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1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
3Center for Nanostructured Graphene, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
4Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
5Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
6Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

SUPPLEMENTARY NOTE 1. FEIBELMAN d-PARAMETERS

Classical descriptions of photonic and plasmonic systems rely on the knowledge of the materials’ local
bulk dielectric functions (or conductivities) [1; 2]. These, together with the specification of the struc-
ture’s geometry (e.g., size and shape) constitute the sole ingredients required for computing the electro-
magnetic response of the system and collective excitations [1–3]. Notwithstanding, as the characteristic
dimension of metallic nanostructures reaches the few-nanometer regime, the accurateness of traditional
descriptions in terms of classical electrodynamics rapidly declines owing to the emergence of nonlocal
and quantum mechanical effects [3–6]. In general, the exact computation of the optical response of a
quantum nanoplasmonic system is a challenging task due to the complex nonlocal dynamics of the
plasmon-supporting electron gas. One approach relies on the use of ab initio time-dependent density
functional theory (TDDFT) [7] in an attempt to describe systems’ response in a quantum mechanical
framework (where the effects included naturally depend on the approximation(s) employed when solving
the many-body problem). Nonetheless, techniques fully based on TDDFT are in practice limited to very
small systems like metal clusters, whose radii typically falls below . 3 nm (for instance, a Na cluster with
around 1000 atoms would span a radius of only about 2 nm [8]). However, the vast majority of nanoplas-
monic structures of interest possess characteristic length scales that can be significantly larger than that,
though not large enough to be described in terms of classical electrodynamics. Hence, it becomes clear
that there is a high-demand for the development of suitable theoretical methods for quantum nanoplas-
monics that are capable to treat quantum and nonlocal effects rigorously, while at the same time being
relatively simple to implement. This is the approach we pursue here. Specifically, we extend and further
develop the formalism of Feibelman d-parameters [4; 9] in order to bridge the “classical to quantum
boundary” (cf. Figure 1 of the main text). This framework is rooted on the introduction of quantum
surface-response functions—here obtained using TDDFT—dubbed as Feibelman d⊥- and d‖-parameters.
These account for the dynamics of the surface region where the electron gas is inhomogeneous, whereas
the bulk is still described in terms of classical (local) response functions—see Supplementary Figure 1.
For an introduction to this topic, we refer to Refs. 3, 4, and 9.

The formulation in terms of the d-parameters can therefore take into account, to leading-order, intrins-
ically quantum mechanical effects such as electronic spill-out (or “spill-in”), nonlocality, and surface-
enabled Landau damping (i.e., plasmon decay into electron-hole pairs), while preserving an amenable
theoretical treatment that is general and that can be practically implemented in a plethora of plasmonic
nanostructures [3; 10].

The Feibelman d-parameters can be defined via the quantum mechanical induced charge density, ρ(r) ≡
ρ(z)eiqx, and corresponding induced current density, J(r) ≡ J(z)eiqx, via1 [3; 4; 9]

d⊥(ω) =

∫ ∞
−∞

zρ(z) dz∫ ∞
−∞

ρ(z) dz
and d‖(ω) =

∫ ∞
−∞

z∂zJx(z) dz∫ ∞
−∞

∂zJx(z) dz
. (1)

1 In general, the d-parameters depend both on frequency and momentum. The latter dependence, however, is relatively weak [10],
and therefore negligible to leading order; thus, we concern ourselves only with their frequency-dependence.
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Supplementary Figure 1. Illustration of a planar dielectric–metal interface, defined by the z = 0 plane. In the
asymptotic regions, i.e., for |z| ≥ |z1,2|, the cladding dielectric is characterized by a dielectric constant, εd,
whereas the electromagnetic properties of the metal are accounted for by its (local) bulk dielectric function,
εm(ω). In the surface region, quantum mechanical features lead to a nonuniform equilibrium electron density,
n0(z), and an induced charge density, ρ(z) (that arises due to the system’s response to an external perturbation).
As indicated schematically in the figure, the Feibelman d⊥ parameter can be regarded as the position of the
centroid of the induced charge density with respect to the positive background edge.

where it is implicit that the interface runs along the x-direction and the z-direction lies normal to it, as
depicted in Supplementary Figure 1. It is apparent from Eqs. (1) that d⊥ is a length scale defined by
the position of the centroid of the induced charge density (see Supplementary Figure 1) whereas d‖ can
be regarded as the (integrated) imbalance between the uniform ionic background and n0 [3]. Hence, the
latter (to leading-order) is identically zero for charge-neutral interfaces [4]. Once the microscopic vari-
ations of the quantum mechanical charge and current densities across the dielectric–metal boundary (here
defined by the so-called jellium edge) are computed, e.g., using TDDFT, one can derive the correspond-
ing nonclassical reflection and transmission coefficients. These quantities entail all the knowledge about
the system’s near- and far-field electromagnetic response; therefore, they provide us with, for instance,
the structure’s plasmon resonances, Purcell enhancement, and other nanophotonic phenomena.
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Supplementary Figure 2. Spectral dependence of the Feibelman d-parameters for jellium metals with different
Wigner-Seitz radius, rs = {2, 4} (in units of the Bohr radius), and for silver (Ag). We note that a jellium with
rs = {2, 4} is resemblant of aluminum (Al) and sodium (Na), respectively. For silver (Ag), we normalize the
frequencies to the screened plasma frequency,ω∗p ' 3.81 eV. The circles represent data obtained from TDDFT
calculations by Christensen et al. [3] and the solid lines are the corresponding interpolations. The dielectric
medium interfacing the metal is assumed to have εd = 1.

Figure 2 shows the Feibelman d-parameters obtained previously in Ref. 3 through TDDFT calculations
within the jellium model for the interacting electron gas. The figure depicts the d-parameters for simple
metals with different electronic densities, defined by the Wigner–Seitz radius rs = {2, 4} (in units of the

Bohr radius, ab), via rsab = (3/4πn)1/3. The corresponding plasma frequency is thus ωp =

√
3e2

4πε0m
1

(rsab)3 .
It should be noted that the d-parameters are microscopic surface-response functions that obey Kramers–
Kronig relations and specific sum-rules [11], just like the traditional bulk response functions do [12]. The
TDDFT data presented here is for air–metal (or vacuum–metal) interfaces (i.e., for εd = 1); we note that
the specific values of the d-parameters depend on the dielectric medium next to the metal [4; 13], since it
changes the screened interaction.

Lastly, we emphasize that although in Supplementary Figure 2 we have d‖ , 0 for silver (last panel in
Supplementary Figure 2) in this case silver is of course still charge-neutral. The finiteness of d‖ here is
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merely a consequence of the methodology used to incorporate d-band screening in the TDDFT calcula-
tion [3] (see Refs. 3 and 4 for additional details).

SUPPLEMENTARY NOTE 2. MODIFIED BOUNDARY CONDITIONS WITH FEIBELMAN d-PARAMETER
SURFACE TERMS

Here we summarize the recently introduced approach to incorporate the Feibelman d-parameters as
boundary conditions applied to the conventional macroscopic Maxwell equations [14]. The boundary
conditions facilitate a convenient and straightforward d-parameter generalization of conventional scat-
tering coefficients—e.g., the reflection and transmission coefficients of a planar interface, or the Mie
coefficients of a spherical interface—thereby providing the necessary ingredients to investigate the influ-
ence of quantum mechanical effects on the surface plasmon polariton (SPP) dispersion, electromagnetic
local density of states (LDOS), etc.

In the absence of external charges and currents, the classical boundary conditions of macroscopic elec-
trodynamics at an interface separating two media read [15]:

n̂ × (E2 − E1) = 0, (2a)
n̂ × (H2 −H1) = 0, (2b)

where n̂ is a unit vector normal to the interface ∂Ω (pointing from medium 1 to medium 2). These govern
the tangential (or parallel) components of the electromagnetic fields, imposing their continuity across
the interface. However, as can be clearly seen in a nonretarded formulation [3; 4], the introduction of
the Feibelman d-parameters renders the above boundary conditions inapplicable. Hence, a revision set of
boundary conditions which reflect the presence of the d-parameters is required. The incorporation can be
inferred by considering their impact as initially encoded through (normally-oriented) surface polarization
and (tangentially-oriented) current terms, P(r) = π(r)δ(r − r∂Ω) and J(r) = K(r)δ(r − r∂Ω), respectively,
which are nonzero only at the interface, i.e., at r = r∂Ω. The surface polarization and current densities are
each proportional to a d-parameter and are driven by the discontinuities of the field components [14]

π ≡ ε0d⊥ [n̂ · (E2 − E1)] n̂, (3a)
K ≡ iωd‖ [n̂ × (D2 − D1) × n̂] . (3b)

After some manipulations, these surface polarizations and currents can be self-consistently absorbed into
a revision of the conventional boundary conditions2 [14]

n̂ × (E2 − E1) = n̂ ×
[
−ε−1

0 ∇‖ (π · n̂)
]

= −d⊥n̂ ×
[
∇‖n̂ · (E2 − E1)

]
, (4a)

n̂ × (H2 −H1) = iωd‖ [n̂ × (D2 − D1) × n̂] , (4b)

where ∇‖ is the surface nabla operator ∇‖ ≡ (1 − n̂n̂T)∇. The boundary conditions can be equivalently
stated via the parallel and perpendicular components (with respect to the interface) of the fields as

E2,‖ − E1,‖ = −d⊥∇‖
(
E2,⊥ − E1,⊥

)
, (5a)

H2,‖ −H1,‖ = iωd‖
(
D2,‖ − D1,‖

)
× n̂. (5b)

Clearly, the incorporation of Feibelman d-parameters introduces discontinuities in the parallel compon-
ents of the electric and magnetic fields. The magnitude of these discontinuities is naturally proportional
to the Feibelman d-parameters.

2 While the boundary conditions on the tangential parts of E and H is fully sufficient to uniquely couple solutions across the inter-
face, the complementary set of boundary conditions—on the normal components of B and D—is occasionally more convenient.
The boundary condition for the normal components of B, is unchanged from its classical counterpart, i.e., n̂ · (B2 − B1) = 0; for
the normal components of D, it is n̂ · (D2 − D1) = d‖∇‖ · [n̂ × (D2 − D1) × n̂].
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SUPPLEMENTARY NOTE 3. NONCLASSICAL REFLECTION AND TRANSMISSION COEFFICIENTS FOR
A PLANAR DIELECTRIC–METAL INTERFACE

In possession of the boundary conditions personified by Eqs. (5), we now have all the necessary ingredi-
ents to determine the nonclassical equivalents of Fresnel’s reflection and transmission coefficients for a
single dielectric–metal interface. In what follows, we adopt the same coordinate system as in Supple-
mentary Figure 1.

Nonclassical reflection and transmission coefficients for TM waves (p-polarization)

We seek transverse magnetic (TM) solutions, in the dielectric and metal half-spaces, of the form:

Hd =
(
e−ikz,dz + r(H)

p eikz,dz
)

ei(qx−ωt) ŷ, (6a)

Ed =
[
Ex,d(z) x̂ + Ez,d(z) ẑ

]
ei(qx−ωt), (6b)

in the dielectric half-space (z > 0), and

Hm = t(H)
p e−ikz,mzei(qx−ωt) ŷ, (7a)

Em =
[
Ex,m(z) x̂ + Ez,m(z) ẑ

]
ei(qx−ωt), (7b)

in the metal half-space (z < 0). Here kz, j =

√
ε jk2

0 − q2 for j ∈ {d, m}. The explicit form of the amplitudes
Ex/z, j(z) readily follows from Maxwell’s equations. Making use of the modified boundary conditions in
Eqs. (5), one obtains the following linear system:

kz,d

εd

(
r(H)

p − 1
)

+
kz,m

εm
t(H)
p = iq2d⊥

[
1
εd

(
1 + r(H)

p

)
−

1
εm

t(H)
p

]
, (8a)

1 + r(H)
p − t(H)

p = −id‖
[
kz,d(r(H)

p − 1) + kz,mt(H)
p

]
. (8b)

After some algebraic manipulations, one finally arrives at the nonclassical Feibelman reflection and trans-
mission coefficients for p-polarization (or TM polarization), which after changing to the Fresnel-like
coefficients (i.e., defined in terms of the electric field), that is, rtm ≡ r(H)

p and ttm ≡ εdkz,m

εmkz,d
t(H)
p , read [9; 13]:

rtm =
εmkz,d − εdkz,m + (εm − εd)

[
iq2d⊥ − ikz,dkz,md‖

]
εmkz,d + εdkz,m − (εm − εd)

[
iq2d⊥ + ikz,dkz,md‖

] , (9a)

ttm =
2εdkz,m

εmkz,d + εdkz,m − (εm − εd)
[
iq2d⊥ + ikz,dkz,md‖

] , (9b)

where only terms up to linear order in qd⊥,‖ have been included (for consistency with the assumptions
made when computing the d-parameters [3]), and where kz, j =

(
ε jk2

0 − q2)1/2
= iκ j with κ j =

(
q2 − ε jk2

0
)1/2

for j ∈ {d, m}.

Scattering coefficients for TM polarization in the nonretarded limit. In the nonretarded limit (c → ∞) one
has kz, j → iq and the reflection and transmission amplitudes reduce to their nonretarded forms [3]

rtm,nr =
εm − εd + (εm − εd)q

[
d⊥ + d‖

]
εm + εd − (εm − εd)q

[
d⊥ − d‖

] , (10a)

ttm,nr =
2εd

εm + εd − (εm − εd)q
[
d⊥ − d‖

] . (10b)



5

Nonclassical reflection and transmission coefficients for TE waves (s-polarization)

The derivation of the nonclassical reflection and transmission coefficient for TE solutions (s-polarization)
follows the same lines as the one detailed above for the TM polarization. In particular, the former are
given by

rte =
kz,d − kz,m + (εm − εd)ik2

0d‖
kz,d + kz,m − (εm − εd)ik2

0d‖
, (11a)

tte =
2kz,d

kz,d + kz,m − (εm − εd)ik2
0d‖

. (11b)

SUPPLEMENTARY NOTE 4. NONCLASSICAL SURFACE PLASMON POLARITONS: PLANAR
INTERFACE

Equipped with the reflection coefficient for TM-polarization in Eq. (9a), the resulting surface plasmon-
polariton (SPP) dispersion can be readily obtained from its poles. Hence, the implicit condition for the
SPP dispersion relation including quantum surface corrections via Feibelman d-parameters is given by

εd

κd
+
εm

κm
− (εm − εd)

[
q2

κmκd
d⊥ − d‖

]
= 0. (12)

We stress that here εm ≡ εm(ω) is still the local bulk dielectric function of the metal, and therefore the
nonclassical corrections (e.g., spill-out, nonlocality, electron-hole pair generation) are encoded and enter
via the d-parameters alone. Naturally, it is apparent from Eq. (12) that the well-know classical result,
εd/κd + εm/κm = 0, is reinstated upon letting d⊥,‖ → 0.

Nonretarded surface plasmon dispersion for a planar interface. Taking the nonretarded limit of Eq. (12)
leads to the following condition for the nonretarded surface plasmon dispersion:

εm + εd − (εm − εd)q
[
d⊥ − d‖

]
= 0. (13)

Clearly, contrary to the corresponding classical case, i.e., εm = −εd, the surface plasmon spectrum is not
dispersionless anymore, even in the nonretarded regime. Indeed, one now may also write instead:

qsp =
εm + εd

εm − εd

1
d⊥ − d‖

. (14)

Yet, writing an explicit solution in closed-form for the surface plasmon frequency as a function of
wavevector, i.e., ω vs. q, is not possible due to the implicit frequency dependence of the d-parameters.
Nevertheless, starting from Eq. (13), one may work towards a perturbative solution for the SPP (complex)
eigenfrequencies.

In particular, within the nonretarded limit, and for a Drude-like dielectric function εm(ω) = ε∞ −ω
2
p/(ω

2 +

iωγ), approximate expressions for the real and imaginary parts of the first-order spectral correction,
ω = ωcl + ω(1) + O

([
ω − ωcl]2), can be obtained. Then, assuming that Reω� γ and qd⊥,‖ � 1, we have

Reω ' ω(0)
sp − ω

(0)
sp

εd

εd + ε∞
q Re

(
d(0)
⊥ − d(0)

‖

)︸              ︷︷              ︸
electronic

spill-out/spill-in

, (15a)

− Imω '
γ

2︸︷︷︸
classical

bulk
damping

+ ω(0)
sp

εd

εd + ε∞
q Im

(
d(0)
⊥ − d(0)

‖

)︸              ︷︷              ︸
surface-enabled
Landau damping

, (15b)

where ω(0)
sp ≡ Reωcl = ωp/

√
ε∞ + εd is the classical nonretarded surface plasmon frequency. Also, d(0)

⊥,‖ ≡

d⊥,‖
(
ω(0)

sp
)

is a pole-like approximation (necessary here owing to the explicit frequency dependence of
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the d-parameters). Equations (15b) underscore that the direction (magnitude) of the nonclassical shift
of the SPP resonance depends on the sign (magnitude) of the real part of deff ≡ d⊥ − d‖; and, that the
nonclassical SPP resonance broadening is proportional to the imaginary part of deff .

Notably, for the instructive case of a homogeneous three-dimensional electron gas (3DEG) (i.e., in which
ε∞ = 1 and d‖ = 0) with εd = 1, Eqs. (15b) take a particularly compact form, reading

Reω ' ω(0)
sp

[
1 −

q
2

Re
(
d(0)
⊥

)]
and Imω ' −

γ

2

[
1 +

ω(0)
sp

γ
q Im

(
d(0)
⊥

)]
, (16)

which reproduces the result obtained by Feibelman [9], and, more recently, by Christensen et al. [3]. At
this point, the reader may appreciate that, despite being only approximate, Eqs. (15b) deliver a clear mes-
sage: to lowest order, the direction of the frequency shift due to nonlocal quantum surface phenomena
ultimately depends on the sign of Re

(
d⊥ − d‖

)
. Specifically, for a fixed frequency, these nonclassical cor-

rections lead to redshift (blueshift) of the surface plasmon resonance—relative to the classical case—if
Re

(
d⊥ − d‖

)
> 0 (< 0). Furthermore, for charge-neutral surfaces so that d‖ = 0, and recalling the inter-

pretation of d⊥ as the centroid of the induced charge density, then one may associate the positiveness
or negativeness of d⊥, respectively, to a “spill-out” or a “spill-in” of the induced electron density with
respect to the fixed ionic background of the metal.

SPP dispersion for rs = 2 jellium and Ag. Figure 3 depicts the quantum mechanical SPP dispersion diagram
for a planar interface between air and a jellium metal with rs = 2 (representative of Al), together with
the SPP dispersion for a flat air–silver interface. The corresponding classical spectral properties are also

Classical
Classical (nonretarded)

Nonclassical
Nonclassical (nonretarded)

Supplementary Figure 3. a Quantum corrections via Feibelman d-parameters to the SPP’s dispersion for a flat
air–jellium interface (rs = 2 jellium with Drude-type damping ~γ = 0.283 eV; so that the ratio γ/ωp is the same
as in the rs = 4 case presented in the main text). b Classical and quantum mechanical dispersion relations for
SPPs in a air–Ag interface. We model silver with a bulk dielectric function εm(ω) = ε∞(ω)−ω2

p/(ω2 + iωγ) and
use the d-parameters data outlined in Supplementary Figure 2 to account for the quantum mechanical effects
discussed in the text. The background permittivity of silver is obtained from Johnson and Christy’s experimental
data [16] via ε∞(ω) = εexp(ω) + ω2

p/(ω2 + iωγ). We use ~ωp = 9.02 eV and ~γ = 22 meV (which fits well the
experimental data). The screened plasma frequency is ~ω∗p = 3.81 eV.

shown to facilitate the comparison and interpretation of the nonclassical results. As the figure indicates,
we predict a nonclassical redshift (blueshift) of the SPP resonance, consistent with the fact that Re deff > 0
(Re deff < 0) in the relevant frequency ranges. Thus, the observed redshift of the SPP frequency for jellium
metals is a consistent with the of the quantum mechanical spill-out of the induced electron density beyond
the classically-forbidden jellium edge [4; 17–20]. Conversely, for noble metals like silver, Re deff < 0



7

around ωcl due to d-band screening [3; 4]. Therefore, and contrary to the jellium case, here we predict
a blueshift of the SPP resonances, in line with experimental observations [20–24]. This can be readily
seen upon inspection of Supplementary Figure 3b which shows a blueshift of the SPP eigenfrequencies
for large wavevectors.

SUPPLEMENTARY NOTE 5. GENERALIZED MIE THEORY WITH FEIBELMAN d-PARAMETERS:
SPHERICAL METAL PARTICLES

In what follows we develop a generalized Mie theory that includes nonlocal and quantum mechanical
effects incorporated via Feibelman d-parameters. As in the planar case, the possession of such quantum
Mie coefficients is all that is required in order to readily determine the sphere’s localized plasmon reson-
ances, scattering cross-sections, Purcell enhancements, etc.

Theoretical framework

Wave equation in spherically symmetric systems. In a linear, isotropic and homogeneous medium the
electric and magnetic fields must satisfy their respective vector wave equations,

∇2E(r,ω) + k2
j E(r,ω) = 0 and ∇2H(r,ω) + k2

j H(r,ω) = 0, (17)

where k j ≡
√
ε jk0. The electric and magnetic fields in spherical coordinates can be constructed in terms of

vector harmonics, Mν(r) and Nν(r), which in turn are defined in terms of a pilot wave c and a generating
scalar function ψν(r) that obeys the (scalar) Helmholtz equation ∇2ψν(r) + k2

jψν(r) = 0 [25]. Strictly
speaking, the pilot vector c should be a constant vector. However, and rather fortunately, in spherical
coordinates and in this case alone, it turns out that we can take c = rr̂; this enables us to construct a
tangential solution Mν(r) (though Nν(r) is not purely normal) [26]. This is desirable because it allows us
to associate each of the vector harmonics Mν(r) and Nν(r) with TE and TM waves, respectively.

Therefore, the vector harmonics Mν(r) and Nν(r)—which are two independent solutions of the vector
wave equation in spherical coordinates—may be written as [25; 26]

Me/o
lm (r) ≡ ∇ × r̂ rψe/o

lm (r), (18a)

Ne/o
lm (r) ≡ k−1

j ∇ × ∇ × r̂ rψe/o
lm (r), (18b)

where the generation function is

ψe/o
lm (r, θ, φ) ≡ zl(k jr)Pm

l (cos θ)
{

cos(mφ)
sin(mφ)

}
, (18c)

and where the radial part zl(k jr) is either a spherical Bessel or Hankel function of the first kind, jl(k jr) and
h(1)

l (k jr), respectively representing incoming and outgoing waves. Furthermore, the “quantum numbers”
l and m are integers with values in the range l ∈ [1,∞[ and m ∈ [0, l], and Pm

l denote the associated
Legendre polynomials. The explicit form of the solenoidal (i.e., divergence-free) vector waves Me/o

lm (r)
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and Ne/o
lm (r), obtained via Eqs. (18), reads3

Me/o
lm (r) =



0

mzl(ρ j)
Pm

l (µ)
sin θ

{
− sin(mφ)
cos(mφ)

}

−zl(ρ)
∂Pm

l (µ)
∂θ

{
cos(mφ)
sin(mφ)

}


and Ne/o

lm (r) =



l(l + 1)
ρ j

zl(ρ j)Pm
l (µ)

{
cos(mφ)
sin(mφ)

}
1
ρ j

[
ρ jzl(ρ j)

]′ ∂Pm
l (µ)
∂θ

{
cos(mφ)
sin(mφ)

}
m
ρ j

[
ρ jzl(ρ j)

]′ Pm
l (µ)

sin θ

{
− sin(mφ)
cos(mφ)

}


, (19)

where ρ j ≡ k jr and µ ≡ cos θ (for the sake of brevity of notation), and the prime denotes differentiation
with respect to ρ j.

The spherical vector harmonics Me/o
lm (r) and Ne/o

lm (r) may be regarded as fundamental solutions of the
vector wave equation in spherical coordinates. Hence, the electric and magnetic fields can be constructed
from an expansion in terms of such vector waves.

Incident plane-wave in terms of vector spherical harmonics. Let us assume an incident plane-wave traveling
along the positive z-direction and polarized along x̂, namely4

Einc = E0eikdzx̂ = E0eikdr cos θ

sin θ cos φ
cos θ cos φ
− sin θ

 . (20)

We now want to cast the incident field, not as in Eq. (20), but rather in terms of the vector spherical waves
introduced earlier in the text, that is

Einc =

∞∑
l=1

l∑
m=0

∑
σ={e,o}

(
Atm,σ

lm Nσ
lm + Ate,σ

lm Mσ
lm

)
, (21)

where the expansion coefficients Atm,σ
lm and Ate,σ

lm follow from [25]

Atm,σ
lm =

∫ 2π
0 dφ

∫ π

0 dθ sin θEinc · Nσ
lm∫ 2π

0 dφ
∫ π

0 dθ sin θ
∣∣∣Nσ

lm

∣∣∣2 and Ate,σ
lm =

∫ 2π
0 dφ

∫ π

0 dθ sin θEinc ·Mσ
lm∫ 2π

0 dφ
∫ π

0 dθ sin θ
∣∣∣Mσ

lm

∣∣∣2 . (22)

Carrying out the explicit calculations and exploiting the orthogonality relations of the sine and cosines
functions, one finds that Atm,o

lm = 0 and Atm,e
lm ∝ δm1, and, similarly, that Ate,e

lm = 0 and Ate,o
lm ∝ δm1. The

calculation of these coefficients then leads to

Einc =

∞∑
l=1

El
0

(
−iNe [d]

l1 + Mo [d]
l1

)
, (23)

where the extra superscript “[d]” indicates that the radial function is zl(ρd) ≡ jl(ρd) because the impinging
field has to remain finite at the origin, and we have also defined El

0 = il 2l+1
l(l+1) E0. From here, the corres-

ponding incident magnetic field follows from Faraday’s law, yielding

Hinc = −
kd

ωµ0

∞∑
l=1

El
0

(
iNo [d]

l1 + Me [d]
l1

)
, (24)

where the properties of the vector spherical harmonics have been used [25; 26].

Equations (23) and (24) thereby reflect the expansion of the incident plane-wave in terms of vector
spherical waves.

3 For the radial component of Ne/o
lm (r) we have made use of the differential Legendre equation whose solutions are the associated

Legendre polynomials.
4 Note that x̂ = sin θ cos φ r̂ + cos θ cos φ θ̂ − sin θ φ̂.
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Internal and scattered fields. In possession of the incident field expansion, Eqs. (23) and (24), we now
express in a similar fashion the internal and scattered fields using vector spherical waves. In this spirit,
we write the fields inside the sphere as

Em =

∞∑
l=1

El
0

(
−ictml Ne [m]

l1 + ctel Mo [m]
l1

)
, (25a)

Hm = −
km

ωµ0

∞∑
l=1

El
0

(
ictel No [m]

l1 + ctml Me [m]
l1

)
. (25b)

where now the superscript “[m]” highlights that the radial function is zl(ρm) ≡ jl(ρm) because it needs to
remain finite at the origin.

Outside the sphere, both spherical Bessel functions jl and yl are permitted and therefore we shall use the
spherical Hankel function of the first kind for the radial part of the generating function. Specifically, we
choose zl(ρd) ≡ h(1)

l (ρd) owing to its appropriate asymptotic behavior at large ρd [25], i.e., corresponding
to an outgoing spherical wave (which is what we expect for the asymptotic scattered field). Within this
reasoning, we therefore express the scattered fields as

Escat =

∞∑
l=1

El
0

(
iatm

l Ne [s]
l1 − ate

l Mo [s]
l1

)
, (26a)

Hscat =
kd

ωµ0

∞∑
l=1

El
0

(
iatel No [s]

l1 + atml Me [s]
l1

)
, (26b)

where this time the superscript “[s]” indicates that the radial function is h(1)
l (ρd) as we have just men-

tioned.

The amplitudes atm
l , ate

l , ctml , and ctel , are the so-called Mie coefficients, of the scattered and internal
(i.e. transmitted) kind, in TM and TE flavors, respectively. These can be determined once the adequate
boundary conditions are imposed (at the sphere’s surface).

Nonclassical Mie coefficients

The Mie coefficients essentially entail all the relevant physics describing the electromagnetic response of
a sphere of arbitrary size and material constitution. In the following, we derive closed-form expressions
for the generalized (i.e., nonclassical) Mie coefficients within the formalism of Feibelman d-parameters.
In order to proceed, we need to invoke the appropriate boundary conditions, reading (cf. SUPPLEMENT-
ARY NOTE 2), in spherical coordinates,(

Einc
Ω + Escat

Ω − Em
Ω

)∣∣∣∣
r=R

= −d⊥∇Ω

(
Einc

r + Escat
r − Em

r

)∣∣∣∣
r=R

, (27a)(
Hinc

Ω + Hscat
Ω −Hm

Ω

)∣∣∣∣
r=R

= iωd‖
(
Dinc

Ω + Dscat
Ω − Dm

Ω

)
× r̂

∣∣∣∣
r=R

, (27b)

with Ω = {θ, φ} denoting the angular components (i.e., the components that are tangential to the sphere’s
surface). Equations (27), after some algebra, produce the following set of equations:

h(1)
l (xd)ate

l + jl(xm)ctel = jl(xd), (28a)[
ξ′l (xd) + d⊥h(1)

l (xd)
]

atml +
[
Ψ′l(xm) + d⊥ jl(xm)

] kd

km
ctml = Ψ′l(xd) + d⊥ jl(xd), (28b)[

h(1)
l (xd) + d‖ξ′l (xd)

]
atml +

[
jl(xm) + d‖Ψ′l(xm)

] km

kd
ctml = jl(xd) + d‖Ψ′l(xd), (28c)[

ξ′l (xd) − x2
dd‖h

(1)
l (xd)

]
atel +

[
Ψ′l(xm) − x2

md‖ jl(xm)
]

ctel = Ψ′l(xd) − x2
dd‖ jl(xd), (28d)

with x j = k jR. Additionally, the Riccati-Bessel functions Ψl(x) = x jl(x) and ξl(x) = xh(1)
l (x) have been

employed, and the prime denotes the functions’ derivatives with respect to their argument. Lastly, for
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shorthand notation, we have also introduced the dimensionless quantities

d⊥ ≡ l(l + 1)
d⊥
R

and d‖ ≡
d‖
R

. (29a)

Solving the system of equations posed by Eqs. (28), we obtain the mesoscopic generalization of the Mie
coefficients incorporating the Feibelman d-parameters:

atm
l =

εm jl(xm)Ψ′l(xd) − εd jl(xd)Ψ′l(xm) + (εm − εd)
[
jl(xd) jl(xm)d⊥ + Ψ′l(xd)Ψ′l(xm)d‖

]
εm jl(xm)ξ′l (xd) − εdh(1)

l (xd)Ψ′l(xm) + (εm − εd)
[
h(1)

l (xd) jl(xm)d⊥ + ξ′l (xd)Ψ′l(xm)d‖
] , (30a)

atel =
jl(xm)Ψ′l(xd) − jl(xd)Ψ′l(xm) +

(
x2

m − x2
d
)
jl(xd) jl(xm)d‖

jl(xm)ξ′l (xd) − h(1)
l (xd)Ψ′l(xm) +

(
x2

m − x2
d
)
h(1)

l (xd) jl(xm)d‖
, (30b)

for the coefficients associated with the scattered outgoing wave, and

ctel =
jl(xd)ξ′l (xd) − h(1)

l (xd)Ψ′l(xd)

jl(xm)ξ′l (xd) − h(1)
l (xd)Ψ′l(xm) +

(
x2

m − x2
d
)
h(1)

l (xd) jl(xm)d‖
, (31a)

ctml =
√
εmεd

jl(xd)ξ′l (xd) − h(1)
l (xd)Ψ′l(xd)

εm jl(xm)ξ′l (xd) − εdh(1)
l (xd)Ψ′l(xm) + (εm − εd)

[
h(1)

l (xd) jl(xm)d⊥ + ξ′l (xd)Ψ′l(xm)d‖
] , (31b)

for the coefficients associated with the internal fields. As in the planar case, we have only kept terms up
to linear order in the d-parameters. We have also added tm and te as superscripts in the Mie coefficients
to highlight the character of the associated waves.

Notice that the quantum mechanical Mie coefficients atel and ctel , which describe TE waves, are independ-
ent of the perpendicular Feibelman d-parameter, d⊥. This should not really constitute a surprise, since for
a TE wave the electric field is purely tangential to the particle’s surface and therefore has no perpendic-
ular component capable of inducing a displacement of the charge density along the perpendicular to the
sphere’s surface. On the other hand, the Mie coefficients atm

l and ctml , associated to TM waves, and thus
the electric field in general possesses both radial and tangential components, and consequently both d⊥
and d‖ emerge in these coefficients.

To the best of our knowledge, such quantum mechanical Mie coefficients with the incorporation of non-
local and quantum surface corrections via Feibelman d-parameters, given above by Eqs. (30) and (31),
have not been derived before. Thus, these results could open new perspectives for the investigation of
nonlocal and quantum effects in the context of light–matter interactions in nanophotonics with metal
spheres. With this in mind, they constitute a springboard to study phenomena beyond the classical re-
gime, namely the influence of quantum nonlocal effects on the cross-sections, localized surface plasmon
(LSP) resonances, electromagnetic LDOS, etc, for spherical metal particles of arbitrary size.

Nonretarded multipolar polarizability and localized surface plasmons. In the nonretarded limit, the outgoing
Mie coefficients reduce to a single quantity: the nonretarded multipolar polarizability, αl. Since in the
nonretarded regime we haveωR/c→ 0, then one may perform small-argument expansions of jl(z), h(1)

l (z),
and of the derivatives of the Riccati-Bessel functions, thereby yielding the following relation between the
Mie coefficient atml and the multipolar polarizability:

lim
ωR/c→0

atml = −ix2l+1
d

(l + 1)(2l + 1)
l [(2l + 1)!!]2

αl

4πR2l+1 , (32)

where

αl = 4πR2l+1
(εm − εd)

[
1 +

l
R

(
d⊥ +

l + 1
l

d‖

)]
εm +

l + 1
l
εd − (εm − εd)

l + 1
R

(
d⊥ − d‖

) . (33)

Then, the nonretarded localized surface plasmon resonances immediately stem from the poles of αl,
reading

εm +
l + 1

l
εd − (εm − εd)

l + 1
R

(
d⊥ − d‖

)
= 0. (34)
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In the limit of vanishing d-parameters, Eqs. (33) and (34) appropriately reduce to their well-known clas-

sical equivalents, that is, αcl
l = 4πR2l+1 εm − εd

εm + εd(l + 1)/l
and εm +

l + 1
l
εd = 0, respectively.

Optical response of plasmonic spheres

A particularly alluring feature of the theoretical formalism set forth here, it that the mathematical structure
of the usual expressions for the cross-sections, LDOS, etc, is unchanged; that is, the nonclassical optical
response is obtained using the very same textbook expressions, simply by replacing the classical Mie
coefficients by the quantum mechanical Mie coefficients presented in Eqs. (30). Hence, for instance, the
extinction cross-section for a metal sphere illuminated by a monochromatic plane-wave is therefore given
by

σext =
2π
k2

d

∞∑
l=1

(2l + 1) Re{atml + atel }, (35)

For relatively small metal spheres, the optical response is dominated by a series of peaks originating from
the excitation of LSP resonances. The latter occur at frequencies for which atm

l has pole, as illustrated in
Supplementary Figure 4. A LSP resonance is said to be of electric dipole character for l = 1, of electric
quadrupole character for l = 2, and so on. It is also apparent from the figure that the dipole resonance
(l = 1) contributes the most for the cross-section, with the successively higher-order resonances becoming
increasingly negligible (notice the logarithmic scale). The TE Mie coefficients atel are essentially feature-
less and their contribution for the extinction cross-section is several orders of magnitude smaller than the
one associated with TM Mie coefficients atml of the same order. The impact of quantum nonlocal effects,
i.e., a redshift owing to spill-out (Re d⊥ > 0) and broadening due to Landau damping, can be clearly
observed in Supplementary Figure 4 as well. It is also interesting to note that the TE Mie coefficients are
unchanged by such effects, which can be understood by the fact that here d‖ = 0 [recall Eq. (30b)].

Classical Mie Nonclassical Mie

TM TE

Supplementary Figure 4. Real parts of the Mie coefficients for a R = 5 nm jellium sphere with rs = 4. The metal
particle is assumed to be embedded in vacuum (εd=1), the d-parameters are shown in Figure 1 of the main
paper, and a Drude-type broadening of ~γ = 0.1 eV is assumed. a Real part of the Mie coefficient associated
with TM polarization, atm

l , for different angular momentum, l (the line-connected circles indicate their respective
maxima). b Real part of the Mie coefficient associated with TM polarization, ate

l , for different angular momentum,
l.

In the nonretarded regime, the TM Mie coefficient atm
l reduces to

lim
ωR/c→0

atm
l = −ix2l+1

d
(l + 1)(2l + 1)
l [(2l + 1)!!]2

αl

4πR2l+1 . (36)

and σext is completely characterized by the nonretarded multipolar polarizability, αl.

In Supplementary Figure 5 we plot the normalized extinction cross-sections,σext/(πR2), for rs = 4 jellium
spheres of different radii. As expected, although the predictions from classical electrodynamics suffice for
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Classical Mie
Classical Mie (nonretarded)

Nonclassical Mie
Nonclassical Mie (nonretarded)

Supplementary Figure 5. Normalized extinction cross-sections, σext/(πR2), for rs = 4 jellium spheres of differ-
ent radius. The parameters for the metal are the same as in Supplementary Figure 4. a R = 2.5 nm; b R = 5 nm;
c R = 10 nm; d R = 25 nm.

Classical Mie Nonclassical Mie

Supplementary Figure 6. Normalized extinction cross-section for R = 2.5 nm metal spheres made of a rs = 2
jellium; and b silver. The parameters are the same as in Supplementary Figure 3.

large spheres, they rapidly decline for the spheres of smaller radii. Moreover, the figure also underscores
the importance of retardation effects for metal spheres that are small, but not too small. We end the dis-
cussion of the far-field optical response of plasmonic spheres by comparing the extinction cross-section
of a rs = 2 jellium sphere with the one of a silver nanoparticle. The results are depicted in Supplementary
Figure 6, and show a nonclassical redshift for the former and a blueshift for the latter, consistent with the
fact that Re d⊥ > 0 for jellium metals and that Re deff < 0 for silver [4].

Higher-order localized surface plasmon resonances in plasmonic nanospheres. In the nonretarded regime,
the l-dependent LSP resonances for deep subwavelength metal nanospheres follows from the implicit
condition in Eq. (34). The ensuing LSP resonances for the first five multipoles—for a rs = 4 jellium
sphere with R = 3 nm, embedded in a homogeneous medium with εd—are shown in Supplementary
Figure 7
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1 2 3 4 5
angular momentum, l

0.54

0.60

0.66

0.72

Re
l

[
p]

a
Re cl

l =

Re cl
l = 1

R = 3 nm ; rs = 4

1 2 3 4 5
angular momentum, l

0.01

0.02

0.03

0.04

0.05

0.06

Im
l

[
p]

b

Im cl
l = /2

Supplementary Figure 7. Classical (gray circles) and quantum (red circles) higher-order LSP resonances in
a R = 3 nm metal nanosphere (rs = 4 jellium). In a the circle radius is proportional to the resonance width. Non-
retarded LSP resonaces positions (a) and respective widths (b) as a function of the LSP angular momentum,
l. The nanoparticle is assumed to be embedded in a host environment with dielectric constant εd = 1. The
purple dashed-dot line indicates the approximate first-order correction predicted by Eqs. (7) of the main text
[the deviation here is due to the pole-approximation performed owing to the explicit spectral dependence of the
d-parameters—see discussion after the aforementioned Eqs. (7)].

SUPPLEMENTARY NOTE 6. NONCLASSICAL RESONANCE SHIFTS AND BROADENINGS

Figure 8 shows the relative nonclassical shifts and corresponding resonance widths for the two plasmonic
structures considered in this work, a planar dielectric–metal interface and metal spheres or arbitrary
radii. We emphasize that in Supplementary Figure 8 we employ the full solution—that is, including both
retardation and the frequency dependence of the d-parameters—in order to obtain quantitatively accurate
predictions. The usefulness of the approximate first-order spectral corrections given by Eqs. (7) of the

Supplementary Figure 8. Nonclassical plasmon resonance shifts and associated resonance widths for a
an air–metal half-space; and b metal spheres (for the l = 1 dipole LSP). The plasmon-supporting material
is assumed to be a jellium metal with rs = 4.

main text hinges upon their ability to provide physical intuition and to elucidate in a qualitative fashion
the scaling (with either q or R−1) of the plasmonic spectral features.
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SUPPLEMENTARY NOTE 7. QUANTUM CORRECTIONS TO THE OPTICAL LOCAL DENSITY OF STATES

Planar dielectric–metal interface

The (electric) local density of states (LDOS) experienced by an emitter with dipole moment µ and located
at a height h above a planar metal interface (defined by z = 0) is given by [27; 28]

ρE
µ(ω, h)

ρE
0 (ω)

= 1 +
3
4

µ2
x + µ2

y

|µ|2
Re

∫ ∞

0
du

u
√

1 − u2

[
rte − (1 − u2)rtm

]
e2ikdh

√
1−u2

+
3
2
µ2

z

|µ|2
Re

∫ ∞

0
du

u3

√
1 − u2

rtm e2ikdh
√

1−u2
, (37)

where we have normalized the LDOS to its value in a homogeneous medium with relative permittivity
εd (i.e., in the absence of the metal half-space). In the above, rtm ≡ rtm(u,ω) and rte ≡ rte(u,ω) are the
reflection coefficients for a planar interface (cf. Supplementary Note SUPPLEMENTARY NOTE 3), and
we have introduced the dimensionless variable u ≡ q/kd. Considering separately the cases of an ideal
dipole emitter with perpendicular and parallel dipole moments (with the respect to the interface), we
have

ρE
⊥(ω, h)
ρE

0 (ω)
= 1 +

3
2

Re
∫ ∞

0
du

u3

√
1 − u2

rtm e2ikdh
√

1−u2
, (38a)

and

ρE
‖
(ω, h)

ρE
0 (ω)

= 1 +
3
4

Re
∫ ∞

0
du

u
√

1 − u2

[
rte − (1 − u2)rtm

]
e2ikdh

√
1−u2

, (38b)

respectively. The corresponding orientation-averaged LDOS is then 〈ρE〉 = 1
3ρ

E
⊥ + 2

3ρ
E
‖
, which can be

particularly useful when dealing with an ensemble of randomly-oriented dipoles (e.g., in dyes).

It should now be clear that the work in Supplementary Note SUPPLEMENTARY NOTE 3 pays off also
for the calculation of the LDOS taking quantum mechanical effects into account, since one can simply
employ the corresponding nonclassical reflection coefficients, derived in Supplementary Note SUPPLE-
MENTARY NOTE 3, in Eqs. (37) and (38) (with their classical equivalents naturally defining the classical
LDOS). The results of such computations are summarized in Supplementary Figure 9.

Spherical metal sphere

The expression for the LDOS felt by an ideal electric dipole in the neighborhood of a spherical nano-
particle can be derived by following the same steps that lead to the LDOS in the planar case [29]. In
particular, the LDOS for a radial (⊥) and for a tangent (‖) dipole near a metal sphere is given by5 [29; 30]

ρE
⊥(ω, h)
ρE

0 (ω)
= 1 +

3
2

1
y2

∞∑
l=1

(2l + 1)l(l + 1) Re
{
−atml

[
h(1)

l (y)
]2
}

, (39a)

and

ρE
‖
(ω, h)

ρE
0 (ω)

= 1 +
3
4

1
y2

∞∑
l=1

(2l + 1) Re
{
−atm

l

[
ξ′l (y)

]2
− atel

[
ξl(y)

]2
}

, (39b)

5 We note that some authors use alternative definitions of the Mie coefficients, which may differ from ours by a minus sign. We
have adopted a convention such that in the classical limit our expressions agree with those of Bohren and Huffman [25].
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Classical Nonclassical

Classical NonclassicalClassical Nonclassical

Supplementary Figure 9. Normalized LDOS (Purcell factor), ρE/ρE
0 , perceived by an electric dipole at a dis-

tance h above a planar jellium surface (rs = 4), with its dipole moment oriented along the a perpendicular (⊥)
and b parallel (‖) directions with respect to the metal’s surface. c Orientation-averaged dipole in the same con-
figuration. The dielectric medium constituting the upper half-space is assumed to be air (εd = 1). The colorbar
range is fixed in all panels to facilitate the comparison between the different cases. The horizontal lines mark
the the nonretarded classical surface plasmon frequency, ωp/

√
2.

where we have defined y = kd (R + h) = xd (1 + h/R) for the sake of clarity. Clearly, by comparing
Eqs. (38) and (39) one realizes that the Mie coefficients in the latter play a similar role as the reflec-
tion coefficients in the former, and that the integration over in-plane momentum now appears as a sum
over angular momenta instead, reflecting the (spherical) symmetry of the problem. Furthermore, and as
before, the nonclassical LDOS possesses the same mathematical structure as its classical version. Hence,
the quantum mechanical LDOS is immediately obtained upon substituting the classical Mie coefficients
by their quantum mechanical counterparts. The outcome of Eqs. (39) is shown in Supplementary Fig-
ure 10.
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Classical Nonclassical

Classical NonclassicalClassical Nonclassical

Supplementary Figure 10. Normalized LDOS, ρE/ρE
0 , via Eqs. (39), experienced by an emitter in the vicinity

of a metal sphere. The emitter is located at a distance h from the sphere’s surface. The medium outside the
sphere is assumed to be air (εd = 1) and the sphere is assumed to be constituted by a rs = 4 jellium. a LDOS
for a radial dipole (⊥); and b for a tangent (‖) dipole (with respect to the nanoparticle’s surface). c Orientation-
averaged dipole in the same configuration. The colorbar range is fixed in all panels to facilitate the comparison
between the different cases. The horizontal dashed lines indicate the positions of the nonretarded classical LSP
resonances for l = 1, 2.

SUPPLEMENTARY NOTE 8. ENHANCEMENT OF MULTIPOLAR DECAY RATES: INFLUENCE OF
QUANTUM NONLOCAL EFFECTS

Atom-field Hamiltonian. In the context of quantum electrodynamics (QED) we consider atom-field inter-
actions whose dynamics are governed by the following nonrelativistic Hamiltonian:

H = Ha + HEM + Hint, (40a)

Ha =
∑

n

(
p2

n

2m
−

e2

4πε0

1
rn

)
, (40b)

HEM =
∑

j={x,y,z}

∫
dr

∫
dω ~ω

[
f †j (r,ω) f j(r,ω) +

1
2

]
, (40c)

Hint =
∑

n

[ e
2m

(pn · A(rn) + A(rn) · pn) +
e

2m
A2(rn)

]
, (40d)

where Ha is the atom Hamiltonian (or, more generically, of an emitter, e.g., a quantum dot, etc), HEM
is the Hamiltonian of the electromagnetic (EM) field, and Hint stands for the Hamiltonian governing the
atom-field interaction. As written above, the matter Hamiltonian Ha is treated at the Hartree-Fock level
(consisting of a kinetic part together with the Coulomb potential), that is, electron-electron interactions,
spin-orbit coupling, etc, will be neglected in what follows. Naturally, in any case these may be readily
incorporated here. Moreover, the Hamiltonian akin to the EM field is just the like the one of a typical
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quantum harmonic oscillator, where the operator f †j (r,ω) ( f j(r,ω)) creates (annihilates) a field excita-
tion at position r with frequency ω and oriented along the direction j. For the part of the Hamiltonian
describing the interaction between the atom and the field, Hint, we take the so-called minimal-coupling
interaction Hamiltonian6. Finally, A(r) is the vector potential associated with the EM field, from which
both the electric and magnetic fields stem, in particular, E(r) = − ∂

∂t A(r) and H(r) = µ−1
0 ∇×A(r) [15; 27].

Notice that we have implicitly assumed that the scalar potential is identically zero (in our gauge). It should
be noted that such vector and scalar potentials are simply useful mathematical entities/abstractions and,
unlike E(r) and B(r), do not represent per se real physical quantities.

Below, we will be dealing with (linear) dispersive and dissipative media and therefore the common ca-
nonical quantization based on modal expansion is unsuitable. Ergo, we employ instead the formalism of
macroscopic quantum electrodynamics [31; 32].

Dyadic Green’s functions and macroscopic QED. From Maxwell’s equations, the following wave equation
is immediately apparent (assuming linear, isotropic, and nonmagnetic media) [15]:

∇ × ∇ × E(r,ω) −
ω2

c2 ε(r,ω)E(r,ω) = iωµ0j(r,ω). (41)

The solution of Eq. (41) can then be written in terms of the associated dyadic Green’s function, in partic-
ular

E(r,ω) = iωµ0
↔

G(r, r′;ω) · j(r,ω), (42)

where the Green’s dyadic satisfies

∇ × ∇ ×
↔

G(r, r′;ω) −
ω2

c2 ε(r,ω)
↔

G(r, r′;ω) = δ(r − r′). (43)

Furthermore, we note the following useful properties of the Green’s function [31]:

↔

G∗(r, r′;ω) =
↔

G(r, r′;−ω∗), (44a)
↔

G(r′, r;ω) =
↔

GT (r, r′;ω), (44b)

ω2

c2

∫
dx Im{ε(x,ω)}

↔

G(r, x;ω) ·
↔

G†(r′, x;ω) = Im
↔

G(r, r′;ω), (44c)

where the first and second identities reflect, respectively, the analytical properties of the Green’s dyadic
function and reciprocity.

Furthermore, the current j(r,ω)—representing a dynamic variable of the system composed by the EM
field and the medium—may be written as [31; 32]

ji(r,ω) = ω

√
~ε0

π
Im ε(r,ω) fi(r,ω), (45)

where the bosonic field operators obey the commutation relations:[
fi(r,ω), f †j (r′,ω′)

]
= δi, jδ(r − r′)δ(ω − ω′), (46a)[

fi(r,ω), f j(r′,ω′)
]

= 0. (46b)

Hence, using Eqs. (42) and (45), one obtains

E(r,ω) = i
ω2

c2

√
~

πε0

∫
dr′

√
Im ε(r′,ω)

↔

G(r, r′;ω) · f(r′,ω), (47)

6 If spin-orbit coupling is considered, then Hint would also have an extra term, e~
2mσ · B(r) (where σ denotes the Pauli matrices),

responsible for the interaction of of the particle’s spin with the magnetic field of the EM radiation.
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so that, while realizing that in our gauge E(r,ω) = iωA(r,ω), we find

A(r,ω) =
ω

c2

√
~

πε0

∫
dr′

√
Im ε(r′,ω)

↔

G(r, r′;ω) · f(r′,ω). (48)

From here, and noting that A(r) =
∫

dωA(r,ω) + H.c., we now write the components of the vector
potential operator featuring in the interaction Hamiltonian, Eq. (40d), as

Ai(r) =

√
~

πε0

∫
dω

ω

c2

∫
dr′

√
Im ε(r′,ω)Gi j(r, r′;ω) f j(r′,ω) + H.c., (49)

where summation over repeated indices is implicitly assumed (Einstein’s summation notation).

Fermi’s Golden Rule and first-order processes. In what follows we consider electronic first-order pro-
cesses alone. This means, for instance, that we neglect the second term of the minimal-coupling Hamilto-
nian in Eq. (40d) [i.e., the term proportional to A2 ≡ A · A]. Moreover, for definiteness, we assume that
the emitter is a Hydrogen atom. Hence, the atom-field interaction Hamiltonian then becomes

Hint =
e

2m
[
p · A(r) + A(r) · p

]
. (50)

We want to determine the transition rate between an initial (excited) state |i〉 = |e, 0〉 ≡ |e〉 ⊗ |0〉 and a final
(not necessarily the lowest) state | f 〉 = |g, 1x jω0〉 = f †j (x,ω0) |g, 0〉. The transition rate for such a first-order
process calculated within first-order perturbation theory follows from Fermi’s Golden Rule

Γi→ f =
2π
~2 |〈 f |Hint |i〉|2 δ(ωi − ω f − ω). (51)

The matrix element entering in Eq. (51) reads7

〈 f |Hint |i〉 =
e
m

∑
k

〈g, 1xkω0 |A(r) · p |e, 0〉

=
e
m

∑
k

〈g, 0| fk(x,ω0)A(r) · p |e, 0〉

=
e
m

√
~

πε0

∑
k

〈g, 0| fk(x,ω0)
∫

dω
ω

c2

∫
dr′

√
Im ε(r′,ω)Gi j(r, r′;ω) f j(r′,ω)pi |e, 0〉

+
e
m

√
~

πε0

∑
k

〈g, 0| fk(x,ω0)
∫

dω
ω

c2

∫
dr′

√
Im ε(r′,ω) f †m(r′,ω)G†mn(r, r′;ω)pn |e, 0〉

=
e
m

√
~

πε0

ω0

c2

∑
k

〈g, 0|
√

Im ε(x,ω0)G†kn(r, x;ω0)pn |e, 0〉 . (52)

where the commutation relations of the bosonic field operators have been used. Carrying out a similar
calculation for 〈i|Hint | f 〉, and making use of the identity in Eq. (44c), one may write (taking the wave-
functions as real)

Γ =
2π
~2

e2~

πε0m2c2

∫
dr

∫
dr′ ψe(r′)ψe(r) Im Gi j(r, r′;ω0)(piψg(r))(p∗jψg(r′)). (53)

Now, the electromagnetic Green’s function admits an analytical expression of the form (for z > 0)

↔

G(r, r′;ω0) =
i

8π2

∫
dq

[↔
Ms +

↔

Mp

]
eiq·ρ+ikzze−iq·ρ′+ikzz′ . (54)

7 Neglecting the contribution from ∇ · A which is approximately zero away from the metal (where ∇ · A = 0).
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Since deviations of the LDOS from classicality owing to quantum surface corrections incur at relatively
short emitter–metal distances, i.e., at relatively large wavevectors, we here assume the nonretarded limit,
i.e., q� k0 (except for the reflection coefficient, which is still assumed to be the retarded version in order
to obtain the plasmon pole in accurately), such that kz → iq and ‖

↔

Ms‖ → 0 as c→ ∞:

↔

G(r, r′;ω0)
c→∞
'

i
8π2

∫
dq

↔

Mp

∣∣∣
c→∞eiq·ρ−qze−iq·ρ′−qz′ , (55)

where

↔

Mp

∣∣∣
c→∞ = −

qc2

ω2
0

rtm
 i 0 1

0 0 0
−1 0 i

 = −
qc2

ω2
0

rtm
 i

0
−1

 ⊗ (
1 0 −i

)
≡ −2i

qc2

ω2
0

rtmε̂ q̂ ⊗ ε̂
∗
q̂, (56)

with ε̂ q̂ denoting the polarization vector defined via ε̂ q̂ = (q̂ + iẑ)/
√

2. The transition rate in Eq. (53) then
reduces to

Γ =
e2

2π2ε0~m2ω2
0

∫ 2π

0
dϕ

∫ ∞

0
dq q2

∣∣∣〈e| (ε̂ q̂ · p)eiq·ρ−qz |g〉
∣∣∣2 Im rtm. (57)

It is useful to rewrite Eq. (57) as

Γ =
e2

2π2ε0~m2ω2
0

∫ 2π

0
dϕ

∫ ∞

0
dq q2

∣∣∣〈e| (ε̂ q̂ · p)eiq·ρ−q(z−z0) |g〉
∣∣∣2 Im rtm, (58)

which allows the evaluation of the matrix element with the emitter at the origin.

For simplicity, in what follows we restrict ourselves to electric multipolar transitions whose initial and
final states posses m f = mi = 0. Then, we may choose q along the x-direction, and, writing the momentum
operator as p = −i~∇, we obtain

Γ =
4α~2ω0

m2c2

∫ ∞

0
du u2e−2uk0z0

∣∣∣〈e| eiuk0 x−uk0(z−z0)ε̂ q̂ · ∇ |g〉
∣∣∣2 Im rtm, (59)

where we have introduced the dimensionless variable u ≡ q/k0. Since for an arbitrary nth electric trans-
ition, En, the matrix element in Eq. (59) is dominated by only one of the terms coming from the expansion
of the exponential,8 we get ∣∣∣〈e| eik0ux−k0u(z−z0)ε̂ q̂ · ∇ |g〉

∣∣∣2 ∝ u2(n−1). (60)

Finally, this leads to the following expression of the transition rate of a given hydrogenic En transition:

ΓEn = 2α3ω0

[
(k0ab)n−1

(n − 1)!

]2

Ξ
le,lg
ne,ng

∫ ∞

0
du u2ne−2uk0z0 Im rtm, (61)

where ab denotes the Bohr radius and where the quantity Ξ originates from the matrix element,

Ξ
le,lg
ne,ng ≡

∣∣∣∣∣ ∫ 2π

0
dφ

∫ π

0
dθ sin θ

∫ ∞

0
dr̄ r̄2 Ψe(r̄, θ, φ) (ir̄ sin θ cos φ − r̄ cos θ)n−1

× (sin θ cos φ + i cos θ)
∂

∂r̄
Ψg(r̄, θ, φ)

∣∣∣∣∣2, (62)

with r̄ ≡ r/ab (note that here the wavefunctions Ψ are dimensionless).

8 In particular, the dominating term arising from the expansion of the exponential is the one corresponding to change in the angular
momentum of the atom by an integer n, i.e., |l f − li | = n (see also the Supplementary Material of Ref. 33). This approximation
essentially amounts to a point-emitter assumption, with an associated O

[
(qab)2(n−1)] accuracy. For the dipole transition, inclusion

of terms beyond the u2(n−1) term produce so-called non-dipolar corrections [34]; for a general En transition, their inclusion
produce non-n-polar corrections. These corrections can be substantial in “large” emitters (e.g., quantum dots or molecules).
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SUPPLEMENTARY NOTE 9. BROADBAND PHENOMENA: NONCLASSICAL EFFECTS

Prelude: extrapolation of d-parameters beyond the plasma frequency using sum-rules

To extrapolate the argument-range of the d⊥ parameter beyond ωp, we perform a multi-Lorentzian fitting
of previous data [3] that cover d⊥ across 0 < ω < ωp. By enforcing sum-rules and appropriate asymptot-
ics [35; 36], we anticipate that the fit maintains a reasonable validity in the extrapolating domain ω > ωp.

Fitting scheme

We seek a fit of the jellium data of Ref. 3 to a sum of Lorentzians:

dfit
⊥ (ω) =

N∑
n=1

fn
ω(ω + iγn) − ω2

n
, (63)

with fn ∈ C, γn ∈ R, and ωn ∈ R. In addition, we impose the following basic requirements on each of the
oscillator parameters:

Amplitudes fn. To strictly ensure the large-ω behavior Im d⊥(ω� ωp) ∼ ω−3, we explicitly enforce
that

∑N
n=1 Im fn = 0 by setting Im fN = −

∑N−1
n=1 Im fn.

Resonance widths γn. To ensure causality, γn is restricted to positive real values, i.e., γn > 0. This
is enforced via a penalty term.

Resonance frequencies ωn. In the expectation that all resonant behavior occurs belowωp, we restrict
ω2

n ∈ [0,ω2
p]. This is enforced via penalty terms. To strictly ensure that Im d⊥(ω → 0) = 0, we

explicitly enforce that
∑N

n=1 Im fn/ω2
n = 0 by setting ω2

N = −(Im fN)/
(∑N−1

n=1 Im fn/ω2
n
)
.

In addition, we enforce the following sum-rules9 [35] via penalty terms:∫ ∞

0
Re d⊥(ω) dω = 0, (64)∫ ∞

0

Im d⊥(ω)
ω

dω =
π

2
Re d⊥(0). (65)

Finally, we enforce that Im d⊥(ω > ωp) < 0 to ensure that power is absorbed rather than gained at these
frequencies [the opposite is the case for frequencies below ωp since the surface power absorption is
proportional to ε(ω)d⊥(ω)].

The fitting itself is performed by minimizing the absolute square of residuals plus the penalty-terms noted
above. The minimization itself is performed by the Julia package Optim.jl [37], using the Nealder–
Mead algorithm.

Results

We’ve carried out this fitting procedure for rs = 4. We obtain a reasonable fit and small relative deviation
from the sum-rules with five oscillator terms. The results are summarized in Supplementary Table 1.10

9 There are additional sum-rules, that we nevertheless do not enforce, e.g.,
∫ ∞

0 ω Im d⊥(ω) dω = −η where η is a large-frequency
asymptotic scaling-parameter of Re d⊥ defined by Re d⊥(ω→ ∞) = 2π−1ηω−2.

10 The Fermi momentum kF relates with the dimensionless Wigner–Seitz radius as kFrsab =
3√9π/4 (with Bohr radius ab ≈ 0.529 Å)



21

n Re fnkF/ω
2
p Im fnkF/ω

2
p ω2

n/ω
2
p γn/ωp | fn|kF/ω

2
p

1 −0.40133 −0.0225044 0.664958 0.107995 0.401961
2 1.13998 0.0855696 0.909115 0.264916 1.143190
3 −0.91171 −0.00176816 0.890639 0.206974 0.911713
4 −0.0978378 0.00235707 0.439866 0.287170 0.0978662
5 0.0453377 −0.0636541 1.0 0.0120255 0.0781496

0 1 2
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0 1 2
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 d

 (Å
)

Im
 d

  
(Å

)

Fit
TDDFT

ω/ωp ω/ωp

Supplementary Table 1. Multi-Lorentzian fitting coefficients for rs = 4. Passes sum-rule (65) (relative error of
0.0%); nearly passes sum-rule (64) (relative error of 3.1%, relative to weight below ωp); and the mean square
error relative to (absolute mean square of) the original dataset is 0.03%. Figures visually illustrate the high fit
quality.

Energy transfer between two dipoles

The total energy transfer rate from a donor (D) to an acceptor (A), characterized by a dipole moment µD
and µA, respectively, follows from [27; 38–40]

ΓET =

∫
wET(rD, rA,ω) f em

D (ω) f abs
A (ω) dω, (66a)

where the kernel wET(rD, rA,ω) is the energy transfer amplitude, given by

wET(rD, rA,ω) =
2π
~2

(
ω2

ε0c2

)2 ∣∣∣∣µ∗A · ↔G(rD, rA;ω) · µD

∣∣∣∣2. (66b)

Notice that all the information about the nanophotonic environment is embodied in the Green’s dyadic.
Therefore, if the Green’s function is either known or can be calculated for the system under consideration,
then the rate of energy transfer can be determined by evaluating Eq. (66). For the half-plane and sphere
plasmonic structures, the nonclassical energy transfer rates are then straightforwardly obtained by simply
substituting the classical scattering coefficients by their corresponding nonclassical ones (namely, Eqs. (9)
and (11) for the planar interface, and Eqs. (30)) and (31) for the sphere).

At this point it is also instructive to note that, contrary to the computation of the LDOS where the (imagin-
ary part of the) Green’s function is evaluated at the same point (r = r′ = r0), the rate of energy transfer
depends on the (absolute square of the) Green’s function taken simultaneously at the positions of the
donor and of the acceptor. Furthermore, for the calculation of the total (broadband) energy transfer rate
one has to perform an integration over frequency—albeit typically restricted to the overlap between the
emission spectrum of the donor, f em

D (ω), and the absorption spectrum of the acceptor, f abs
A (ω).

R zAzDz
x

Supplementary Figure 11. Illustration of two dipoles in the vicinity of a planar metal surface. The dipole–
surface separation is given by zD(A) for the donor (acceptor), and its dipole moment is characterized by µD(A).
Without loss of generality, we choose our coordinate system so that R = |xD − xA|.

We now consider two electric point-dipoles (e.g., each a generic two-level system, or dye molecules, or
quantum dots, etc) above a planar metal surface, as illustrated in Supplementary Figure 11. Therefore,
according to Eqs. (66) the enhancement (with respect to the energy transfer rate in same medium but
without the interface) of the energy transfer rate between the donor and the acceptor can be calculated as

ΓET

Γ0
ET

=

∫ ∞
0 dωω4

∣∣∣∣n̂A ·
[↔
G0(rD, rA;ω) +

↔

Gref(rD, rA;ω)
]
· n̂D

∣∣∣∣2 f em
D (ω) f abs

A (ω)∫ ∞
0 dωω4

∣∣∣∣n̂A ·
↔

G0(rD, rA;ω) · n̂D

∣∣∣∣2 f em
D (ω) f abs

A (ω)
, (67)
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where
↔

G0(rD, rA;ω) and
↔

Gref(rD, rA;ω) are the Green’s dyadics associated with the homogeneous me-
dium and with the reflected part owing to the metal surface, correspondingly. Here, n̂A and n̂D are unit
vectors denoting, respectively, the orientation of the acceptor and donor dipole moments.

Example I: two vertical dipoles. For n̂D = n̂A = ẑ, the relevant element of the
↔

Gref(rD, rA;ω) dyadic is
given by

[↔
Gref(rD, rA;ω)

]
zz

=
i

4πk2
0

∫ ∞

0

q3

kz
J0(qR)rtmeikz(zD+zA) dq, (68)

with kz ≡ (k2
0 − q2)1/2, and where Jn is the nth order Bessel function of the first kind. This is the example

highlighted in the main text.

Example II: two horizontal dipoles. For n̂D = n̂A = x̂, the relevant entry of the
↔

Gref(rD, rA;ω) dyadic is
given by [↔

Gref(rD, rA;ω)
]

xx
=

i
8π

∫ ∞

0

q
kz

[
J0(qR) + J2(qR)

]
rteeikz(zD+zA) dq

−
i

8πk2
0

∫ ∞

0
qkz

[
J0(qR) − J2(qR)

]
rtmeikz(zD+zA) dq. (69)

Second-order processes: two-photon emission

The theory of two-photon emission in arbitrary macroscopic media was derived in Ref. 33 and 41. Here,
we summarize the main results, and defer to these references for additional details. From the standpoint of
macroscopic quantum electrodynamics, two-photon emission can be represented as a transition from an
initial state |i〉 ≡ |e, 0〉 (an excited matter state e and zero photons) to a final state | f 〉 ≡ |g, {rωk, r′ω′k′}〉 (a
lower-energy matter state g and two photons at positions r and r′, frequencies ω and ω′, and orientations
k and k′). The energy difference between matter states is ω0 ≡ ωe − ωg. The rate of two-photon emission
is then governed by Fermi’s Golden rule at second-order in quantum electrodynamics, which takes the
form

ΓTPE =
2π
~2

1
2

∫
dr dr′

∫
dω dω′

∑
kk′

∣∣∣∣∣∑
i1

〈g, {rωk, r′ω′k′}|V |i1〉〈i1|V |e, 0〉
Ee − Ei1 + i0+

∣∣∣∣∣2δ(ω0 − ω − ω
′), (70)

where |i1〉 are intermediate states containing both the atom and field degrees of freedom. The sum is
understood to be a sum over discrete degrees of freedom and an integral over continuous ones. The factor
of 1/2 comes from the fact that when we sum over all {rωk, r′ω′k′} pairs, each pair of excitations appears
twice. As we will calculate two-photon emission within the dipole approximation, V = −d · E is the
dipole Hamiltonian. After a series of manipulations, it is found that the second-order differential decay
rate dΓTPE/dω—i.e., the decay rate per unit frequency, defined such that ΓTPE =

∫ ω0

0 dω (dΓTPE/dω)—is
given by:

dΓTPE

dω
=

144πα2

9c2 ω2(ω0 − ω)2
∑
i jrs

Im Gri(r, r,ω) Im Gs j(r, r,ω0 − ω)Ti j(ω)T ∗rs(ω), (71)

where Ti j is an atomic structure factor given by

Ti j(ω) ≡
∑

n

xgn
j xne

i

ωe − ωn − ω
+

xgn
i xne

j

ωe − ωn − (ω0 − ω)
= Tji(ω0 − ω), (72)

where xgn
j ≡ 〈g|x j|n〉 is the transition matrix-element between matter states |g〉 and |n〉 along the jth

Cartesian direction. We note that this derivation makes no assumption about the Green’s function
↔

G (with
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elements Gi j), and therefore may be used to describe nonclassical corrections to two-photon emission via
d-parameters.

The expression for the two-photon spectrum is quite general. Now, we specialize it both for the photonic
structure and the emitter. For the photon, we consider a planar system (with in-plane translational sym-
metry). For such a translationally invariant system (and taking a nonretarded, high-Purcell enhancement
approximation; both well-realized in our considerations), one has Im Gi j(r, r,ω) = ω

6πc Fp(r,ω)Di j, where
D ≡ diag(1/2, 1/2, 1) and Fp(ω) ≡ ρE

⊥(r,ω)/ρE
0 (ω) is the Purcell factor for one-photon emission for a

perpendicularly-oriented dipole (frequency ω and position r) near this material (and ρE
0 (ω) ≡ ω2/π2c3).

For the matter, we consider a hydrogenic atom undergoing a transition between s-states. Under these
assumptions, the two-photon differential decay rate is given by

dΓTPE

dω
=

2
3πc4α

2ω3(ω0 − ω)3Fp(ω)Fp(ω0 − ω)|Tzz|
2. (73)

Comparing this to the free-space two-photon differential decay rate for an s→ s transition (see Ref. 41),
one finally finds that the enhancement of the two-photon emission spectrum is given by

dΓTPE/dω
dΓ0

TPE/dω
=

1
2

Fp(ω)Fp(ω0 − ω). (74)

SUPPLEMENTARY NOTE 10. ASSUMPTIONS AND LIMITATIONS OF THE THEORETICAL FRAMEWORK

Framework assumptions

The assumptions underlying the d-parameter framework are (see also Ref. 14):

Dipolar nature: The d-parameters emerge from an interface-centered multipole expansion of the quantum
mechanical charge and current density. The monopole term gives the classical framework; the dipole
term produces d⊥ and d‖; the general nth order multipole term is of order ∼ (keff x)n, with x a length
scale (e.g., d⊥ and d‖ at n = 1) and keff an effective modal wavevector (e.g., for a planar interface, the
plasmon momentum k; for the dipole resonance of a sphere, the inverse radius R−1). Truncation at
the dipole term thus produces a leading-order formalism, i.e., we require that {|kd⊥,‖|, |R−1d⊥,‖|} � 1.
Since |d⊥,‖| is Ångström-scale, this is generally very well-satisfied.

Local curvature: The use of d-parameters—whose properties derive from planar interfaces—at curved
interfaces implies an assumption of “local flatness”. For a sphere, this is equivalent to requiring
R � |d⊥,‖|, i.e., imposes no additional restrictions relative to the dipole-expansion itself.

d-parameter nonlocality: The d-parameters are themselves k-dependent, i.e., nonlocal. This nonlocality
only produces corrections of order O(k3

eff
), cf. the overall O(keffd⊥,‖) scaling of d-parameter terms and

the expansion d⊥,‖(k) = d⊥,‖(0) + 1
2 d′′
⊥,‖(0)k2

eff
+ . . .]. The impact of intrinsic d-parameter nonlocality

is consequently comparable to the omitted quadrupole and octupole surface terms (i.e., negligible).

Surface-centric: Since the d-parameters are surface-response quantities they cannot describe finite-
volume effects such as the so-called quantum-size effect [42; 43] (fragmentation of the bulk elec-
tronic band structure into discrete levels) nor quantized volume plasmons (the splitting of the bulk
plasmon dispersion ωp(k) into a set of discrete “levels”).11

The assumptions underlying our treatment of the emitter are:

Point-emitter : We use macroscopic QED to couple the states of the emitter and the electromagnetic modes
of the plasmonic object (Supplementary Note SUPPLEMENTARY NOTE 8). While macroscopic

11 Though irrelevant in the single-interface systems that we consider, the d-parameter framework of course also does not account
for tunneling [44] which is intrinsically a two-interface effect.
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QED does not require a point-emitter approximation, we have adopted one in our calculations.12 As
a result, emitter-size effects (see e.g., Ref. 34) are neglected. While these effects are interesting—
and can be substantial in large emitters such as quantum dots or molecules—we have omitted them
to unambiguously identify the impact of mesoscopic corrections from the metallic surface-response
alone.

Surface hybridization: We neglect wave-function overlap between the electronic states of the emitter and
metallic surface; the inclusion of which would materialize as a (complex) self-energy renormaliza-
tion of the emitter’s energy levels. Such a renormalization is negligible for the separations considered
in our present work, where wave-function overlap is always vanishingly small. Of course, if the emit-
ter is adsorbed to the metal surface—i.e., resides within its spill-out region—this is likely a sizable
effect. Similarly, we ignore image-charge effects on the emitter’s electronic orbitals. In sum, we treat
the emitter’s intrinsic electronic structure as independent from the metallic surface.

Note that we do not generally constrain our considerations to two-level emitters; e.g., our consideration of
multipolar transitions and two-photon emission feature the hydrogen levels. Naturally, all considered pro-
cesses could be mapped to an equivalent two-level system (except two-photon emission which includes
virtual transitions between all levels).

Regime of validity

The sum of the above-noted assumptions translates to the broad restrictions {|keffd⊥,‖|, |keff lorb|} � 1, with
lorb denoting a characteristic size of the emitter orbitals. The effective wavevector keff of a given transition
depends on the transition type and the emitter–surface separation h: e.g., for an nth order multipole
transition keff ∼ n/h [corresponding to the dominant wavevector in Eq. (61); equivalently, the maximum
of the geometric factor q2ne−2qh]. As a result of this scaling with n, high-order multipole transitions will
enter a regime beyond the framework’s validity sooner than the dipole transition. Figure 4b,f of the main
paper illustrates this phenomenom by highlighting regimes of invalidity with dotted lines.
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