q ²	0.561	0.433	0.538	0.541	0.556
r ²	0.994	0.997	0.993	0.996	0.997
SEE	0.093	0.067	0.095	0.075	0.061
F	587.493	1146.750	708.881	1136.749	1749.453
Components	5	5	4	4	4
Steric	1			0.271	
Electrostatic	0			0	
Steric (indicator)			1		0.347
Electrostatic (indicator)			0		0
H-bond acceptor		0.671		0.471	0.406
H-bond donor		0.329		0.258	0.247
r_{test}^2	0.188	0.006	0.130	0.007	0.008