An ultra-stable cytoplasmic antibody engineered for *in vivo* applications

Kabayama *et al*.

Supplementary Information (8 figures, 3 tables)

Isolation of scFv-A36 specifically binding to the C2A domain of Syt I/II. (A) Western blot analysis of COS-7 cells expressing Flag-tagged full-length Syt I–XI using purified scFv-GFPA36 as the primary antibody; immunoreactive bands were visualised with anti-GFP antibody and HRP-labelled anti-rabbit antibodies (upper panel). Blots were reprobed with anti-Flag antibody (lower panel). (B) Multiple alignments of amino-acid sequences of VH of 6 scFvs: ScFv-A36 (accession no. AB472376), ScFv-1 (antitissue factor D3; accession no. 1K6Q H), ScFv-2 (anti-white spot syndrome virus; accession no. AAY88907), ScFv-3 (anti-S antigen of hepatitis B virus; accession no. AAD34865), and ScFv-4 (immunoglobulin heavy chain; accession no. AAA16587), and scFv-A36 mutant (termed scFv-M4). Residues identical to A36 in CDRs are shown in red letters. Asterisks indicate amino-acid residues conserved among the 6 scFv proteins. Note that only the amino-acid sequences of CDR1 and CDR3 are shown for scFv-M4. Nucleotide sequences of CDR1 and CDR3 were mutated by PCR with degenerate primers (arrows). (C) Intracellular binding of ScFv-GFPA36, but not of scFv-GFPM4, with Flag-Syt I expressed in COS7 cells. Immunoprecipitates obtained with anti-Flag (M2) antibody were analysed using western blotting with anti-Syt I (SYA148) antibody and HRP-labelled anti-T7 antibody to detect scFv proteins. The predicted molecular weight of ScFv-GFPM4 is slightly less than that of scFv-GFPA36 (A36: 55733.82; M4: 55355.63). In addition, CDR1 and CDR3 of A36 are relatively acidic and residue-rich (5 in 16 residues), while those of M4 are not (1 in 16 residues). The binding of SDS to acidic or basic aminoacid residues is relatively week compared to other amino acids, affecting the migration distance of acidic or basic residue-rich proteins (e.g., histone proteins) in SDS-PAGE. This raises the possibility that the difference in net negative charge of CDR1 and CDR3 of STAND-A36 (-5.1 at pH 7.4) and STAND-M4 (-1.3 at pH 7.4) might affect their migration in SDS-PAGE.

Supplementary Figure 2.

Comparison of the net charge of 94 scFv proteins fused with different peptide tags. (a) Net charge of 94 scFv proteins obtained using a BLAST search for scFv-A36 (Supplementary Table 2) at cytoplasmic pH 7.4 (left panel) and pH 6.6 (right panel). Intrabody constructs fused with peptide tags are described in Fig. 1a. (b) Average pI of 94 scFv proteins fused with indicated peptide tags as described in (a). Statistical analyses were performed using two-tailed one-way ANOVA and Tukey's post hoc multiple comparisons test (Supplementary Table 1). Error bars represent standard error of the mean. Source data are provided as a Source Data file.

Aggregation rate of scFv proteins in HeLa cells.

Fluorescent images of 15 s3Flag-scFv-HA constructs expressed in HeLa cells. The s3Flag-scFv-HA-expressing vectors were transfected into HeLa cells. The rate of cells with aggregates was measured via immunochemical analysis with anti-HA antibody to detect s3Flag-scFv-HA proteins. Arrows indicate cytoplasmic aggregates of scFv proteins. Scale bars, 50 μ m. The accession number of scFvs used is displayed in Supplementary Table 2. Source data are provided as a Source Data file.

Supplementary Figure 4.

Co-localization of poly-ubiquitin with scFv-GFPA36 aggregates in HeLa cells. Fluorescent images of scFv-GFPA36-(upper panels), or s3Flag-A36-HA- (lower panels) expressing HeLa cells. ScFvs were stained using anti-T7 antibody (upper left, green) or anti-HA antibody (lower left, green). Poly-ubiquitin was detected with anti-multi-ubiquitin antibody (magenta). Arrows indicate cytoplasmic aggregates of scFv-GFPA36 co-localised with poly-ubiquitin. Arrowheads indicate non-poly-ubiquitinated s3Flag-A36-HA stably expressed in the cytoplasm. Scale bar, 20 µm.

Long-term expression of STAND proteins without aggregation in the SNc. Fluorescent images of the SNc 6 months after injection with AAV9/3-STAND-A36 (a–c) or AAV9/3-STAND-M4 (d–f). (g–l) Magnified images of the SNc region in a–c or d–f. STAND proteins were stably expressed in the cytoplasm of dopaminergic neurons (arrows). Scale bars, 200 µm (c, f) and 50 µm (l).

ScFv-GFPA36 causes aggregation and tyrosine hydroxylase reduction the SNc. AAV-scFv-GFPA36 vectors (1×10^9 vg/mouse) were injected into the SNc region of the right cerebral hemisphere. Brains were fixed and analysed using immunohistochemistry 31 days after AAV injection. (a) Fluorescence micrographs of the SNc in the injected right hemisphere are shown. Upper panel: GFP in scFv-GFPA36 (green); lower panel: merged image of scFv-GFPA36 (green) and tyrosine hydroxylase (TH, magenta) expressed in dopaminergic neurons (magenta). ScFv-GFPA36 protein aggregated in the cytoplasm of some neurons (arrows). Scale bar, 100 μ m. (b) Fluorescence micrographs of TH in the SNc 31 days (lower, scFv-GFPA36) or 6 months (upper, STAND-A36) after AAV injection. Scale bar, 200 μ m. (c) Quantification of fluorescence intensity of TH in SNc (left panel) and striatum (right panel) of the right and left hemisphere. Note that TH expression in the SNc, not the striatum, of the right hemisphere injected with scFv-GFPA36-expressing AAV vectors was 85.74%, a statistically significant decrease when compared with that in the SNc of the non-injected left hemisphere. Statistical analyses were performed using a two-tailed unpaired *t*-test (Supplementary Table 1). Error bars represent standard error of the mean. Source data are provided as a Source Data file.

Supplementary Figure 7.

Bilateral expression of STAND-A36 and STAND-M4 in the SNc. (a) Immunohistochemistry of SNc (Green, anti-Flag to detect STAND-A36 [upper left panel] or STAND-M4 [upper right panel]; red, anti-TH antibody to detect dopamine neurons). Scale bar, 200 µm.

Supplementary Figure 8.

Low efficiency of soluble Myc-Y13-259 purification from *E.coli* cytoplasm. (a) Lanes 1–3, indicate amounts of bovine serum albumin (BSA) as a standard protein; lanes 4–7, washing fractions; lane 8, first eluted fraction with myc peptide; lane 9, second eluted fraction with myc peptide; lane 10, no sample loaded; lane 11, Triton X-100-insoluble fraction (an arrowhead indicates aggregated Myc-Y13-259); Eluted Myc-Y13-259 is indicated by an arrow; molecular weight (kDa) is indicated on the left. Note that the amount of soluble Myc-Y13-259 (lane 8) obtained from 400 mL culture was approximately 10 µg (0.1mg per ml); this is not sufficient to determine the protein stability with PSA, which requires at least 300 µg of proteins for three independent experiments.

Supplementary Table 1					
Figure	Comparisons	F, P values	Post-hocTest	P values	Significance
1.d, A36:	Two-tailed one-way	F(2, 6) = 834, 2520, P <	Tukey's multiple		
T7, EGFP, His vs. s3Flag	ANOVA Two-tailed one-way	(2, 6) = 8342520 P <	comparisons Tukey's multiple	< 0.00001	****
T7, EGFP, His vs. s3Flag, HA	ANOVA Two-tailed one-way	0.00001 F (2, 6) = 834.2520, P <	comparisons Tukey's multiple	< 0.00001	*****
s3Flag vs. s3Flag, HA	ANOVA	0.00001	comparisons	0.0161	*
1.d, M4:			Tukey's post-hoc		l
T7, EGFP, His vs. s3Flag	Two-tailed one-way ANOVA	F (2, 6) = 180.6460, P < 0.00001	multiple comparisons	< 0.00001	****
T7, EGFP, His vs. s3Flag, HA	Two-tailed one-way ANOVA	F (2, 6) = 180.6460, P < 0.00001	Tukey's post-hoc multiple comparisons	< 0.00001	****
s3Flag vs. s3Flag, HA	Two-tailed one-way ANOVA	F (2, 6) = 180.6460, P < 0.00001	Tukey's post-hoc multiple comparisons	0.0194	*
2.a, pH 6.6	Correlation	Peason $r = 0.6181$, R squared = 0.3821		0.008179	**
2.a, pH 7.4	Correlation	Peason $r = 0.3709$, R squared = 0.1376		0.14274	
2.b	Correlation	Peason r = 0.8392 , R squared = 0.7042		0.00002542	***
3.h:	+	squared = 0.7042			
STAND-A36 vs. scFv-GFPA36	Two-tailed one-way ANOVA	F (2, 8) = 15.1284006, P = 0.00191216	Tukey's post-hoc multiple comparisons	0.001816727	**
STAND-A36 vs. scFv-T7-A36	Two-tailed one-way ANOVA	F (2, 8) = 15.1284006, P = 0.00191216	Tukey's post-hoc multiple	0.014650432	*
scFv-GFPA36 vs. scFv-T7-A36	Two-tailed one-way ANOVA	F (2, 8) = 15.1284006, P = 0.00191216	Tukey's post-hoc multiple	0.478268323	n.s.
6.a:	1		comparisons		
GST vs. GST-Syt I-C2A	Two-tailed one-way ANOVA	F (2, 6) = 9632.99747329107, P = 0 00000000030177	Tukey's post-hoc multiple comparisons	6.6E-14	***
GST vs. GST-Syt I-C2B	Two-tailed one-way ANOVA	F (2, 6) = 9632.99747329107, P = 0.000000000030177	Tukey's post-hoc multiple comparisons	0.220593866	n.s
GST-Syt I-C2A vs. GST-Syt I-C2B	Two-tailed one-way ANOVA	F (2, 6) = 9632.99747329107, P = 0.00000000030177	Tukey's post-hoc multiple comparisons	6.6E-14	***
6.e	Two-tailed Mann Whitney test			0.002164502	**
6.h	Two-tailed unpaired t test			0.031055716	*
7.b:					
	Two-tailed one-way	F(2, 14) = 9.2457 P =	Tukey's post-hoc		
M4 vs. A36	ANOVA	(2, 14) = 0.2457, P = 0.002757	multiple comparisons Tukey's post-hoc	0.0071	**
M4 vs. Non-injected	ANOVA	r (2, 14) – 9.2437, r – 0.002757	multiple comparisons Tukey's post-hoc	0.9352	n.s.
A36 vs. Non-injected	Two-tailed one-way	F(2, 14) = 9.2457, P =	rancey s post not		
7 c [.]	ANOVA	0.002757	multiple comparisons	0.0079	**
,	ANOVA	0.002757	multiple comparisons	0.0079	**
Striatum	ANOVA Two-tailed one-way ANOVA	0.002757 F (2, 15) = 0.5833, P = 0.5702	multiple comparisons Tukey's post-hoc multiple comparisons	0.0079	** n.s.
Striatum	ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA	0.002757 F (2, 15) = 0.5833, P = 0.5702 F (2, 15) = 1.2156, P = 0.3241	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons	0.0079	** n.s. n.s.
Striatum SN 7.d	ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA	0.002757 F (2, 15) = 0.5833, P = 0.5702 F (2, 15) = 1.2156, P = 0.3241	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons	0.0079	** n.s. n.s.
Striatum SN 7.d Striatum (DOPAC)	ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA	0.002757 F (2, 15) = 0.5833, P = 0.5702 F (2, 15) = 1.2156, P = 0.3241 F (2, 15) = 0.995351739955074, P = 0.392734666340861	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons	0.0079	** n.s. n.s.
Striatum SN 7.d SN	ANOVA Two-tailed one-way ANOVA	0.002757 F (2, 15) = 0.5833, P = 0.5702 F (2, 15) = 1.2156, P = 0.3241 F (2, 15) = 0.995351739955074, P = 0.392734666340861 F (2, 15) = 1.63394607458641, P = 0.228045313138747	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons	0.0079	** n.s. n.s.
Striatum SN 7.d Striatum (DOPAC) SN (DOPAC) 7.e	ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA	0.002757 F (2, 15) = 0.5833, P = 0.5702 F (2, 15) = 1.2156, P = 0.3241 F (2, 15) = 0.995351739955074, P = 0.392734666340861 F (2, 15) = 1.63394607458641, P = 0.228045313138747	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons	0.0079	**
Striatum SN 7.d Striatum (DOPAC) SN (DOPAC) 7.e striatum (HVA)	ANOVA Two-tailed one-way ANOVA	0.002757 F (2, 15) = 0.5833, P = 0.5702 F (2, 15) = 1.2156, P = 0.3241 F (2, 15) = 0.995351739955074, P = 0.392734666340861 F (2, 15) = 1.63394607458641, P = 0.228045313138747 F (2, 15) = 1.07714613351408, P = 0.365500861163008	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons	0.0079	**
Striatum SN 7.d Striatum (DOPAC) SN (DOPAC) 7.e Striatum (HVA) SN (HVA)	ANOVA Two-tailed one-way ANOVA	0.002757 F (2, 15) = 0.5833, P = 0.5702 F (2, 15) = 1.2156, P = 0.3241 F (2, 15) = 0.995351739955074, P = 0.392734666340861 F (2, 15) = 1.63394607458641, P = 0.228045313138747 F (2, 15) = 1.07714613351408, P = 0.365500861163008 F (2, 15) = 1.1438894209712, P = 0.353814724336619	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons	0.0079	**
Striatum SN SN 7.d Striatum (DOPAC) SN (DOPAC) 7.e Striatum (HVA) SN (HVA) 8.a-d	ANOVA Two-tailed one-way ANOVA	0.002757 F (2, 15) = 0.5833, P = 0.5702 F (2, 15) = 1.2156, P = 0.3241 F (2, 15) = 0.995351739955074, P = 0.392734666340861 F (2, 15) = 1.63394607458641, P = 0.228045313138747 F (2, 15) = 1.07714613351408, P = 0.365500861163008 F (2, 15) = 1.11438894209712, P = 0.353814724336619	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons	0.0079	**
Striatum SN SN 7.d Striatum (DOPAC) SN (DOPAC) 7.e Striatum (HVA) SN (HVA) 8.a-d Total distance	ANOVA Two-tailed one-way ANOVA	$\begin{array}{l} 0.002757\\ \hline\\ F(2,15)=0.5833, P=\\ 0.5702\\ \hline\\ F(2,15)=1.2156, P=\\ 0.3241\\ \hline\\ F(2,15)=\\ 0.995351739955074, P=\\ 0.322734666340861\\ \hline\\ F(2,15)=\\ 1.63394607458641, P=\\ 0.228045313138747\\ \hline\\ F(2,15)=\\ 1.1714613351408, P=\\ 0.365500861163008\\ \hline\\ F(2,15)=\\ 1.1438894209712, P=\\ 0.353814724336619\\ \hline\\ F(2,19)=\\ 0.688530660451682, P=\\ 0.514415992105662\\ P=\\ 0.514415992105662\\ \hline\end{array}$	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons	0.0079	** n.s.
Striatum Striatum SN 7.d SN COPAC) SN (DOPAC) 7.e Striatum (HVA) SN (HVA) 8.a-d Total distance Total center time:	ANOVA Two-tailed one-way ANOVA	0.002757 F (2, 15) = 0.5833, P = 0.5702 F (2, 15) = 1.2156, P = 0.3241 F (2, 15) = 0.995351739955074, P = 0.322734666340861 F (2, 15) = 1.63394607458641, P = 0.228045313138747 F (2, 15) = 1.10714613351408, P = 0.353814724336619 F (2, 15) = 1.11438894209712, P = 0.353814724336619 F (2, 19) = 0.688530660451682, P = 0.514415992105662	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons	0.0079	** n.s.
Striatum Striatum SN 7.d Striatum (DOPAC) SN (DOPAC) 7.e Striatum (HVA) SN (HVA) 8.a-d Total distance Total center time:	ANOVA Two-tailed one-way ANOVA	$\begin{array}{c} 0.002757 \\ \hline \\ F(2, 15) = 0.5833, P = \\ 0.5702 \\ \hline \\ F(2, 15) = 1.2156, P = \\ 0.3241 \\ \hline \\ F(2, 15) = \\ 0.3273466340861 \\ \hline \\ F(2, 15) = \\ 1.63394607458641, P = \\ 0.228045313138747 \\ \hline \\ F(2, 15) = \\ 1.07714613351408, P = \\ 0.365500861163008 \\ \hline \\ F(2, 15) = \\ 1.11438894209712, P = \\ 0.353814724336619 \\ \hline \\ F(2, 15) = \\ 1.1143894209712, P = \\ 0.688530660451682, P = \\ 0.514415992105662 \\ \hline \\ F(2, 19) = \\ 0.514415992105662 \\ \hline \\ F(2, 19) = \\ 0.500041622005 \\ \hline \end{array}$	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons		** n.s. n.s.
Striatum Striatum SN 7.d Striatum (DOPAC) SN (DOPAC) 7.e Striatum (HVA) SN (HVA) 8.a-d Total distance Total center time: M4 vs. A36	ANOVA ANOVA Two-tailed one-way ANOVA	$\begin{array}{l} 0.002757\\ \hline\\ F(2,15)=0.5833, P=\\ 0.5702\\ \hline\\ F(2,15)=1.2156, P=\\ 0.3241\\ \hline\\ F(2,15)=\\ 0.995351739955074, P=\\ 0.322734666340861\\ \hline\\ F(2,15)=\\ 1.63394607458641, P=\\ 0.228045313138747\\ \hline\\ F(2,15)=\\ 1.07714613351408, P=\\ 0.365500861163008\\ \hline\\ F(2,15)=\\ 1.11438894209712, P=\\ 0.353814724336619\\ \hline\\ F(2,19)=\\ 0.514415992105662\\ \hline\\ F(2,19)=\\ 0.409525663343881\\ \hline\\ F(2,19)=\\ \end{array}$	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons	0.0079	** n.s. n.s. n.s. n.s.
Striatum Striatum SN 7.d SN 7.d Striatum (DOPAC) SN (DOPAC) 7.e Striatum (HVA) SN (HVA) SN (HVA) 8.a-d Total distance Total center time: M4 vs. A36 M4 vs. non-injected	ANOVA ANOVA Two-tailed one-way ANOVA	$\begin{array}{l} 0.002757\\ \hline\\ F(2,15)=0.5833, P=\\ 0.5702\\ \hline\\ F(2,15)=1.2156, P=\\ 0.3241\\ \hline\\ F(2,15)=\\ 0.995351739955074, P=\\ 0.32734666340861\\ \hline\\ F(2,15)=\\ 1.63394607458641, P=\\ 0.228045313138747\\ \hline\\ F(2,15)=\\ 1.0714613351408, P=\\ 0.365500861163008\\ \hline\\ F(2,15)=\\ 1.1438894209712, P=\\ 0.353814724336619\\ \hline\\ F(2,15)=\\ 1.1438894209712, P=\\ 0.353814724336619\\ \hline\\ F(2,19)=\\ 0.514415992105662\\ \hline\\ F(2,19)=\\ 3.79839315463708, P=\\ 0.040952663343881\\ \hline\\ F(2,19)=\\ 3.79839315463708, P=\\ 0.040952663343881\\ \hline\\ F(2,19)=\\ \end{array}$	multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc multiple comparisons Tukey's post-hoc	0.0079	** n.s. n.s. n.s. n.s.

Moving speed	Two-tailed one-way ANOVA	F (2, 19) = 1.19391403575504, P = 0.324769852481788			
Rearing	Two-tailed one-way ANOVA	F (2, 19) = 0.403672202712696, P			
8.e		= 0.673456897081155			
Day 1 vs. Day 5:					
Non-injected	Two-tailed two-way ANOVA		Tukey's post-hoc multiple comparisons	P = 0.0073400238451 99	**
M4	Two-tailed two-way ANOVA	Interaction: F (8, 76) = 2.890, P=0.007267746908046, Time: F (2, 771, 52.66) = 30.43, P = 0.00000000039300, Gene: F (2, 19) = 6.208, P = 0.008420081234325	Tukey's post-hoc multiple comparisons	P = 0.0023060606957 30	**
A36	Two-tailed two-way ANOVA		Tukey's post-hoc multiple comparisons	P = 0.0885538344578 45	n.s.
Day 5:					
Non-injected vs. A36	Two-tailed two-way ANOVA	Interaction: $F(8, 76) = 2.890$, P=0.007267746908046, Time: $F(2.771, 52.66) = 30.43$, $P = 0.00000000039300$, Gene: $F(2, 19) = 6.208$, P = 0.00000000039300,	Tukey's post-hoc multiple comparisons	P = 0.0247	*
Non-injected vs. M4	Two-tailed two-way ANOVA	$\begin{array}{l} 0.008420081234325\\ \text{Interaction: F (8, 76) = }\\ 2.890,\\ P=0.007267746908046,\\ \text{Time: F (2.771, 52.66)}\\ = 30.43, P = \\ 0.000000000039300,\\ \text{Gene: F (2, 19) = 6.208},\\ P = \\ 0.008420081234325 \end{array}$	Tukey's post-hoc multiple comparisons	P = 0.9933	n.s.
A36 vs. M4	Two-tailed two-way ANOVA	Interaction: F (8, 76) = 2.890, P=0.007267746908046, Time: F (2.771, 52.66) = 30.43 , P = 0.00000000039300, Gene: F (2, 19) = 6.208 , P = 0.008420081234325	Tukey's post-hoc multiple comparisons	P = 0.0053	**
Day 1:					
Non-injected vs. A36	Two-tailed one-way ANOVA	Interaction: F (8, 76) = 2.890, P=0.007267746908046, Time: F (2.771, 52.66) = 30.43 , P = 0.00000000039300, Gene: F (2, 19) = 6.208, P = 6.0001202020	Tukey's post-hoc multiple comparisons	P = 0.9630	n.s.
Non-injected vs. M4	Two-tailed one-way ANOVA	$\begin{array}{l} 0.008420081234325\\ \text{Interaction: F (8, 76) =}\\ 2.890,\\ P=0.007267746908046,\\ \text{Time: F (2.771, 52.66)}\\ = 30.43, P=\\ 0.000000000039300,\\ \text{Gene: F (2, 19) = 6.208,}\\ P=\\ 0.008420081234325\\ \end{array}$	Tukey's post-hoc multiple comparisons	P = 0.6099	n.s.
A36 vs. M4	Two-tailed one-way ANOVA	$\begin{array}{l} \text{Interaction: F (8, 76)} = \\ 2.890, P=0.007267746908046, \\ \text{Time: F (2.771, 52.66)} \\ = 30.43, P = \\ 0.00000000039300, \\ \text{Gene: F (2, 19)} = 6.208, \\ P = \\ 0.008420081234325 \end{array}$	Tukey's post-hoc multiple comparisons	P = 0.4678	n.s.
9.c:		T	Tukey's nost-boo	1	1
Myc vs. s3Flag	Two-tailed one-way ANOVA	F (2, 6) = 2110.0416, P < 0.00001	multiple comparisons	< 0.00001	****
Myc vs. s3Flag, HA	Two-tailed one-way ANOVA	F (2, 6) = 2110.0416, P < 0.00001	nukey's post-hoc multiple comparisons	< 0.00001	****

s3Flag vs. s3Flag, HA	Two-tailed one-way ANOVA	F (2, 6) = 2110.0416, P < 0.00001	Tukey's post-hoc multiple comparisons	0.0141	*
9.h:					
Mock vs. STAND-Y13-259	Two-tailed one-way ANOVA	F (2, 12) = 14.9438, P = 0.0005527	Tukey's post-hoc multiple comparisons	0.0009	***
Mock vs. STAND-A36	Two-tailed one-way ANOVA	F (2, 12) = 14.9438, P = 0.0005527	Tukey's post-hoc multiple comparisons	0.8472	n.s.
STAND-Y13-259 vs. STAND-A36	Two-tailed one-way ANOVA	F (2, 12) = 14.9438, P = 0.0005527	Tukey's post-hoc multiple comparisons	0.0022	**
10.c:					
STAND-Y13-259 vs. Myc-Y13-259	Two-tailed one-way ANOVA	F (3, 8) = 490.4608, P < 0.00001	Tukey's post-hoc multiple comparisons	< 0.00001	****
STAND-Y13-259 vs. STAND-A36	Two-tailed one-way ANOVA	F (3, 8) = 490.4608, P < 0.00001	Tukey's post-hoc multiple comparisons	< 0.00001	****
STAND-Y13-259 vs. PBS	Two-tailed one-way ANOVA	F (3, 8) = 490.4608, P < 0.00001	Tukey's post-hoc multiple comparisons	< 0.00001	****
Myc-Y13-259 vs. PBS	Two-tailed one-way ANOVA	F (3, 8) = 490.4608, P < 0.00001	Tukey's post-hoc multiple comparisons	< 0.00001	****
STAND-A36 vs. PBS	Two-tailed one-way ANOVA	F (3, 8) = 490.4608, P < 0.00001	Tukey's post-hoc multiple comparisons	0.0641	n.s.
10.f:		•			•
STAND-Y13-259 vs. Myc-Y13-259	Kruskal-Wallis	P = 0.0005310	Dann's post-hoc multiple comparisons	0.0052	**
Myc-Y13-259 vs. STAND-A36	Kruskal-Wallis	P = 0.0005310	Dann's post-hoc multiple comparisons	> 0.99999	n.s.
STAND-Y13-259 vs. STAND-A36	Kruskal-Wallis	P = 0.0005310	Dann's post-hoc multiple	0.0269	*
			comparisons		
Suplementary Figure	Comparisons	F, P values	comparisons Post-hocTest	P values	Significance
Suplementary Figure 2.a. pH 7.4:	Comparisons	F, P values	Post-hocTest	P values	Significance
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA	Comparisons Two-tailed one-way	F, P values F $(3, 372) = 130.8204$,	Comparisons Post-hocTest	<i>P</i> values < 0.00001	Significance *****
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His	Comparisons Two-tailed one-way ANOVA Two-tailed one-way ANOVA	F, P values F (3, 372) = 130.8204, P < 0.00001 F (3, 372) = 130.8204, P < 0.00001	comparisons Post-hocTest Tukey's multiple comparisons Tukey's multiple comparisons	P values < 0.00001 < 0.00001	Significance
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA	Comparisons Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA	F, P values F (3, 372) = 130.8204, P < 0.00001 F (3, 372) = 130.8204, P < 0.00001 F (3, 372) = 130.8204, P < 0.00001	comparisons Post-hocTest Tukey's multiple comparisons Tukey's multiple comparisons	P values	Significance
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag	Comparisons Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA	F, P values F (3, 372) = 130.8204, P < 0.00001 F (3, 372) = 130.8204, P < 0.00001 F (3, 372) = 130.8204, P < 0.00001 F (3, 372) = 130.8204, P < 0.0001	comparisons Post-hocTest Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons	P values < 0.00001	Significance ***** ***** ***** *****
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA	Comparisons Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA	F, P values F (3, 372) = 130.8204, P < 0.00001 F (3, 372) = 130.8204, P < 0.00001	comparisons Post-hocTest Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons	P values < 0.00001	Significance ***** ***** ***** ***** ***** ***** ****
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6:	Comparisons Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA	F, P values F (3, 372) = 130.8204, P < 0.00001	comparisons Post-hocTest Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons	P values < 0.00001	Significance ***** ***** ***** **** ****
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA	Comparisons Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA	F, P values F (3, 372) = 130.8204, P < 0.00001	comparisons Post-hocTest Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons	P values < 0.00001	Significance ***** ***** **** **** *** ***
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. S7, EGFP, His	Comparisons Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA Two-tailed one-way ANOVA	F, P values F (3, 372) = 130.8204, P < 0.00001	comparisons Post-hocTest Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons	P values < 0.00001	Significance ***** ***** **** **** **** **** n.s.
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA	Comparisons Two-tailed one-way ANOVA	F, P values F, 3, 372) = 130.8204, P < 0.00001	comparisons Post-hocTest Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple comparisons Tukey's multiple	P values < 0.00001	Significance ***** ***** **** **** **** **** n.s. *****
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA	Comparisons Two-tailed one-way ANOVA	F, P values F, 3, 372) = 130.8204, P < 0.00001	comparisons Post-hocTest Tukey's multiple comparisons Tukey's multiple com	P values < 0.00001	Significance ***** ***** **** **** **** n.s. ***** *****
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA	Comparisons Two-tailed one-way ANOVA Two-tailed one-way ANOVA	F, P values F, 3, 372) = 130.8204, P < 0.00001	comparisons Post-hocTest Ukey's multiple comparisons Tukey's multiple comparisons	P values < 0.00001	Significance ***** **** **** **** *** *** *** **** n.S. ***** ****
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA No Tag vs. s3Flag, HA No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA Z.b:	Comparisons Two-tailed one-way ANOVA Two-tailed one-way ANOVA	F, P values $F, Q values$ $F(3, 372) = 130.8204, P < 0.0001$ $F(3, 372) = 130.8204, P < 0.00001$ $F(3, 372) = 134.3367, P < 0.00001$	comparisons Post-hocTest Tukey's multiple comparisons Tukey's multiple com	P values < 0.00001	Significance ***** ***** **** **** *** **** n.S. ***** **** ***
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA Zb: No Tag vs. s3Flag, HA	Comparisons Two-tailed one-way ANOVA	F, P values F, 3, 372) = 130.8204, P < 0.00001	comparisons Post-hocTest Tukey's multiple comparisons	P values < 0.00001	Significance ***** ***** **** **** **** n.S. ***** **** **** **** ****
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. r7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. r7, EGFP, His T7, EGFP, His vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. r7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA Z.b: No Tag vs. s3Flag, HA 2.b: No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA	Comparisons Two-tailed one-way ANOVA	F, P values $F, P values$ $F (3, 372) = 130.8204, P < 0.00001$ $F (3, 372) = 134.3367, P < 0.00001$ $F (3, 372) = 184.7457, P < 0.00001$ $F (3, 372) = 184.7457, P < 0.00001$	comparisons Post-hocTest Tukey's multiple comparisons	P values < 0.00001	Significance ***** ***** **** **** **** **** ****
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA Z.b: No Tag vs. s3Flag, HA 2.b: No Tag vs. s3Flag, HA S3Flag vs. s3Flag, HA	Comparisons Two-tailed one-way ANOVA	F, P values F, P values F (3, 372) = 130.8204, P < 0.00001	comparisons Post-hocTest Tukey's multiple comparisons	P values < 0.00001	Significance ***** **** **** **** *** *** **** ****
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.b: No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA 2.b: No Tag vs. s3Flag, HA S3Flag vs. s3Flag, HA S3Flag vs. s3Flag, HA S3Flag vs. s3Flag, HA	Comparisons Two-tailed one-way ANOVA	F, P values $F, P values$ $F (3, 372) = 130.8204, P < 0.00001$ $F (3, 372) = 134.3367, P < 0.00001$ $F (3, 372) = 134.347, P < 0.00001$ $F (3, 372) = 184.7457, P < 0.00001$ $F (3, 372) = 184.7457, P < 0.00001$ $F (3, 372) = 184.7457, P < 0.00001$	comparisons Post-hocTest Tukey's multiple comparisons	P values < 0.00001	Significance ***** **** **** **** *** *** *** ***
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA O Tag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA S3Flag vs. s3Flag, HA 2.b: No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA 2.b: No Tag vs. s3Flag, HA S3Flag vs. s3Flag, HA 6.c: SN(STAND-A36, R vs. L)	Comparisons Two-tailed one-way ANOVA	F, P values $F, P values$ $F (3, 372) = 130.8204, P < 0.00001$ $F (3, 372) = 134.3367, P < 0.00001$ $F (3, 372) = 134.3457, P < 0.00001$ $F (3, 372) = 184.7457, P < 0.00001$ $F (3, 372) = 184.7457, P < 0.00001$	comparisons Post-hocTest Tukey's multiple comparisons Tukey's multiple comparisons	P values < 0.00001	Significance ***** ***** **** **** **** **** ****
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA Z.b: No Tag vs. s3Flag, HA 2.b: No Tag vs. s3Flag, HA S3Flag vs. s3Flag, HA 6.c: SN(STAND-A36, R vs. L) SN(scFv-GFPA36, R vs. L)	Comparisons Two-tailed one-way ANOVA Two-tailed unpaired t test Two-tailed unpaired t test	F, P values F, 3, 372) = 130.8204, P < 0.00001	comparisons Post-hocTest Tukey's multiple comparisons	P values < 0.00001	Significance ***** **** **** **** **** *** *** ***
Suplementary Figure 2.a. pH 7.4: No Tag vs. s3Flag, HA No Tag vs. T7, EGFP, His T7, EGFP, His vs. s3Flag, HA T7, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.a. pH 6.6: No Tag vs. s3Flag, HA No Tag vs. s3Flag, HA 17, EGFP, His vs. s3Flag, HA No Tag vs. s3Flag, HA No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA 17, EGFP, His vs. s3Flag s3Flag vs. s3Flag, HA 2.b: No Tag vs. s3Flag, HA T7, EGFP, His vs. s3Flag, HA 6.c: SN(sTAND-A36, R vs. L) Striatum (STAND-A36, R vs. L)	Comparisons Two-tailed one-way ANOVA	F, P values $F, Q values$ $F(3, 372) = 130.8204, P < 0.00001$ $F(3, 372) = 134.3367, P < 0.00001$ $F(3, 372) = 134.3457, P < 0.00001$ $F(3, 372) = 184.7457, P < 0.00001$ $F(3, 372) = 184.7457, P < 0.00001$	comparisons Post-hocTest Tukey's multiple comparisons	P values < 0.00001	Significance ***** **** **** **** *** *** *** ***

Supplementary Table 1.

The statistical tests, P values, F values, and significance for Figures and Supplementary Figures

Detailed information for statistical analysis in the manuscript is shown.

Supplementary Table 2		
IADC53452.11:3-244	IAAC26537.1I:1-228	IADJ00222.11:3-248
IADB65759.11:3-242	ICCG26105.11:20-266	IACB88023.11:1-242
IADC53454.11:3-243	IAAC26550.11:1-229	IAAC26530.11:1-231
IAAC26528.11:1-228	ICAA10318.11:3-248	IACS12913.1I:3-240
IADB65756.11:3-244	IS41374:1-247	IAAL50781.1I:10-234
IADB65755.11:3-244	IAAY88908.11:3-240	IAAA83267.1I:1-246
IADB65753.11:3-241	ICAA10385.11:1-243	IACB97617.11:3-238
IAEK20780.11:3-237	IAAC04222.11:39-276	IAAP23214.11:3-247
IAAQ83756.11:1-248	IACZ65029.11:3-236	IAAY44382.2I:3-245
I1DZBIA:1-239	IAAC26540.11:1-226	IBAN78505.11:8-247
IADB65760.11:3-238	IADN42857.11:25-265	IBAA22843.11:3-242
ICAC14154.11:2-247	IACN88153.11:3-241	IAAB05768.11:2-239
IAEK20779.11:3-242	IACN88155.11:3-241	IBAN78507.11:8-247
I1QOKIA:27-268	IAAX07566.11:3-240	IAF074900_1:3-245
IBAT46707.11:3-240	IAAA19165.1I:23-265	IAAQ83757.11:1-241
IADB65757.11:3-241	IAAK85297.1IAF402255_1:3-243	IAAK85298.1IAF402256_1:3-248
IAAY88907.11:3-240	ICAD58896.11:3-233	IAAK56283.1I:1-239
IABN79462.11:2-242	IACA49232.11:3-247	IAAD33867.1IAF141321_1:3-243
IADN42858.11:25-265	IADC53451.11:3-248	IAAB65160.1I:1-243
IAAF82630.11:3-243	I5AAWIA:2-243	IAAY44384.2I:3-245
IAAD51317.1I:1-241	IAAC26549.11:1-232	IBAN78506.11:8-247
IALJ99801.11:3-251	ICAA10386.11:1-249	IAEX60024.11:43-282
IAAC26545.11:1-228	IACB97619.1I:3-238	IAAC25685.11:1-239
IAAN32896.1IAF488378_1:3-244	IADC53455.11:3-238	IAAA75173.1I:23-270
I3UYPIA:5-246	IAAC26546.1I:1-232	IAEX57225.11:58-297
IADB65758.11:3-241	ICAA94521.11:1-248	IAAL25135.1IAF434672_1:1-237
IAAC52185.11:3-242	IAAF82631.11:3-242	IAAU10332.11:22-271
IADC53456.11:3-246	IAAF85943.11:1-249	IAHM25305.11:3-249
IAAU11282.11:2-240	ICCG26106.11:20-263	ICAC42244.11:3-244
IA56446:3-242	IACV91950.11:2-239	IACN88154.11:3-241
ICAA82617.11:1-247	IAAG44840.11:1-250	IACN87219.11:3-243
		JC5322:1-233

Supplementary Table 2. Accession numbers of ScFv proteins used for in silico analysis.

Amino acid sequences of ScFv proteins were obtained using NCBI BLAST search for scFv-A36.

Supplementary Table 3

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Antibodies			
Dabbit polyclopal anti T7	MPL Internetional	Cat# PM022;	
		RRID:AB_592788	
Mouse monoclonal HRP-conjugated anti-T7	Millipore	Cat#69048-3; RRID: AB_11212778	
Mouse monoclonal anti-Flag (M2)	Sigma-Aldrich	Cat# F3165; RRID:AB_259529	
Mouse monoclonal anti-Flag (M2) conjugated beads	Sigma-Aldrich	Cat#F2426; RRID: AB_2616449	
Mouse monoclonal anti-HA conjugated beads	Sigma-Aldrich	Cat#A2095; RRID: AB_257974	
Dabbit polyclopel enti HA	Sigmo Aldrich	Cat# H6908; RRID:	
	Sigma-Aldrich	AB_260070	
Rabbit polyclonal anti-Myc	MBL	Cat#562; RRID: AB_591105	
Rabbit polyclonal anti-GFP	MBL	Cat#598-7; RRID: AB_10597267	
Rabbit polyclonal anti-actin	Sigma-Aldrich	Cat#A2066; RRID: AB_476693	
Rabbit polyclonal anti-tubulin	Sigma-Aldrich	Cat#T9026; RRID: AB_477593	
Mouse monoclonal anti-MAP2	Millipore	Cat#MAB3418; RRID: AB_94856	
Mouse monoclonal anti-Syt I	Enzo Life Sciences	Cat#SYA-148F; RRID: AB_311976	
Chicken polyclonal anti-TH	Abcam	Cat#ab76442; RRID: AB_1524535	
Rabbit polyclonal anti-TH	Millipore	Cat# AB152; RRID:AB_390204	
		Cat# sc-30 RRID:	
Mouse monocional anti-Kras	Santa cruz	AB_627865	
Goat polyclonal anti-rabbit IgG highly cross-	Thermo Fisher Scientific	Cat# A-11034 also A11034	
Goat polyclonal anti-mouse IgG highly cross-		Cat# A-11029 also A11029;	
absorbed Alexa Fluor 488	Thermo Fisher Scientific	RRID:AB_138404	
absorbed Alexa Fluor 594	Thermo Fisher Scientific	Cat# A-11032; RRID:AB_2534091	
Goat polyclonal anti-rabbit IgG highly cross- absorbed Alexa Fluor 594	Thermo Fisher Scientific	Cat# A-11037; RRID:AB_2534095	
Goat polyclonal anti-chicken IgY Alexa Fluor 594	Thermo Fisher Scientific	Cat# A-11042; RRID:AB_2534099	
HRP-anti-mouse IgG Light chain specific	Jackson ImmunoResearch Labs	Cat# 115-035-174; RRID:AB_233851	
HRP-anti-rabbit IgG Light chain specific	Jackson ImmunoResearch Labs	Cat# 211-032-171; RRID:AB_2339149	
Murine IgG Control Antibody (mouse serum)	Sigma-Aldrich	Cat# I5381, RRID:AB_1163670	
anti-His6 from mouse IgG1	Sigma-Aldrich	Cat# 11922416001, RRID:AB_514486	
anti-multi ubiquitin(cloneFK2)	MBL	Cat# D058-3, RRID:AB_592937	
Goat anti-mouse (H+L)555	Abcam	Cat# 150118, RRID:AB_2714033	
HRP-anti-M13	GE Healthcare	Cat# 27942101, RRID:AB_2616587	

Supplementary Table 3.

Antibodies used in this study

The specificity of antibodies used was validated by suppliers, previous studies, or the current study.