

Supplementary Information for

Rescue of Tomato spotted wilt virus entirely from cDNA clones; establishment of the first reverse genetics system for a segmented (-)RNA plant virus

Mingfeng Feng^a, Ruixiang Cheng^a, Minglong Chen^a, Rong Guo^a, Luyao Li^a, Zhike Feng^a, Jianyan Wu^a, Li Xie^b, Jian Hong^b, Zhongkai Zhang^c, Richard Kormelink^d and Xiaorong Tao^{a,1}

Corresponding Author: Xiaorong Tao

Email: taoxiaorong@njau.edu.cn

This PDF file includes:

Supplementary Materials and Methods

Figs. S1 to S9

Tables S1 to S3

References for SI reference citations

Supplementary Materials and Methods

Plasmid construction

Construction of RdRp, RdRp_{opt}, N, NSs and VSRs. The cDNA of the RdRp, N, and NSs genes was amplified from the total RNA of *N. benthamiana* leaves infected with TSWV lettuce isolate, then inserted into binary vector pCambia2300 or pCXSN to generate p2300-RdRp_{wt}, p2300-N, and pCXSN-NSs downstream of a double 35S promoter (2×35S). The pCB301-P19-HcPro- γ b construct expressing three VSRs P19, HcPro and γ b simultaneously was kindly provided by Dr. Xianbing Wang in College of Biological Sciences of China Agricultural University (1). The codon usage and intron-splicing sites of RdRp were optimized (*SI Appendix*, Fig. S9) and *de novo* synthesized by GenScript Biotech Corp (Nanjing, China), then inserted into binary vector pCambia2300 to generate p2300-RdRp_{opt} downstream of the 2×35S promoter.

Construction of full-length TSWV genomic $S_{(-)}$, $M_{(-)}$, $L_{(-)}$, and antigenomic $S_{(+)}$, $M_{(+)}$ and $L_{(+)}$ cDNA clones. To generate constructs to express full-length TSWV genomic and antigenomic RNA of S, M and L segments, total RNA extracted from TSWVlettuce infected leaves of *N. benthamiana* plants was reverse transcribed into cDNA, followed by PCR amplification with specific primers (*SI Appendix*, Table S3) using Phanta Super-Fidelity DNA Polymerase (Vazyme Biotech, Nanjing, China). The PCR products were fused with self-cleaving hammerhead (HH) ribozyme (2) and inserted into binary expression vector pCB301-2×35S-RZ-NOS linearized by two restriction endonucleases StuI and SmaI (3). cDNA clones of pCB301-2×35S-HH-S₍₋₎-RZ-NOS [S₍₋₎], pCB301-2×35S-HH-M₍₋₎-RZ-NOS [M₍₋₎], pCB301-2×35S-HH-L₍₋₎-RZ-NOS [L₍₋₎], pCB301- pCB301-2×35S-HH-S₍₊₎-RZ-NOS [S₍₊₎], 2×35S-HH-M₍₊₎-RZ-NOS [$M_{(+)}$] and pCB301-2×35S-HH-L₍₊₎-RZ-NOS [$L_{(+)}$] were then generated. The full-length TSWV genomic RNA of S₍₋₎, M₍₋₎ and L₍₋₎, and antigenomic RNA of S₍₊₎, M₍₊₎ and L₍₊₎ were expressed downstream of the double 35S promoter (2×35S) and flanked with a self-cleaving hammerhead (HH) ribozyme at the 5'-terminus and a hepatitis delta virus (HDV) ribozyme at the 3'-terminus.

Construction of TSWV $SR_{(-)eGFP}$, $SR_{(-)mCherry\&eGFP}$ and $SR_{(+)eGFP}$ mini-replicons. For generating $SR_{(-)eGFP}$ -genomic RNA mini-replicon, the eGFP ORF was amplified and used to replace the N gene in the pCB301-2×35S-HH-S₍₋₎-RZ-NOS by *in vitro* recombination using the In-Fusion Cloning mixture (Clontech, Japan). The construct pCB301-2×35S-HH-SR_{(-)eGFP}-RZ-NOS [SR_{(-)eGFP}] was generated.

For generating SR_{(-)mCherry&eGFP} in which the NSs and N genes in S gRNA were replaced with mCherry and eGFP, respectively, the mCherry ORF was amplified and used to exchange the NSs gene in the pCB301-2×35S-HH-SR_{(-)eGFP}-RZ-NOS by recombination using the In-Fusion Cloning mixture (Clontech). The construct pCB301-2×35S-HH-SR_{(-)mCherry&eGFP}-RZ-NOS [35S:SR_{(-))mCherry&eGFP}] was generated. The T7:SR_{(-)mCherry&eGFP} mini-replicon (pCB301-T7-HH-SR_{(-)mCherry&eGFP}-RZ-NOS) controlled by T7 promoter was constructed by the same strategy as 35S:SR_{(-)mCherry&eGFP}.

For generating antigenomic $S_{(+)eGFP}$ -mini-replicon, the eGFP ORF was amplified and used to replace the NSs gene in the pCB301-2×35S-HH-S₍₋₎-RZ-NOS by recombination using the In-Fusion Cloning mixture (Clontech). The construct pCB301-2×35S-HH-SR_{(+)eGFP}-RZ-NOS [SR_{(+)eGFP}] was generated. The primers used above are listed in SI Appendix, Table S3.

Construction of TSWV MR(-)*eGFP, MR*(-)*mCherry and MR*(-)*eGFP&NSmMut mini-replicons.* For generating MR(-)*eGFP* and MR(-)*mCherry* mini-replicons, the eGFP and mCherry ORFs were amplified and used to replace the GP gene in pCB3012×35S-HH-M(-)-RZ-NOS, respectively, by recombination using the In-Fusion Cloning mixture (Clontech). The constructs pCB301-2×35S-HH-MR(-)*eGFP*-RZ-NOS [MR(-)*eGFP*] and pCB301-2×35S-HH-MR(-)*mCherry*-RZ-NOS [MR(-)*mCherry*] were generated.

For generating MR_{(-)eGFP&NSmMut} in which a stop codon was introduced immediately after the start codon of NSm, the NSm^{Mut} was amplified and used to replace the wild-type NSm sequence in pCB301-2×35S-HH-MR_{(-)eGFP}-RZ-NOS by recombination using the In-Fusion Cloning mixture (Clontech). The construct pCB301-2×35S-HH-MR_{(-)eGFP&NSmMut}-RZ-NOS [MR_{(-)eGFP&NSmMut}] was generated. All primers used above are listed in *SI Appendix*, Table S3.

Construction of full-length $L_{(+)opt}$ and $M_{(-)opt}$ cDNA clones. For generating the fulllength $L_{(+)opt}$ cDNA clone, RdRp with the sequence codon and intron-splicing sites optimized was amplified and used to replace the wild-type RdRp sequence in pCB301-2×35S-HH-L₍₊₎-RZ-NOS by recombination using the In-Fusion Cloning mixture (Clontech). The construct pCB301-2×35S-HH-L_{(-)opt}-RZ-NOS [L_{(-)opt}] was generated.

To generate the full-length M_{(-)opt} cDNA clone, the GP gene with codon and intronsplicing sites optimized was *de novo* synthesized by GenScript Biotech Corp (Nanjing, China) (*SI Appendix*, Fig. S10) and used to replace the wild-type GP sequence in pCB301-2×35S-HH-M₍₋₎-RZ-NOS by *in vitro* recombination using the In-Fusion Cloning mixture (Clontech). The construct pCB301-2×35S-HH-M_{(-)opt}-RZ-NOS $[M_{(-)opt}]$ was generated. The primers used above are listed in *SI Appendix*, Table S3.

Plant material and virus source

Six to 8-week-old plants of *Nicotiana benthamiana*, were used in all agroinfiltration assays. The TSWV isolate from asparagus lettuce (TSWV-LE) was used in this study (GenBank accession KU976396 for S, JN664253 for M and KU976394 for L) (4). The TSWV-LE isolate was maintained in *N. benthamiana*. For long-term storage, infected new leaves of *N. benthamiana* were kept in a -80 °C refrigerator. The *N. benthamiana* inoculated with TSWV-LE were grown in a growth chamber at 25 °C and 16 h light/8 h dark (5).

Agrobacterium infiltration

Agrobacterium tumefaciens strain GV3101 was transfected with recombinant plasmids using electroporation and used for agroinfiltration of *N. benthaminana* leaves essentially as described before (6, 7). *A. tumefaciens* cells were resuspended in agroinfiltration buffer (10 mM MgCl2, 10 mM MES pH 5.6, and 100 μ M acetosyringone) adjusted to an optical density OD₆₀₀ of 1.0 and incubated for 2 to 3 h in the dark at room temperature. Equal volumes of *Agrobacterium* cultures (final concentration OD₆₀₀ = 0.2) harboring the p2300-N, p2300-RdRp, pCB301-derived reporter or full-length infectious clone vector(s), were mixed with one volume of bacterial mixture (final concentration OD₆₀₀ = 0.05) containing the NSs and P19HcPro- γ b. Fully expanded leaves of *N. benthamiana* plants at the 6-7-leaf stage were infiltrated with *Agrobacterium* cultures using 1 mL needleless syringes. The *N. benthamiana* plants infiltrated with *Agrobacterium* cells were grown in a growth chamber at 25 °C and 16 h light/8 h dark (5).

Western blot analysis

Total protein was extracted from 1 g Agrobacterium-infiltrated leaf patches, healthy or TSWV-systemically infected leaves of N. benthamiana in 1 mL extraction buffer (10 % v/v glycerol, 25 mM Tris-HCl, pH 7.5, 1 mM EDTA, 150 mM NaCl, 10 mM dithiothreitol, 2 % w/v polyvinylpolypyrrolidone, 0.5 % v/v Triton X-100 and $1\times$ protease inhibitors cocktail) (8). Protein samples were separated by SDS-PAGE, transferred to PVDF membranes (GE Healthcare, UK), blocked with 5 % w/v skim milk solution and incubated with a polyclonal antiserum specific to TSWV N, NSm, NSs, Gn, Gc, GFP, mCherry or T7 RNA pol at room temperature for 1 h or overnight at 4 °C. After incubation in a secondary antibody containing HRP-conjugated goat antirabbit (1:10000) for 1 h, the blots were developed using the ECL Substrate Kit (Thermo Scientific, Hudson, NH, USA). The signal was visualized using the ChemiDoc Touch Imaging System (Bio-Rad). Protein loading was evaluated by staining the blots with Ponceau S. Rabbit polyclonal antibodies against RdRp, Gn, Gc, NSm, N and NSs were produced in our laboratory. Secondary antibody HRP-conjugated goat antirabbit IgG was purchased from Sigma-Aldrich (St. Louis, MO, USA).

Northern blot analysis

For Northern blot analysis of TSWV gRNAs, agRNAs or viral mRNA transcripts, total RNAs were extracted from *Agrobacterium*-infiltrated leaf patches, healthy or TSWV-systemically infected leaves using an RNAprep Pure Plant Kit (Tiangen Biotech, Beijing, China), respectively. DIG-labeled probes specific for sense or antisense eGFP, NSs, NSm, and L-5'UTR was synthesized using a DIG High Prime RNA labeling kit (Roche, Basel, Switzerland). Total RNAs were separated in 1 % formaldehyde agarose gels and transferred to Hybond-N⁺ membranes (GE Healthcare, UK) (9). The membrane blots were hybridized with the specific DIG-labeled probe, then processed using a DIG-High Prime Detection Starter Kit II (Roche) and the manufacturer's protocol.

RT-PCR and sequencing analysis

For detecting the virus in leaves of *N. benthamina* systemically infected with $SR_{(+)eGFP}+MR_{(-)mCherry}+L_{(+)opt}$, $S_{(+)}+MR_{(-)eGFP}+L_{(+)opt}$, $SR_{(+)eGFP}+M_{(-)opt}+L_{(+)opt}$ or rTSWV recovered from the full-length cDNA clones, total RNAs were extracted from leaf areas with systemic symptoms. First-strand cDNAs were synthesized using M-MLV Reverse Transcriptase (Promega, Madison, WI, USA). RT-PCRs were performed to detect the $SR_{(+)eGFP}$, $MR_{(-)mCherry}$, $MR_{(-)eGFP}$, $S_{(+)}$, $M_{(-)opt}$ and $L_{(+)opt}$ minigenomes and genomic RNA using their specific primers. The PCR products were inserted into a pMD19-T vector (Takara, Dalian, China) and sequenced by Sanger dideoxy-mediated chain-termination DNA sequencing method at Sangon Biotech (Shanghai, China). The

primers used in this study are listed in SI Appendix, Table S3.

Fluorescence microscopy

Agro-infiltrated *N. benthamiana* leaves were examined for fluorescence expression using an OLYMPUS IX71-F22FL/DIC Inverted Fluorescence Microscope (OLYMPUS, Tokyo, Japan) with a green or red barrier filter. The leaf sample was fixed in water on a microslider under a coverslip to detect eGFP and mCherry fluorescence, respectively. Fluorescence images were processed using ImagePro (OLYMPUS, Tokyo, Japan) and Adobe (San Jose, CA, USA) Photoshop programs.

Transmission electron microscopy and immunogold labelling

Samples (1 mm \times 4 mm) were excised from leaves of *N. benthamiana* plants infected with rTSWV rescued from the full-length infectious clones. The sample tissues were fixed in 2.5 % v/v glutaraldehyde and 1 % w/v osmium tetroxide in 100 mM phosphate buffer (PB; pH 7.0) as described by Li *et al.* (6, 10) and then embedded in Epon 812 resin as instructed by the manufacturer (SPI-EM, Division of Structure Probe, West Chester, PA, USA). Ultrathin sections (70 nm) were mounted on formvar-coated grids and then stained with uranyl acetate for 10 min, then with lead citrate for 10 min. The stained sections were examined with a transmission electron microscope (TEM; H-7650, Hitachi, Japan).

For immunogold labelling, the TEM sections were incubated in 1 % BSA buffer for 10 min, then for 1 h in 1:200 v/v diluted rabbit polyclonal antibody against Gn. The sections were rinsed with PB, then incubated in 1:30 v/v diluted goat antirabbit IgG conjugated with gold particles for 1 h. After several rinses with PB, the sections were examined with a transmission electron microscope.

Imaging GFP in infected plant using hand-held UV lamp

GFP fluorescence in leaves was monitored with a hand-held 100 W, long-wave UV lamp (UV Products, Upland, CA, USA), then photographed using a Canon EOS 70D digital camera (Canon, Japan) with a 58 mm UV filter.

Fig. S1 Functional analysis of wild-type RdRp and use of T7 promoter in a minigenome replication assay. (*A*) Schematic diagram of TSWV 35S:SR_{(-)mCherry&eGFP} and T7:SR_{(-)mCherry&eGFP} mini-replicon reporters. (*B*) Wild-type RdRp (RdRp_{wt}) or the empty vector (Vec) was co-expressed with 35S:SR_{(-)mCherry&eGFP}, N, VSRs (VSRs: NSs, P19, HcPro and γ b) in *N. benthamiana* leaves. Expression of eGFP was detected with a fluorescence microscope. (*C*) Constructs coding for T7:SR_{(-)mCherry&eGFP}, T7 RNA polymerase (pol), N and VSRs were co-expressed with RdRp_{wt} or RdRp_{opt} in *N. benthamiana* leaves. Replication of T7:SR_{(-)mCherry&eGFP} was examined by monitoring eGFP fluorescence with a fluorescence microscope. Empty vector (Vec) pCB301 was used as a negative control. Bars represent 200 µm. (*D*) Western immunoblot detection of T7 RNA polymerase (pol) using a T7 RNA pol-specific antibody. Ponceau S staining was used as protein loading control. Lane 1: sample from leaves coexpressing T7:SR_{(-)mCherry&eGFP} T7 RNA Pol, N, VSRs and RdRp_{wt}; lane 2: sample from leaves coexpressing T7:SR_{(-)mCherry&eGFP} T7 RNA Pol, N, VSRs and RdRp_{opt}.

Fig. S2 Time-course analysis of gene expression from the $SR_{(-)mCherry\&eGFP}$ minireplicon in *N. benthamiana* leaves. (*A*) Foci of eGFP and mCherry fluorescence expressed from $SR_{(-)mCherry\&eGFP}$ in *N. benthamiana* leaves coexpressing N, RdRp and the VSRs at 3, 6, 9 and 12 dpi, respectively. Fluorescence of eGFP and mCherry was photographed with a fluorescence microscope using GFP and RFP filters, respectively. Bars represent 400 µm. (*B*) Western immunoblot detection of N, eGFP and mCherry proteins in leaves shown in panel A, using specific antibodies against N, GFP and mCherry, respectively. The empty vector (Vec) was used as a negative control. Ponceau S staining was used as protein loading control.

Fig. S3 Effects of ectopic expression of TSWV RdRp and N on host cells or intercellular movement of $SR_{(-)GFP}$ and $MR_{(-)mCherry}$ mini-replicons in *Nicotiana benthamiana*. (*A*) Expression of N or RdRp at high concentrations ($OD_{600} > 0.6$) of *Agrobacterium* induced cell death in the infiltrated leaves of *N. benthamiana*. *Agrobacterium* at $OD_{600} = 0.6$ containing the binary expression constructs for N or RdRp were mixed with fixed amounts of *Agrobacterium* containing the RdRp or N construct ($OD_{600} 0.2$), respectively, for infiltrating *N. benthamiana* leaves with *Agrobacterium* containing $SR_{(-)mCherry&GFP}$ and four VSRs; cell death phenotype was photographed at 5 dpi. (*B*) Cell-to-cell movement analysis of $SR_{(-)GFP}$ and $MR_{(-)mCherry}$ in *N. benthamiana* coexpressing RdRp, N and four VSRs. Agroinfiltrated leaves were examined and photographed at 5 dpi with a fluorescence microscope. Bars represent 400 µm.

Fig. S4 Functional analysis of RdRp expressed from TSWV $L_{(+)opt}$, NSm from MR_{(-)eGFP} and N from SR_{(+)eGFP} using the mini-genome replication system in *N. benthamiana*. (*A*) Functional analysis of RdRp expressed from TSWV $L_{(+)opt}$ using the S RNA mini-replicon system in *N. benthamiana*. The $L_{(+)opt}$, RdRp, or pCB301 empty vector (Vec) was coexpressed with N, SR_{(-)mCherry&eGFP} and the four VSRs in leaves. (*B*) Functional analysis of N expressed from SR_{(+)eGFP} in *N. benthamiana*. SR_{(+)eGFP} was coexpressed with the empty vector (Vec), N, RdRp or $L_{(+)opt}$ in leaves in the presence of four VSRs. (*C*) Functional analysis of NSm expressed from MR_{(-)eGFP} in *N. benthamiana*. MR_{(-)eGFP} was coexpressed with the empty vector (Vec), N, N+RdRp or N+L_{(+)opt} in leaves in the presence of four VSRs. Agroinfiltrated leaves were examined with a fluorescence microscope at 3 dpi for foci showing mCherry and eGFP fluorescence. Bars represent 400 µm.

Fig. S5 Analysis of *N. benthamiana* leaves agroinfiltrated with constructs of $SR_{(+)eGFP}$, $MR_{(-)mCherry}$ and $L_{(+)opt}$, or $SR_{(+)eGFP}$, $M_{(-)opt}$ and $L_{(+)opt}$, or $S_{(+)}$, $MR_{(-)eGFP}$ and $L_{(+)opt}$. (*A*) Local infection analysis of cell-to-cell movement of $SR_{(+)eGFP}$ and $MR_{(-)mCherry}$ coexpressing with $L_{(+)opt}$ and four VSRs in leaves after agroinfiltration. Agroinfiltrated leaves were examined and photographed at 5 dpi using a fluorescence microscope. Bars represent 400 µm. (*B*) RT-PCR analysis of systemically infected leaves from *N. benthamiana* plants after agroinfiltration with $SR_{(+)eGFP}$, $MR_{(-)mCherry}$ and $L_{(+)opt}$ at 15 dpi. (*C*) RT-PCR analysis of systemically infected leaves from *N. benthamiana* plants agroinfiltrated with $S_{(+)}$, $MR_{(-)eGFP}$ and $L_{(+)opt}$ at 15 dpi. (*D*) RT-PCR analysis of systemically infected leaves from *N. benthamiana* plants agroinfiltrated with $S_{(+)}$, $MR_{(-)eGFP}$ and $L_{(+)opt}$ at 15 dpi. (*D*) RT-PCR analysis of systemically infected leaves from *N. benthamiana* plants agroinfiltrated with $S_{(+)}$, $MR_{(-)eGFP}$ and $L_{(+)opt}$ at 15 dpi. (*D*) RT-PCR analysis of systemically infected leaves from *N. benthamiana* plants agroinfiltrated with $S_{(+)}$, $MR_{(-)eGFP}$ and $L_{(+)opt}$ at 15 dpi. (*D*) RT-PCR analysis of systemically infected leaves from *N. benthamiana* plants agroinfiltrated with $S_{(+)}$, $MR_{(-)eGFP}$ and $L_{(+)opt}$ at 15 dpi. (*D*) RT-PCR analysis of systemically infected leaves from *N. benthamiana* plants agroinfiltrated with $S_{(+)}$, $MR_{(-)eGFP}$ and $L_{(+)opt}$ at 15 dpi. (*D*) RT-PCR analysis of systemically infected leaves from *N. benthamiana* plants agroinfiltrated with $S_{(+)}$, $MR_{(-)eGFP}$ and $L_{(+)opt}$ at 15 dpi. (*D*) RT-PCR analysis of systemically infected leaves from *N.*

benthamiana plants agroinfiltrated with $SR_{(+)eGFP}$, $M_{(-)opt}$ and $L_{(+)opt}$ at 15 dpi. All agroinfiltrations included four VSRs. For RT-PCR, total RNA was purified from systemically infected leaves to detect S, M or L segments using segment-specific primers. Amplicons were resolved by electrophoresis in 1 % agarose. Lanes 1 and 2 represent two biological replicates of systemically infected leaf samples. For positive controls (CK⁺) of proper fragment size, PCR was performed on plasmids carrying $S_{(+)}$, $M_{(-)opt}$, $L_{(+)opt}$ or derivatives. As the negative control (CK⁻), RT-PCR was performed in the absence of nucleic acids. DNA size markers are shown on the left.

Fig. S6 Northern blot detection of viral RNA synthesis produced from full-length $S_{(+)}$ and wild-type $M_{(-)}$ replicons. (*A* and *B*) The full-length $S_{(+)}$ or wild-type $M_{(-)}$ was coexpressed with the empty vector (Vec), N, RdRp_{opt} or N+RdRp_{opt} in *N*. *benthamiana* leaves in the presence of three (P19, HcPro and γ b) VSRs for $S_{(+)}$ or four VSRs (P19, HcPro, γ b and NSs) for $M_{(-)}$. Genomic RNAs (blue arrow), antigenomic RNAs (red arrow) of S (*A*) were detected with DIG-labeled sense or antisense NSs and NSm probes, respectively. Ethidium bromide staining was used as RNA loading control.

Fig. S7 RT-PCR detection of $S_{(+)}$, $M_{(-)opt}$ and $L_{(+)opt}$ genomic RNA in leaves of *N*. *benthamiana* systemically infected with rTSWV. $S_{(+)}$, $M_{(-)opt}$ and $L_{(+)opt}$ and the four VSRs were coexpressed in leaves via agroinfiltration. Total RNA was purified from systemically leaves of agroinfiltrated plants, and $S_{(+)}$, $M_{(-)opt}$ and $L_{(+)opt}$ were detected by RT-PCR using segment-specific primers. RT-PCR products were resolved by electrophoresis in 1 % agarose. Lanes 1 and 2, two biological replicates of systemic infected leaf samples; RT-PCR on plasmids carrying S, M and L as DNA template were used as positive controls (CK⁺). RT-PCR running without the DNA template were used as negative controls (CK⁻). DNA size markers are shown on the left.

Fig. S8. Wild-type and optimized RdRp gene sequence used in the study.

Wild-type RdRp gene sequence

ACGACCTAGCTTTGGATTTACATAAGAGAAATAGTGATGAGAACCCAGAAGATGTGATTATTAATAATAATGCAAAAAATTA TGAGACGATGAGAGAGTTAATTGTCAAAAATCACTGCTGATGGAGAAGGACTAAACAAAGGGATGGCAACTGTAGACGTC AAGAAGTTAAGTGAGATGGTTTCTCTATTTGAGCAAAAATACCTAGAAACAGAGTTAGCAAGGCATGATATTTTTGGAGAG CTGATCTCCAGGCACCTGAGAATAAAGCCCAAACAAAGAAGTGAAGTGGAGATAGAGCATGCGCTCAGAGAATATCTGGA ${\tt CGCCACACCTGACAACTATGTGATATAAAAGAATCAAAAAAACAGTGAGCTTTGTTTAATCATTTATGATTGGAAAAATATCT}$ GTCGATGCCAGGACAGAAACTAAAACAATGGAGAAATACTACAAAAAATATCTGGAAATCTTTCAAAGATATAAAAGTGAAT **GGAAAGCCATTCCTGGAAGATCACCCTGTTTTCGTTTCTATAGTTATATTGAAAACCTATTGCTGGGATGCCAATCACTGTTA** AAATTGCTAAATATTTCTCATGTTGGGCAAATAGTTGGAACCACACCACAGTGGTGAGAAACTATTATGCAAACACTCAA AAGATCAAAATCTGAAGTCAGAGGAATACTAGGTGATGATGTTTTGGATCTAAAGATGTGTTTTTTAGTCACTGGACCAGCAAA TACAAAGAAAGAAATCCTACTGAAATAGCCTATTCTGAAGATATTGAAAGAATAATTGATTCACTTGTTACAGATGAAATAA AATTTAAAGGGTACCAAAGCTCTTGTATCAATTTAAAAAATAGAGCCAAAAGTTGATTTAGCTGATTTGAAGGACCACTTAA AAAGAAAAGAAATACCTGACATAACCACAGCTTTTTAACCAGAATGCTGCTGAATATGAAGAAAAGTACCCAAACTGTTTT ACAAATGATCTCTCTGAAAACTAAAACTAACTTTTCTATGACTTGGTCCCCAAGTTTTGAAAAAATAGAATTGAGCTCAGAG GTAGATTACAACGACAATTATAAAACAAGTTTCGGGAAAGCTTCAAAAGTTCTTCAAGGGTTATTATAATAGCCCATATA CAACAAAAATGGAAAAAGCAGGAGGATGAGGATGAAATAGATATAAACACTGGGAGTATTAAAGTTGAGAGAACAAAAAAA ATGTCATCTCGACTCATATGAAAAAAACTGATAAGACATGACAACGAGGATAGCTTAAGCTGGTGTGAAAGGATTAAGGAC TCTTTGTTTGTTCTTCATAATGGTGATATAAGAGAGGAAGGCAAGATCACATCTGTTTACAATAATTATGCTAAAAAATCCTG AATGCTTGTACATTCAAGATTCAGTACTGAAAACTGAATTAGAGACTTGCAAAAAGATAAACAAATTATGCAATGACCTAG TCAAAAATACTAACCACAGCAAAATACGAGCATGATGCTATTGGCATTCAAAGGAGATGGAATGAACACCGGAGGATCAGGA GTTCCTTACATAGCATTGCATAGGATGAAGACATGTCAGATCAAATTTAACATATGTTATACTAAAGAAATTTATAGCTA TTTCCGAAATGGTAGTAATTACATTTATAATGAGACCACAGAGACTCAATCAGGTGAGGCTGCTAAGCCTTTTCAAAAAC AGAAAAAGTAAATGTCTTTTCTATGACAATGACTGTAAAAACAGATATTAATAAAATATTGTGTTTTCATCTGTCATGATAGGA ACTGTGACAAAGCTCAGCAGGATGGGAATTTTTGACTTCATGCGGTATGCAGGTTTTTTGCCACTGTCTGATTATTCTAAT ATAAAAGAGTACATTAGAGACAAAATTTGATCCTGATATAACCAATGTGGCAGATATCTATTTCGTTAATGGAATCAAAAAGC TATTGTTCAGAATGGAAGATCTCAATTTAAGCACAAATGCCAAGCCTGTTGTTGTAGATCACGAAAATGATATTATAGGAG **GGATAACAGACTTGAATATAAAAATGTCCAATAACAGGATCAACTCTACTGACTCTTGAGGATTTGTATAATAATGTCTATTT GGCTATTTACATGATGCCTAAATCATTGCACAATCACGTTCACAATCTAACAAGCTTGTTAAATGTCCCTGCTGAGTGGGA** GCTAAAGTTCAGAAAAGAGTTAGGTTTCAACATATTTGAGGACATATACCCTAAGAAAGCAATGTTTGATGACAAAGACCT ATTCTCTATAAATGGAGCTTTGAACGTGAAAGCATTATCTGATTACTATCTAGGAAATATAGAAAATGTGGGTTTGATGAGA TCAGAAATAGAAAATAAAGAAGATTTTCTAAGCCCTTGTTATAAAAATATCTACTTTAAAAATCTTCAAAAAAATGCTCGCAGT CAAACATTATAAGTACTGATGAGAATAAGAGTGTCTCCCAGAATGCAAAGATCCAAGATATAGAAAAATTGGAAAGGAAATA ACCTGGCCATTATAAAAGGGCTTATAAGAACCTACAATGAGGAGAAAAACAGATTGGTGGAATTTTTTGAAGAATAATTGTG ATTTATAAGAAATAACCATCCTTTAACAGTAGAAACATATCTCCAAAACAAAACTATATTATAGAAATAATGTGACTGTTTTAA AGTCTAAAAAAGTATCAGAGGAGCTTTATGACCTTGTAAAAACAGTTTCATAACATGATGGAAATAGACTTAGATTCTGTTAT

GAACCTTGGGAAAGGTACAGAAGGGAAAAAACACACATTCTTGCAGATGCTTGAATTTGTCATGTCCAAAGCTAAAAATG GTATGAAAGTGAAAATGATGCTTTATTTTATAGAGCACACATTCAAACATGTTGCGCAGAGTGATCCATCAGAAGCCATAT ${\bf CTATAAGTGGAGACAATAAAAATAAGGGCACTTTCTACATTATCTTTGGACAATCACGTCTTACAACGACATTTTAAAACAA$ AAATTCAAAGAAGTCAAGATTGGCTTTCCTGTCTGCTGATCAATCGAAATGGTCGGCATCAGACCTTACCTATAAATATGT GAAGGTTTGTATACCAACAGATATTTTTTTGAATCTAAGAAAAGCTCAAGGAACTTTCGGGCAAAATGAAACTGCCATAGG ACTITTGACTAAAGGTTTGACGACAAACACATACCCTGTTAGCATGAACTGGTTACAAGGCAATTTAAATTATCTGTCTTC TGTTTATCACTCTTGTGCAATGAAAGCTTATCACAAGACTTTAGAATGCTACAAAGACTGTGATTTCCAAAACTAGATGGAT TGTGCACTCTGATGATAATGCGACATCATTGATAGCCAGTGGAGAGGGTCGATAAAATGCTAACAGACTTTTCAAGCTCATC TCTGCCAGAAATGTTGTTTAGAAGCATTGAAGCTCATTTCAAAAGCTTTTGCATAACTTTGAACCCCAAAAAAGAGTTATGC TTCTTCATCAGAAGTAGAGTTTATATCTGAAAGAATTGTAAATGGAGCAATTATTCCTCTCTATTGCAGACATTTAGCAAAT TGTTGCACAGAATCTTCACATATAAGTTATTTTGATGATCTAATGTCACTAAGTATACATGTTACGATGCTTCTGAGAAAAG GCTGTCCTAATGAAGTTATACCTTTTTGCTTATGGGGCTGTACAGGTACAAGCATTAAGCATCTATTCAATGCTTCCTGGTG AAGTGAATGATAGCATCAGAATTTTTTAAGAAGCTTGGAGTAAGTTTAAAGTCAAACGAGATTCCCACAAACATGGGGGGGC TGGTTGACTTCTCCTATAGAGCCATTGTCTATATTAGGTCCATCATCGAATGATCAAATCATCTATTACAATGTGATAAGAG ATTTTTTGAACAAAAAAGTTTAGAGGAAGTAAAAGATAGCGTCTCTTCTTCCAGCTATCTACAGATGAGATTCAGAGAGC TAAAAAGGAAAGTATGAAAAAAGGAACTCTGGAAGAAAAAGATAAAAAAGATGATATTTCTTATCAATCTGTTTGAGAAAGCAT ${\bf CAGTGTCTGAAGATTCAGACGTTCTAACAATCGGGATGAAATTTCAAAACTATGTTAACTCAGATTATAAAATTGCCCAATTT$ TATAAATGAGAATGCTTTAAACAAGATGTCAAGTTATAAAGATTTTTCAAAAACTTTACCCTAATTTGAAAAAGAATGAAGAA TTATATAAAAGTACTAAGAACTTAAAGATAGACGAGGATGCTATTTTAGAGGGAGATGAGTTATATGAGAAGATTGCATCTA GCTTAGAAATGGAATCTGTTCATGACATAATGATAAAAAATCCTGAAACAATTCTGATAGCACCATTGAATGATAGAGAGATTT TTTACTTAGTCAGCTGTTCATGTACACAAGCCCTTCTAAAAAGGAATCAGTTATCTAACCAATCTACAGAGAAACTTGCTTT **GGATAGAGTATTAAGGTCAAAAAGCTAGAACATTTGTAGACATTTCTTCCACTGTGAAGATGACTTATGAAGAAAAACATGGA** AAAGAAAATCTTGGAAATGCTAAAATTTGATTTAGATTCATATTGTTCATTTAAAACATGTGTAAATCTAGTGATCAAGGAT **GTTAATTTCAGCATGCTGATCCCAATATTGGATTCTGCATACCCTTGTGAATCTAGGAAAAGAGATAACTACAATTTCAGGT** TATATAGAAAAATTTAGGTTTAAAAAAACATCCCTCTAACAGACGATAGCATTAATGTTTTAACAAGCACGTTTGGAACAGGTT TAATCATGGAGGATGTAAAATCCTTAGTTAAAGGCAAAGACAGCTTCGAAACAGAGGCTTTCAGCAATTCTAACGAATGTC AAAGATTGGTGAAAGCATGCAATTATATGATAGCAGCACAAAACAGGCTTTTAGCAATTAACACATGCTTTACTAGGAAAA GCTTCCCCTTCTATTCTAAATTCAACCTAGGGAGAGGGGTTTATCTCAAACACATTAGCTCTCCTATCCACCATCTACAGTAA AGAAGAATCCTATCATTTTGTTTCTACAGCTAGTTATAAATTAGAACAAAACTATTAGAACTGTGATAAGTGCTCAGCAAGAT ATGAACTTAGAGAAAATACTGGACACTGCTGTATACATATCAGATAAATTGCAGTCACTTTTCCCCAACAACTACAAGAGAG GATATAGTTTTGGAAAATGTGTGCCTAGACAGCAAAACCTATATGGCAGAGTCTAGAAGACAAAATGAAAAAGATT AACAATTCAACAGCAAGTGGCTTCACAGTGTCAAATGTGATTCTGTCACATAACAGTGAATTGAACACAAATCCAGAAACA AATTGTCTGGATGTGGAACATGGGTTTATGTTCTCATAGAACATTAGATTTTGTTATCAGGTATATTAGGAGAAGTGATGTA AGATATGTGAAAAACTGAAGAACAAGACGAATCAGGAAATTATATCTCTGGAACTATGTACAAAATCGGGATCATGACAAGA GATTATCTTTTTGACACATACAGAGAAAGTATAGAGAAAATTATTGCAGAAAATTATGTTTGATAAAGTGAACATAATAAAAAT CAAAACAACCACAGATTGTTTTCCTAGAACCAGGAGATGCCTGCATCAGAATGACCACAGACAACAAGATGATTGTAAAG GTTAATGCCACATCAAGACAAATAAGACTAGAGAATGTGAAAATTAGTTGTGAAGATAAAATATGAAAAACGTGAACTCCGAT GTGTGGGATATTATAGAAAGCCAAAAATCTCTAGTCTTAAGGCTCCCTGAAGTAGGGGAATGTTTCTCTGATATGTACAAA ACTGCAGACTCTGAAACTGAAAACAATCAAAAACCGTAAAAAACAGGCTTATGACTTCTTTAACTTTCATAGAAGCCTTTGGA ACCTGCTTAGAAGGTTTGGAAAAACTGCAAAAGTGTGGAAGAATATGATAGCTATCTTGATGAAAAATGGGTTTAATGATACA GTAGAACTATTCGAAAACTTGTTAAGAACACATGACAACTTTGAAAAATGAGTATAGTCCTCTGTTTTCAGAGAATTGTTGAC AAAGCAAAACAGTATACTAGAGAATTTAGAAGGTTTCAAAGAAATACTGCTCATGCTTAAATATTCTTTGATAAATGATGCAT CAGGATTTAAAAAGCTATAGAGCCACTGGAATGCATGCTGTCGAACTAATGGCAAAAAAGCACATAGAGATAGGGGAATTC AACTTGCTAGGAATGATCCAACTGATTAAAGCTTGCGAAACATGCCACAACAACGACTCTATATTAAACTTAGCAAGTTTG AGGAATGTTCTTAGCAGGACATATGCCACATTTGGGAGAAGAATAAGATTGAATCATGATCTGGATTTGCAAAAATAACTTG

Opimized RdRp gene sequence

ATGAACATTCAGAAGATCCAAAAGCTGATCGAGAACGGCACCACCTTGCTGCTTTCTATTGAGGATTGCGTGGGCAGCAA CTACGATCTTGCTCTTGATCTGCACAAGCGGAACTCCGATGAGATTCCTGAGGACGTGATCATCAACAACAACGCCAAGA ACTACGAGACTATGCGTGAGCTGATCGTGAAGATCACTGCTGATGGTGAGGGTCTGAACAAAGGTATGGCTACCGTGGAC GTGAAGAAACTGTCTGAGATGGTGTCTCTGTTCGAGCAGAAGTACCTTGAGACTGAGCTTGCTAGGCACGATATCTTCGG ${\tt CTGGACGAGCTTAACAAGAAGTCCTGCATCAACAAGCTGAGCGACGATGAGCTCGAGCGGATCAACAAAGAATATGTGG}$ CCACCAACGCTACCCCGGACAATTACGTTATCTACAAAGAGAGCAAGAACAGCGAGCTGTGCCTGATCATCTACGACTGG AAGATCTCTGTGGATGCCAGGACTGAGACTAAGACCATGGAAAAGTACTACAAGAACATCTGGAAGTCCTTCAAGGACAT ${\tt CTATTACCGTGACCTCTAGCAGAGTGCTCGAGAAGTTTGAGGACTCTCCTTCTGCACTTCACGGCGAGAGGATTAAGCAC}$ ACTGGACCTCCAAGTACAAAGAGCGGAACCCTACCGAGATCGCTTACTCTGAGGATATCGAGCGTATCATCGACAGCCTT GTGACCGACGAGATCACCAAAGAAGAAGAATTATCCACTTCCTGTTCGGCAACTTCTGCTTCCACATCGAGACAATGAACGA ATCTTAAGGATCACCTGATTCAGAAGCAGCAGCAGATTTGGGAGAGCCTGTACGGTAAGCACCTCGAGAAGATTATGCTGCGG AGAAGTACCCGAACTGCTTCACCAACGACCTGTCAGAGACAAAGACCAACTTCTCTATGACCTGGTCACCGAGCTTCGA GAAAATCGAGCTGTCTAGCGAGGTGGACTACAACAATGCCATTATCAACAAGTTCCGTGAGAGCTTCAAGTCCAGCAGCA GGGTGATCTACAACAGCCCTTACAGCTGCATTAACAACCAGACCAACAAGGCCCGGGATATCACTAACCTTGTGAGGCTT TGCCTGACCGAGCTTTCTTGCGATACCACCAAGATGGAAAAGCAAGAGCTTGAGGACGAGATCGACATCAACACCGGTA GCATTAAGGTCGAGCGGACCAAGAAAAGCAAAGAGTGGAACAAGCAGGGCTCCTGCCTTACTAGGAACAAGAACGAGTT CTGCATGAAGGAAAACCGGCCGAGAGAACAAGACCATCTACTTCAAGGGTCTTGCCGTGATGAACATCGGCATGTCCTCTA TGATCCGAACGACGACTACAGCAGCATCGATATGTCATCACTGACCCATATGAAGAAGCTCATCCGGCACGATAACGAGG ACTCACTTTCTTGGTGCGAGCGAATCAAGGACAGCTTGTTCGTGCTTCACAACGGCGATATCAGAGAAGAGGGCAAGAT CACCAGCGTGTACAACAATTACGCTAAGAACCCCGAGTGCCTGTACATCCAGGATTCTGTGCTTAAGACCGAGCTGGAAA CCTGCAAGAAAATCAACAAACTGTGCAACGATCTGGCCATCTACCACTACAGCGAGGACATGATGCAGTTCTCCAAGGGT TTGATGGTGGCCGATCGGTACATGACCAAAGAGTCTTTCAAGATCCTGACCACCGCCAATACCAGCATGATGCTGCTTGC TTTCAAAGGCGACGGTATGAACACTGGTGGTGCTCCGGTGTTCCTTACATTGCCCTGCACATCGTGGATGAGGATATGTCCG ATCAGTTCAACATCTGCTACACCAAAGAGATCTACAGCTACTTCCGGAACGGCTCCAACTACATCATCATCATGAGGCCGC AGAGGCTTAACCAGGTGAGGCTTCTTTCACTGTTCAAGACCCCTTCTAAGGTGCCAGTTTGCTTCGCCCAGTTCAGCAAA AAGGCCAACGAAATGGAAAAATGGCTGAAGAACAAGGACATTGAGAAGGTCAACGTGTTCAGCATGACCATGACCGTGA AGCAGATCCTGATCAACATCGTGTTCTCCAGCGTGATGATTGGCACCGTGACTAAGCTTTCTCGGATGGGCATCTTCGAC TTCATGAGGTACGCTGGTTTCTTGCCGCTGTCCGACTACTCCAACATCAAAGAGTACATCCGGGACAAGTTCGACCCCGA TATTACCAATGTGGCCGATATCTACTTCGTGAACGGGATCAAGAAACTGCTGTTCCGGATGGAAGATTTGAACCTGAGCA

CCAACGCAAAGCCTGTTGTGGTGGATCACGAGAACGATATCATCGGTGGCATCACCGACCTGAACATCAAGTGCCCTATT ACTGGTTCTACCCTGCTGACCCCTTGAGGACCTGTATAACAATGTGTACCTCGCCATCTACATGATGCCGAAGTCTCTGCAT AACCACGTGCACAACCTTACCAGCCTGCTTAATGTTCCTGCTGAGTGGGAGCTGAAGTTCCGGAAAGAGCTTGGCTTCA ACATTTTCGAGGACATCTACCCGAAGAAAGCCATGTTCGATGACAAGGACCTCTTCAGCATTAACGGCGCTCTTAACGTG AAGGCCCTGAGCGATTACTACCTGGGTAACATCGAGAATGTGGGGCCTGATGAGGACCGAGATTGAGAACAAAGAGGACT TCCTGTCTCCGTGCTACAAGATCTCTACCCTGAAGTCCAGTAAGAAGTGCAGCCAGAGCAACATCATCAGCACTGATGAG ATCATTGAGTGCCTGCAGAACGCAAAGATTCAGGACATCGAAAACTGGAAGGGCAACAACCTGGCTATTATCAAGGGCCT GATCCGGACCTACAACGAGGAAAAGAATCGGCTGGTTGAGTTCTTCGAGGATAACTGCGTGAACAGCCTGTACCTGGTC GAGAAGCTTAAAGAGATCATTAACAGCGGCAGCATCACCGTGGGAAAGTCTGTGACTAGCAAGTTCATCCGTAACAATCA AGCGAGGAACTGTACGACCTCGTTAAGCAGTTCCACAACATGATGGAAATCGACCTGGACTCTGTGATGAACCTTGGTAA GGGTACTGAGGGGAAGAAGCACACCTTCTTGCAGATGCTTGAGTTCGTGATGAGCCAAGGAATGTGACCGGTTCT TGAAGATGATGCTGTACTTCATCGAGCATACCTTCAAGCACGTGGCCCAGTCTGATCCTTCTGAGGCTATTAGCATCAGCG GCGACAACAAGATTAGGGCTCTGTCTACCCTTAGCCTGGACACCATTACCAGCTACAACGACATCCTCAACAAGAATAGC AAGAAGTCTCGGCTGGCTTTCCTGAGCGCTGATCAATCTAAGTGGTCCGCTTCTGACCTGACCTACAAGTACGTGCTGGC catcattctgaaccccgattcttactactggcgaggcctctcttatgatcgagtgcattctgatgtacgtgaagctgaagaaAGTGTGCATCCCGACCGACATTTTCTTGAACCTTAGGAAGGCTCAGGGCACCTTCGGTCAAAACGAAACCGCTATTGGTC TGCTGACCAAGGGACTTACCACCAACACTTACCCGGTGTCTATGAACTGGCTGCAGGGTAACCTGAACTACCTCTCTTCT GTGTACCACTCCTGCGCTATGAAGGCTTACCACAAGACTCTCGAGTGCTATAAGGACTGCGACTTTCAGACCCGGTGGAT CGTTCACTCTGATGATAACGCAACCAGCCTGATCGCTTCAGGTGAGGTTGACAAGATGCTGACCGACTTCTCCTCTTCAT CTCTGCCTGAGATGCTGTTCAGATCCATCGAGGCTCACTTCAAGTCTTTCTGCATCACACTCAAACCCCAAGAAGTCATAC GCCAGCTCAAGCGAGGTCGAGTTCATTTCTGAGAGGATTGTGAACGGCGCTATCATCCCACTTTACTGCAGGCATCTTGC TAACTGCTGCACCGAGTCCTCTCACATCTCCTACTTCGATGACCTGATGTCCCTGTCTATCCACGTGACCATGTTGCTGAG ${\tt ctggtgaggtgaacgacagcatccggatctttaagaagctgggcgtcagcctcaagtccaacgagattcctactaacatga$ GGCGGTTGGCTGACCTCTCCTATTGAGCCTTTGTCTATTCTGGGCCCCAGCAGCAACGACCAGATTATCTACTACAACGT GATCCGGGATTTCCTGAACAAGAAATCCCTGGAAGAGGTGAAGGACTCCGTGTCCTCATCTTCTTACCTGCAGATGAGGT GAGAAGGCCAGCGTGTCCGAGGATAGTGATGTGCTTACCATCGGGATGAAGTTCCAGACCATGCTGACCCAGATCATCAA GCTGCCCAACTTCATCAACGAGAACGCCTTGAACAAGATGAGCAGCTACAAGGACTTCTCCAAGCTGTACCCCAACCTCA AGAAGAACGAGGATCTGTACAAGTCCACCAAGAACCTCAAAAATCGACGACGACGCTATCCTCGAGGGTGATGAGCTTTAT GAGAAGATCGCCAGCAGCCTCGAGATGGAATCTGTGCACGACATCATGATCAAGAACCCGGAAACCATTCTGATCGCTCC GCTGAACGATAGGGACTTTCTGCTGTCTCAGCTGTTCATGTACACCTCTCCGTCTAAGAGGAACCAGCTGTCTAATCAGT ACCTATGAAGAGAACATGGAAAAAAAGATCTTGGAGATGCTCAAGTTCGATCTCGACAGCTACTGCAGCTTCAAGACTTG CGTGAACCTGGTGATCAAGGATGTGAACTTCTCCATGCTTATCCCGATCCTCGACTCTGCCTATCCTTGCGAGTCTAGGAA ATGCATGCTGTGTACGGGTCTAACTATATCGAGAACCTCGGCCTTAAGAACATCCCGGCTTACCGACGACTCTATCAACGTG CTGACTTCTACCTTCGGCACCGGTCTGATTATGGAAGATGTCAAGAGCCTGGTGAAGGGCAAAGACTCATTTGAGACAGA GGCCTTCAGCAACTCTAACGAGTGCCAGAGACTTGTGAAGGCCTGCAACTACATGATCGCTGCTCAGAACAGGCTCCTG GCTATCAATACCTGCTTTACCCGGAAGTCTTTCCCGTTCTACTCCAAGTTCAATCTTGGCAGGGGCTTCATCAGCAACACC TATCCGGACCGTGATCTCTGCACAGCAGGATATGAACCTGGAAAAGATCCTGGATACCGCCGTGTACATCAGCGACAAGC TTCAGTCTTTGTTCCCGACCATCACCAGAGAGGACATCGTTCTCATTCTCCAGAACGTGTGCCTGGACTCCAAGCCTATT TGGCAGTCTTTGGAGGACAAGATGAAGAAGATTAACAACAGCACCGCCAGCGGCTTCACCGTGTCTAATGTGATTCTGAG CCACAACTCCGAGCTGAACACCATCCAGAAACAGATCGTGTGGAAGATGGGGCCTTTGCTCTCATAGGACCCTGG ATTTCGTGATCCGTTACATCAGGCGGTCCGATGTGAGATACGTCAAGACTGAGGAACAGGACGAGAGCGGGAACTACATT AGCGGAACCATGTACAAGATTGGCATCATGACCCGGTCTTGCTACGTGCAGTTGATCGCATCAGATCAGGATGTGGCTGT GTCTCTTAGGACCCCTTTCGAGATTCTCAACGAGAGGGATTACCTGTTCGACACCTACCGTGAGTCCATCGAAAAGCTGC

TGCAAAAGTTCATGTTCGACAAGGTCAACATTATCAAGTCTAAGCAGCCGCAGATTGTGTTCCTCGAGCCAGGTGATGCT GCTGGTGGTGAAGATTAAGTATGAGAACGTGAACTCCGACGTGTGGGACATCATTGAGAGCCAGAAGTCTCTCGTTCTC AGAACCGGCTGATGACCTCTCTGACCTTCATTGAGGCTTTCGGCAACCTCAGCCAGATCAAAGAAATCGTGGACGAT GACATCAGGGAAAACCATGGACGAGGTTCCTCATGAACATCCGTGATACCTGCCTTGAGGGTCTTGAGAATTGCAAGAGCGT**GGAAGAGTACGACTCCTACCTTGATGAGAACGGGTTCAACGATACCGTCGAGCTGTTCGAGAATCTTCTGAGGACCCAC** GACAACTTCGAGAAACGAGTACTCTCCACTGTTCAGCGAGATCGTGGATAAGGCTAAGCAGTACACCAGGGATCTCGAGG GCTTTAAAGAAATCCTGCTGATGCTGAAGTACTCTCTGATCAACGACGCCTCCGGGTTCAAGTCATATAGAGCTACTGGTA TGCACGCCGTTGAGCTGATGGCTAAGAAACACATTGAGATCGGCGAGTTCAACCTGCTGGGTATGATTCAGCTTATCAAG GCTTGCGAGACTTGCCACAACAACGACTCCATTCTCAACCTGGCCAGCCTTAGGAATGTGCTGTCTAGGACTTACGCTAC TTTCGGCAGGCGGATCAGGTTGAATCACGATCTGGATCTGCAGAACAACCTTATGGAAAAGAGCTACGACTTCAAGACCT TGGTGCTCCCCGAGATTAAGCTCTCTGAGCTGAGCAGGGAAATCCTGAAAGAGAACGGCTTCGTTATCTCCCGGCGAGAA TACGAGGGGCTGATCAAAGAAATGAAGATCAAGCGGAAGAAGAAGGGGCTCTCTGTTCCCTGCTAATACCCTGCTTCTGTC ${\tt CGAGTTGATCAAGTTCCTGATCGGCGGGTATTAAGGGCACCAGCTTCGATATTGAGACTCTGCTCCGGAACTCATTCAGGC$ ${\tt CGGATATCTTCTCTCACCGACAGGCTTGGTAGGCTCTTCTTCTTCTGTGCCTGCTCTTAAGGTGTACGCCACTGTGTACATGG}$ AGTACAAGAACGTCAACTGCCCTCTGAACGAGATCGCCGATTCTCTTGAGGGTTACCTGAAGCTCACCAAGTCCAAGAG ${\tt CAAAGAACACTTCTTGAGCGGCAGGGTGAAGAAGACGCTCTTATTCAGTTGAGGGACGAGCCAGGACCAAGAAAAGCTC}$ GAGGTCTACAAGGATATCGCCAACTTCCTTAGCAGGCACCCTCTTTGCCTGTCTGAAAAGACACTGTACGGCCGGTACAC CTACAGCGATATCAACGATTACATCATGCAGACCCGGGAAATCATCCTCTCTAAGATCTCCGAGTTGGATGAGGTGGTGG AAACTGACGAGGACAACTTCCTGCTCTTCTTACCTTAGGGGCGAAGAGGATGCTTTCGATGAGGACGATTCTGATGAGGA AGAGGACACCGATTAG

Fig. S9. Wild-type and optimized GP gene sequence used in the study.

Wild type GP gene sequence

ATGAGAATTTTTAAAACTAGTAGAACTAGTGGTAAAAGTGAGTCTTTTCACAATTGCCCTGAGTTCTGTCTTGTTGGCATTC TTGATCTTCAGAGCCACAGATGCCAAAGTAGAAATAATTCGTGGAGATCATCCTGAGGTTTATGATGATTCTGCTGAGAAT GAAGTACCCACTGCTGCATCGATTCAACGCAAGGCTATCTTGGAGACTTTAACTAGTCTAATGCTAGAATCTCAGACTCCT **GGAACCCGTCAGATACGAGAAGAAGAAGAATCAACCATCCCTATTTTTGCTGGGTCAACTACGCAAAAAAATAATCTCTGTCTCG** GATCTTCCTAACAACTGCTTGAATGCTTCTTCATTAAAATGCGAGATAAAAGGGATAATCCACTTATAATGTTTATTATCAAG TGGAAAATAATGGTGTCATATATTCCTGTGTTTCTGATTCAGCAGAAGGGTTAGAAAAATGTGACAATTCTTTAAATTTGCC AAAGAGATTCTCCAAAGTCCCGGTTATTCCCATTACCAAACTTGACAACAAAGGCATTTTTCAGTTGGAACAAAATTCTT ${\tt CATTTCAGAAAGCCTGACACAAGATAATTATCCTATAACTTGAACTCGTACCCTACTAATGGAACAGTATCATTACAAACC}$ GTAAAGTTATCTGGAGACTGCAAAATAACTAAATCAAACTTTGCCAATCCCTATACTGTTAGCATCACTAGCCCCGAGAAG TTTACTGAAGAAATGTTGGATGGTGAGCACAATCTCTTGTGCGGTGACAAATCAGCTAAAATACCAAAAACAAAACAAAAG AGTTAGAGATTGCATAATCAAATATTCAAAGAGCATTTATAAGCAAACAGCCTGCATCAATTTCTCTTGGATAAGATTAATA TTGATAGCTTTGTTGATCTATTTCCCTATCCGGTGGTTAGTAAACAAGACAACTAAACCTCTCTTTCTCTGGTATGATCTTA TAGGCTTGATCACATACCCTATTTGTTGCTCATAAATTGCTTATGGAAATATTTTCCATTCAAATGTTCTAACTGTGGCAAT TTGTGCATAATCACACATGAGTGTACTAAAATTTGCATCTGCAACAAAAGCAAAGCCTCAAAAAGAACACTCTTCAGAGTGT ACTAAGCTAAGCTTTAGTTTGCTGAAAATTTGTGACTGAAAATCTTAATAGGTTTGGTCATTTTGTCTCAAAATGCCCATGTCTA TGGCTCAAACTACTCAATGTTTGAGTGGATGTTTTTATGTTCCAGGCTGTCCAGTTTTGGTTACAAGCAAATTTGAAAAAAT GCCCTGAAAAAGATCAATGTTACTGTAATGTAAAAGAAGAAGATAAGAATATAGAAAGTATCTTTGGCACTAACATTGTTATAGA AGGTCCTAATGATTGCATAGAGAACCAGAATTGTGTTGCACACCCATCTATTGATAATCTTATAAAATGTAGATTAGGTTGC GAATACTTAGATTTATTTCGCAACAAACCTTTGTATAATGGGTTTTCAGATTATACAGGAAGCTCTTTGGGGTTAACATCGG TTGGTCTGTATGAGGCTAAGAGATTGAGGAATGGTATAATAGATTCCTATAACCGTACAGACAAGATTTCCGGAATGATTG ${\tt CAGGAGATTCTCTAGACAAAAATGAAAACAAGCATACCAGAGAACATTCTGCCTAGACAATCATTGATCTTTGATTCTGTTG$ TGGATGGGAAATATAGATATAGGTAGAACAATCTCTTTTAGGAGGAGGAGGACTGTATTCATGTTAAATGATAAGACCT ${\bf CAGAAAAAGCAAAAAAATTCGTGATTTATATCAAAAGTGTGGGAATTCATTATGAAGTGTCTGAAAAAATACACAACAGCTC$ CTATCCAAAAGCACTCACACAGATTTTTATTCCACTTGTACAGGAAAACTGTGACACTTGCAGAAAAAAATCAAGCTTTAACAG GTTTCCAAGATTTTTGTATAACACCCAACTTCTTATTGGGGATGTGAAGAAGCTTGGTGTTTTGCAATTAATGAAGGTGCTA CATGCGGGTTCTGTCGAAATATTTATGACATGGATAAATCATATAGAATTTATTCAGTGCTAAAATCAACTATAGTGGCAGA TGTTTGCATTTCTGGTATTTTAGGAGGTCAATGCTCAAGGATTACTGAAGAGGTTCCTTATGAAAATGCATTGTTTCAAGC **GGAAATATTGCAAACTTGAATGATCCTGTCAAAATGTTTGGTCATCCACAATTGACTCATGATGGAGTGCCTATTTTTACTA** TATGACACATACAGATTTAGATCTGGTTTAGAGCAAATATCAGATATTCCCATTAGTTTCAAAGATTTCCTAGTTTTTTCTT **GGAAAAATCTTTTAGTTTAGGGAAACTCAAGATTGTCGTTGATCTTCCATCTGATCTTTTTAAAGTTGCTCCTAAGAGACC** TTCCATAACTTCGACAAGATTGAATTGCAATGGCTGTCTTCTATGCGGTCAAGGTTTATCTTGCATTTTGGAATTTTTTCTCA AATACAACATAACAATGTTTTGTTCTGCTAATCCGGATAAGAAGAAGAAGACATTGTATCCAGAAGGCAATCCGGATATTTC TGTGGAAGTTCTGGTCAATAATGTTATTGTAGAAGAACCGGAGAACATAATAGATCAAAATGATGAGGAGTATGCTCATGAAGA ${\bf ACAACAATATAATTCTGATTCCTCAGCATGGGGGCTTCTGGGGATTATATAAAAGCCCATTCAATTTCATTGCAAGTTACTTT}$ AATTTGTAAAGGATATGTCAAGAATAAATCTTATAAATCTAGATCCAAGATAGAGGATGATGATGATGATCTGAGATCAAAGCC CCTATGTTAATGAAAGATACAATGACAAGACGAAGGCCACCTATGGATTTCTCTCACCTTGTCTGA

Optimized GP gene sequence

ATGAGGATCCTGAAGCTTCTTGAGCTGGTGGTGGAGGTGAGCCTGTTTACCATTGCTCTGTCCTCTGTGCTTCTGGCCTT ATGAAGTTCCTACCGCTGCTAGCATTCAGCGGAAGGCTATTCTTGAGACTCTGACCTCTCGATGCTCGAGTCTCAAACT ${\tt CCTGGAACCAGGCAGATTCGTGAGGAAGAGTCTACCATTCCTATCTTCGCTGGCAGCACTACCCAGAAGATTATCTCCGT}$ TAGCGACCTGCCTAACAACTGCCTGAACGCTTCATCTCTGAAGTGCGAGATCAAGGGCATCAGCACCTACAACGTTTACT ACCAGGTCGAGAACAACGGCGTGATCTACTCTTGCGTGTCAGATTCTGCTGAGGGGCCTTGAGAAGTGCGACAACTCTCT TAACCTGCCGAAGCGGTTCTCTAAGGTGCCAGTGATTCCTATCACCAAGCTGGACAACAAGCGGCACTTCTCTGTGGGCA ${\tt CCAAGTTCTTCATTAGCGAGTCTCTGACCCAGGACAACTACCCGATTACCTACAACAGCTACCCTACCAACGGAACCGTG}$ TCTCTTCAGACCGTTAAGCTGTCTGGCGATTGCAAGATCACCAAGAGCAACTTCGCTAACCCGTATACCGTGAGCATTAC CTCTCCAGAGAAGATCATGGGCTACCTGATCAAGAAGCCTGGCGAAAACGCTGAGCACAAGGTGATCTCATTCTCCGGCT ${\tt CTGCTTCCATTACCTTCACCGAAGAGATGCTGGATGGTGAGCACAACCTTCTCTGCGGTGATAAGTCTGCTAAGATCCCT}$ AAGACCAACAAGCGTGTGAGGGACTGCATCATCAAGTACAGCAAGAGCATCTACAAGCAGACCGCCTGCATCAACTTCTC TTGGATTAGGCTGATCCTGATCGCCCTGCTGATCTACTTCCCTATTAGATGGCTGGTGAACAAGACCACCAAGCCGCTTTT ${\tt CTTGTGGTACGATCTGATCGGCCTGATTACTTACCCAATCCTGCTGCTGATTAACTGCCTGTGGAAGTACTTTCCGTTCAA}$ GTGCAGCAACTGCGGCAACCTGTGCATTATTACTCACGAGTGCACCAAGATCTGCATCTGCAACAAGAGCAAGGCCAGCAAAGAACACTCTAGCGAGTGCCCGATCCTGAGCAAAGAAACCGATCACGACTACAACAAGCACAAGTGGACCAGCATGG AATGGTTCCACCTTATCGTGAACACCAAGCTCAGCTTCAGCCTGCTTAAGTTCGTGACCGAGATTCTGATCGGTCTGGTG ATCCTTAGCCAGATGCCTATGTCTATGGCTCAGACTACCCAGTGCCTTAGCGGTTGCTTTTATGTTCCTGGTTGCCCTGTG CTGGTGACCTCTAAGTTTGAAAAGTGCCCTGAGAAGGACCAGTGCTACTGCAACGTGAAAGAGGACAAGATCATCGAGT ${\tt CCATCTTCGGCACCAACATCGTGATTGAGGGTCCTAACGACTGCATCGAGAACCAGAATTGTGTGGCTCACCCGAGCATC}$ GACAACCTGATTAAGTGTAGACTGGGCTGCGAGTACCTGGACCTGTTTAGAAACAAGCCTCTGTACAACGGCTTCAGCGA CTACACCGGTTCTTCACTTGGTCTTACCTCTGTGGGACTGTACGAGGCTAAGAGGCTTAGGAACGGCATCATCGACTCTT ACAACCGGACCGATAAGATCAGCGGTATGATCGCTGGTGACAGCCTGGATAAGAACGAGACTTCTATCCCCCGAGAACATC CTGCCAAGGCAGTCTCTGATTTTCGACTCTGTGGTGGATGGCAAGTACCGGTATATGGTTGAGCAGAGCCTTCTTGGAGG TGGTGGAACTGTGTTCATGCTGAACGATAAGACCTCTGAGAAGGCCAAGAAGTTCGTCATCTACATCAAGAGCGTGGGC ATCCACTACGAGGTGTCAGAGAAGTATACCACCGCTCCTATTCAGTCTACCCACACCGATTTCTACTCTACCTGCACCGGT AATTGCGATACCTGCAGAAAGAACCAGGCTCTGACAGGCTTTCAGGACTTCTGCATTACCCCTACCTCTTACTGGGGTTG TGAAGAGGCTTGGTGCTTCGCTATTAACGAGGGTGCTACTTGCGGCTTCTGCCGGAATATCTACGACATGGACAAGAGCT ACCGGATCTACAGCGTGCTGAAGTCTACTATCGTTGCCGACGTGTGCATCTCCGGTATTCTTGGTGGACAGTGCTCTAGG ATTACCGAAGAGGTTCCATACGAGAACGCTCTGTTCCAGGCTGATATTCAGGCTGATCTGCACAACGATGGCATCACCAT TGGTGAGCTTATTGCTCACGGACCGGACAGCCATATCTACTCCGGTAACATTGCTAACCTGAACGACCCGGTGAAGATGT TCGGTCATCCTCAGCTTACTCATGACGGCGTGCCAATCTTCACCAAGAAAACCCTTGAGGGCGACGACGACATGTCTTGGGAT TGTGCTGCTATCGGCAAGAAGTCCATCAACCATCAAGACCTGCGGTTACGACACTTACAGGTTCAGGTCTGGTCTTGAGCA GATCTCTGACATCCCCATCAGGTTCAAGGACTTCAGCTCATTCTTCCTGGAAAAGAGCTTCAGCTTGGGGAAGCTGAAGA TCGTGGTGGATCTGCCTAGCGATCTTTTCAAGGTTGCACCTAAGCGGCCGTCTATCACTTCTACTAGGCTTAACTGCAAC GGCTGCCTTCTTGTGGTCAGGGCCTTTCTTGCATCCTCGAGTTCTTCTCGATCTGACCTTCAGCACCGCCATCTCTATC GATGCTTGCTCTTTGTCTACCTACCAGCTGGCTGTGAAGAAGGGCAGCAACAAGTACAACATCACCATGTTCTGCAGCGC

AAACCCGGACAAGAAAAAGATGACTCTGTACCCTGAGGGCAACCCCGATATTTCTGTTGAGGTGCTCGTGAACAACGTG ATCGTTGAGGAACCTGAGAACATCATCGATCAGAACGACGACGAGGACCGGGGAACAGCAGTACAACAGCGATTCATC TGCTTGGGGATTCTGGGATTACATCAAGTCCCCGTTCAACTTCATTGCCAGCTACTTCGGCAGCTTCTTCGATACAATCAG GGTGATCCTGCTTATCGCCTTCATCTTCCTGGTTATCTACTTCTGCAGCATCCTGACCACCATCTGCAAGGGGTTACGTGAA GAACAAGTCCTACAAGAGCCGGTCCAAGATCGAGGATGATGACGACTCAGAGATTAAGGCCCCGATGCTGATGAAGGAC ACTATGACTAGAAGGCGGCCTCCGATGGATTTCTCTCTCATCTTGTTTAG

					Activa	tions**	•	
Position (bp)	Putative splice site	Sequence	Score*	Intron GC*	Alt./Cryptic	Constitutive	Confidence**	
69	Alt. isoform/cryptic donor	TGAGGATTGCgtgggcagca	4.835	0.529	0.954	0.035	0.963	
175	Alt. isoform/cryptic donor	GAGACTATGCgtgagctgat	4.841	0.514	0.933	0.051	0.946	
205	Constitutive donor	ACTGCTGATGgtgagggtct	12.212	0.500	0.370	0.546	0.322	
223	Alt. isoform/cryptic donor	CTGAACAAAGgtatggctac	10.886	0.500	0.802	0.142	0.823	
261	Alt. isoform/cryptic donor	GTCTGAGATGgtgtctctgt	5.341	0.486	0.882	0.086	0.903	
280	Alt. isoform/cryptic acceptor	gttcgagcagAAGTACCTTG	5.730	0.514	0.943	0.055	0.942	
281	Alt. isoform/cryptic donor	TCGAGCAGAAgtaccttgag	5.847	0.500	0.816	0.135	0.834	
336	Constitutive acceptor	ttatttctagGCACCTGAGG	4.932	0.486	0.212	0.770	0.725	
579	Alt. isoform/cryptic acceptor	tggatgccagGACTGAGACT	4.087	0.500	0.696	0.295	0.576	
602	Alt. isoform/cryptic donor	CCATGGAAAAgtactacaag	6.059	0.457	0.939	0.044	0.953	
642	Alt. isoform/cryptic donor	GGACATCAAGgtgaacggca	7.873	0.514	0.821	0.135	0.835	
681	Alt. isoform/cryptic donor	TCCTGTGTTCgtgagcatcg	6.292	0.529	0.839	0.123	0.853	
738	Alt. isoform/cryptic acceptor	tgacctctagCAGAGTGCTC	3.060	0.500	0.836	0.157	0.812	
741	Alt. isoform/cryptic acceptor	cctctagcagAGTGCTCGAG	3.393	0.514	0.762	0.227	0.703	
831	Alt. isoform/cryptic donor	CATTTCTCACgtgggtcaga	5.665	0.500	0.943	0.042	0.955	
835	Alt. isoform/cryptic donor	TCTCACGTGGgtcagatcgt	6.026	0.500	0.936	0.048	0.949	
843	Alt. isoform/cryptic donor	GGGTCAGATCgtgggtacta	5.056	0.514	0.903	0.074	0.918	
864	Alt. isoform/cryptic donor	TCCTACTGTGgtgaggaact	11.320	0.500	0.901	0.072	0.920	
906	Alt. isoform/cryptic donor	CAAGTCCGAGgttaggggta	10.127	0.514	0.709	0.226	0.682	
913	Alt. isoform/cryptic donor	GAGGTTAGGGgtatcctggg	4.945	0.514	0.953	0.032	0.967	
971	Alt. isoform/cryptic donor	GGACCTCCAAgtacaaagag	5.665	0.514	0.934	0.049	0.948	
1185	Alt. isoform/cryptic donor	CGAGCCTAAGgtggacctgg	4.643	0.514	0.716	0.215	0.700	
1207	Alt. isoform/cryptic acceptor	tgatcttaagGATCACCTGA	2.743	0.500	0.596	0.388	0.349	
1249	Alt. isoform/cryptic donor	AGCCTGTACGgtaagcacct	11.990	0.457	0.579	0.329	0.431	
1361	Alt. isoform/cryptic donor	ACGAAGAGAAgtacccgaac	5.393	0.529	0.904	0.069	0.923	
1388	Alt. isoform/cryptic donor	CCAACGACCTgtcagagaca	5.572	0.500	0.910	0.068	0.925	
1421	Alt. isoform/cryptic donor	CTATGACCTGgtcaccgagc	5.097	0.471	0.952	0.036	0.962	
1492	Alt. isoform/cryptic donor	AACAAGTTCCgtgagagctt	6.085	0.500	0.565	0.376	0.334	
1515	Alt. isoform/cryptic acceptor	agtccagcagCAGGGTGATC	2.527	0.486	0.940	0.057	0.939	
1542	Alt. isoform/cryptic acceptor	gcccttacagCTGCATTAAC	3.273	0.486	0.526	0.454	0.136	

Table S1. The predicted intron splicing sites of wild-type RdRp gene.

1587	Alt. isoform/cryptic donor	CACTAACCTTgtgaggcttt	7.336	0.514	0.944	0.040	0.958
1672	Constitutive donor	ATCAACACCGgtagcattaa	5.999	0.500	0.395	0.516	0.233
1740	Constitutive acceptor	gccttactagGAACAAGAAC	7.612	0.529	0.146	0.841	0.827
1801	Alt. isoform/cryptic acceptor	ctacttcaagGGTCTTGCCG	3.996	0.471	0.717	0.270	0.624
1889	Alt. isoform/cryptic donor	AGGGCCTCGAgtacgatact	5.278	0.500	0.956	0.032	0.966
2006	Alt. isoform/cryptic donor	CACTTTCTTGgtgcgagcga	6.544	0.529	0.958	0.031	0.968
2125	Alt. isoform/cryptic acceptor	gtacatccagGATTCTGTGC	6.304	0.514	0.555	0.432	0.222
2205	Alt. isoform/cryptic acceptor	accactacagCGAGGACATG	4.878	0.457	0.847	0.147	0.827
2230	Alt. isoform/cryptic acceptor	gttctccaagGGTTTGATGG	2.346	0.471	0.692	0.290	0.580
2321	Constitutive acceptor	gctttcaaagGCGACGGTAT	6.287	0.457	0.385	0.587	0.344
2326	Alt. isoform/cryptic donor	AAAGGCGACGgtatgaacac	7.959	0.486	0.760	0.181	0.761
2487	Constitutive donor	GCTTAACCAGgtgaggcttc	14.109	0.500	0.246	0.676	0.637
2512	Alt. isoform/cryptic acceptor	actgttcaagACCCCTTCTA	4.626	0.514	0.933	0.062	0.933
2523	Alt. isoform/cryptic donor	CCCTTCTAAGgtgccagttt	10.939	0.471	0.614	0.306	0.501
2545	Alt. isoform/cryptic acceptor	cttcgcccagTTCAGCAAAA	6.490	0.529	0.692	0.300	0.566
2550	Alt. isoform/cryptic acceptor	cccagttcagCAAAAAGGCC	4.578	0.500	0.800	0.194	0.758
2601	Alt. isoform/cryptic donor	CATTGAGAAGgtcaacgtgt	6.294	0.500	0.944	0.041	0.956
2664	Constitutive acceptor	tgttctccagCGTGATGATT	6.507	0.486	0.462	0.524	0.117
2720	Alt. isoform/cryptic donor	ACTTCATGAGgtacgctggt	9.451	0.543	0.706	0.226	0.680
2765	Alt. isoform/cryptic donor	ACATCAAAGAgtacatccgg	4.583	0.500	0.944	0.041	0.956
2942	Constitutive donor	TGAACATCAAgtgccctatt	6.540	0.500	0.357	0.573	0.378
3217	Alt. isoform/cryptic donor	TACTACCTGGgtaacatcga	6.561	0.500	0.885	0.083	0.906
3292	Alt. isoform/cryptic acceptor	gtgctacaagATCTCTACCC	3.251	0.514	0.960	0.038	0.961
3307	Alt. isoform/cryptic acceptor	taccetgaagTCCAGTAAGA	3.209	0.500	0.930	0.067	0.928
3310	Alt. isoform/cryptic donor	CTGAAGTCCAgtaagaagtg	9.173	0.471	0.712	0.218	0.694
3370	Constitutive acceptor	gtgcctgcagAACGCAAAGA	3.539	0.500	0.477	0.500	0.047
3557	Alt. isoform/cryptic donor	CCGTGGGAAAgtetgtgaet	6.027	0.500	0.919	0.059	0.935
3642	Alt. isoform/cryptic donor	TCGGAACAACgtgaccgtgc	5.533	0.500	0.919	0.061	0.934
3666	unclassified donor	GTCTAAGAAGgtgagcgagg	13.918	0.500	0.418	0.490	0.000
3745	Alt. isoform/cryptic donor	ATGAACCTTGgtaagggtac	11.753	0.500	0.609	0.303	0.502
3751	Alt. isoform/cryptic donor	CTTGGTAAGGgtactgaggg	6.065	0.500	0.952	0.033	0.966
3784	Constitutive acceptor	cttcttgcagATGCTTGAGT	7.888	0.514	0.201	0.782	0.742
3816	Alt. isoform/cryptic donor	GGCCAAGAATgtgaccggtt	6.207	0.543	0.936	0.047	0.950

3840	Alt. isoform/cryptic donor	GGATTTCCTCgtgagcgtgt	5.915	0.514	0.899	0.079	0.912
3880	Alt. isoform/cryptic donor	AAGACCGACCgtgagatcta	5.588	0.457	0.542	0.380	0.299
3906	Alt. isoform/cryptic donor	GAGCATGAAGgtgaagatga	8.763	0.500	0.560	0.358	0.361
4023	Alt. isoform/cryptic acceptor	ctacccttagCCTGGACACC	6.193	0.514	0.626	0.365	0.416
4136	Alt. isoform/cryptic donor	TGACCTACAAgtacgtgctg	9.678	0.500	0.596	0.323	0.459
4211	Alt. isoform/cryptic donor	GCATTCTGATgtacgtgaag	7.123	0.514	0.847	0.112	0.868
4230	Alt. isoform/cryptic donor	GCTGAAGAAAgtgtgcatcc	6.203	0.529	0.934	0.048	0.949
4266	Alt. isoform/cryptic acceptor	tgaacettagGAAGGCTCAG	7.185	0.457	0.849	0.138	0.837
4306	Alt. isoform/cryptic donor	ACCGCTATTGgtctgctgac	5.056	0.529	0.865	0.097	0.888
4344	Alt. isoform/cryptic donor	CACTTACCCGgtgtctatga	6.061	0.514	0.900	0.077	0.914
4366	Alt. isoform/cryptic donor	TGGCTGCAGGgtaacctgaa	6.041	0.500	0.750	0.183	0.755
4414	Alt. isoform/cryptic acceptor	cgctatgaagGCTTACCACA	3.152	0.514	0.945	0.052	0.945
4459	Alt. isoform/cryptic acceptor	cgactttcagACCCGGTGGA	3.313	0.500	0.787	0.200	0.746
4510	Constitutive donor	ATCGCTTCAGgtgaggttga	11.745	0.500	0.262	0.665	0.607
4511	Constitutive acceptor	atcgcttcagGTGAGGTTGA	6.293	0.529	0.441	0.541	0.185
4701	Constitutive acceptor	tttactgcagGCATCTTGCT	8.159	0.514	0.411	0.576	0.288
4773	Alt. isoform/cryptic donor	GTCTATCCACgtgaccatgt	6.070	0.529	0.520	0.403	0.224
4809	Alt. isoform/cryptic donor	CCCTAATGAGgtgatccctt	6.780	0.529	0.856	0.106	0.877
4873	Alt. isoform/cryptic donor	ATGCTGCCTGgtgaggtgaa	9.597	0.529	0.762	0.188	0.753
4878	Alt. isoform/cryptic donor	GCCTGGTGAGgtgaacgaca	5.312	0.500	0.940	0.044	0.953
5001	Alt. isoform/cryptic acceptor	tgggccccagCAGCAACGAC	4.531	0.529	0.765	0.227	0.703
5004	Alt. isoform/cryptic acceptor	gccccagcagCAACGACCAG	3.016	0.529	0.837	0.157	0.813
5067	Alt. isoform/cryptic donor	CCTGGAAGAGgtgaaggact	8.199	0.514	0.764	0.180	0.764
5104	Alt. isoform/cryptic acceptor	ttacctgcagATGAGGTTCA	11.438	0.514	0.591	0.398	0.325
5140	Alt. isoform/cryptic donor	TACGAGAAGGgtactctgga	5.097	0.471	0.916	0.059	0.936
5263	Alt. isoform/cryptic acceptor	gctgacccagATCATCAAGC	2.350	0.557	0.593	0.388	0.345
5416	Alt. isoform/cryptic donor	ATCCTCGAGGgtgatgagct	5.258	0.471	0.829	0.126	0.848
5542	Alt. isoform/cryptic acceptor	gctgtctcagCTGTTCATGT	8.742	0.500	0.683	0.304	0.555
5549	Alt. isoform/cryptic donor	AGCTGTTCATgtacacctct	5.135	0.514	0.868	0.098	0.887
5569	Alt. isoform/cryptic acceptor	tccgtctaagAGGAACCAGC	3.653	0.514	0.927	0.070	0.924
5616	Alt. isoform/cryptic acceptor	ctcttgatagGGTGTTGAGA	3.796	0.486	0.802	0.185	0.769
5616	Alt. isoform/cryptic donor	TCTTGATAGGgtgttgagat	4.789	0.457	0.911	0.062	0.931
5668	Alt. isoform/cryptic acceptor	taccgttaagATGACCTATG	4.339	0.500	0.796	0.196	0.754

5730	Alt. isoform/cryptic acceptor	atctcgacagCTACTGCAGC	3.975	0.414	0.845	0.148	0.825
5829	Alt. isoform/cryptic acceptor	gcgagtctagGAAGCGGGAC	4.419	0.486	0.590	0.389	0.340
5863	Alt. isoform/cryptic acceptor	ttggttccagACTGAGAAGT	7.317	0.543	0.600	0.390	0.350
5921	Alt. isoform/cryptic donor	TGCATGCTGTgtacgggtct	4.883	0.500	0.957	0.031	0.968
6139	Alt. isoform/cryptic acceptor	cgctgctcagAACAGGCTCC	2.442	0.529	0.816	0.176	0.784
6199	Alt. isoform/cryptic acceptor	ctactccaagTTCAATCTTG	4.578	0.529	0.930	0.066	0.929
6213	Alt. isoform/cryptic acceptor	atettggcagGGGCTTCATC	4.671	0.500	0.678	0.310	0.543
6258	Alt. isoform/cryptic acceptor	ccatctacagCAAAGAGGAA	4.973	0.500	0.822	0.171	0.793
6337	Alt. isoform/cryptic acceptor	ctctgcacagCAGGATATGA	3.577	0.529	0.610	0.372	0.390
6340	Alt. isoform/cryptic acceptor	tgcacagcagGATATGAACC	5.307	0.543	0.575	0.395	0.313
6420	Alt. isoform/cryptic acceptor	ccatcaccagAGAGGACATC	2.479	0.514	0.962	0.036	0.963
6445	Constitutive acceptor	cattetecagAACGTGTGCC	9.539	0.500	0.209	0.784	0.733
6624	Constitutive acceptor	gctctcatagGACCCTGGAT	10.048	0.500	0.176	0.817	0.784
6654	Alt. isoform/cryptic acceptor	gttacatcagGCGGTCCGAT	3.376	0.500	0.765	0.221	0.712
6663	Alt. isoform/cryptic donor	GCGGTCCGATgtgagatacg	6.227	0.486	0.936	0.047	0.950
6722	Alt. isoform/cryptic donor	GCGGAACCATgtacaagatt	5.221	0.514	0.960	0.028	0.971
6763	Alt. isoform/cryptic acceptor	ctacgtgcagTTGATCGCAT	5.764	0.529	0.844	0.148	0.824
6801	Constitutive acceptor	tgtctcttagGACCCCTTTC	5.629	0.514	0.255	0.731	0.652
6850	Alt. isoform/cryptic donor	GACACCTACCgtgagtccat	8.138	0.443	0.627	0.307	0.511
6894	Alt. isoform/cryptic donor	GTTCGACAAGgtcaacatta	6.897	0.471	0.855	0.108	0.874
6895	Alt. isoform/cryptic acceptor	gttcgacaagGTCAACATTA	2.380	0.486	0.870	0.126	0.855
6943	Alt. isoform/cryptic donor	CTCGAGCCAGgtgatgcttg	8.185	0.486	0.833	0.125	0.850
6944	Alt. isoform/cryptic acceptor	ctcgagccagGTGATGCTTG	5.597	0.457	0.761	0.232	0.696
6960	Constitutive acceptor	cttgcattagGATGACCACC	2.622	0.471	0.452	0.510	0.115
6990	unclassified donor	GATCGTCAAGgttaacgcca	6.349	0.471	0.500	0.414	0.000
7038	Alt. isoform/cryptic donor	TAAGCTGGTGgtgaagatta	5.500	0.471	0.942	0.041	0.957
7071	Alt. isoform/cryptic donor	GAACTCCGACgtgtgggaca	4.732	0.543	0.918	0.059	0.936
7124	Alt. isoform/cryptic acceptor	cttcctgaagTTGGTGAGTG	3.877	0.543	0.743	0.247	0.667
7126	Alt. isoform/cryptic donor	CCTGAAGTTGgtgagtgctt	12.153	0.500	0.727	0.210	0.711
7242	Alt. isoform/cryptic acceptor	gcaaceteagCCAGCAGATC	3.540	0.500	0.601	0.379	0.370
7355	Alt. isoform/cryptic donor	GCGTGGAAGAgtacgactcc	4.790	0.514	0.943	0.040	0.957
7464	Alt. isoform/cryptic acceptor	cactgttcagCGAGATCGTG	6.043	0.529	0.637	0.349	0.453
7535	Alt. isoform/cryptic donor	TGATGCTGAAgtactctctg	4.763	0.529	0.907	0.069	0.924

7585	Alt. isoform/cryptic donor	AGAGCTACTGgtatgcacgc	9.638	0.500	0.752	0.188	0.750
7648	Alt. isoform/cryptic donor	AACCTGCTGGgtatgattca	7.568	0.500	0.698	0.229	0.672
7722	Alt. isoform/cryptic acceptor	ccagccttagGAATGTGCTG	3.055	0.500	0.807	0.185	0.771
7758	Alt. isoform/cryptic acceptor	ctttcggcagGCGGATCAGG	6.039	0.514	0.607	0.379	0.375
7792	Alt. isoform/cryptic acceptor	ggatctgcagAACAACCTTA	3.876	0.514	0.696	0.289	0.586
7922	Alt. isoform/cryptic donor	AGATGGACAGgtccgatgaa	6.684	0.514	0.941	0.042	0.955
7968	Constitutive acceptor	atgtgcttagGTTGGACGAG	2.272	0.529	0.343	0.637	0.461
8169	Alt. isoform/cryptic acceptor	ctaccgacagGCTTGGTAGG	8.327	0.529	0.960	0.038	0.961
8173	Alt. isoform/cryptic donor	GACAGGCTTGgtaggctctc	8.257	0.486	0.774	0.169	0.782
8205	Alt. isoform/cryptic donor	TGCTCTTAAGgtgtacgcca	6.332	0.514	0.932	0.049	0.948
8206	Alt. isoform/cryptic acceptor	tgctcttaagGTGTACGCCA	5.395	0.514	0.524	0.455	0.133
8331	Alt. isoform/cryptic acceptor	tgagcggcagGGTGAAGAAG	5.008	0.514	0.856	0.139	0.838
8353	Alt. isoform/cryptic acceptor	tcttattcagTTGAGGGACG	2.472	0.500	0.856	0.133	0.845
8418	Alt. isoform/cryptic acceptor	acttccttagCAGGCACCCT	2.679	0.500	0.944	0.052	0.945
8421	Alt. isoform/cryptic acceptor	tccttagcagGCACCCTCTT	6.406	0.514	0.782	0.208	0.734
8459	Alt. isoform/cryptic donor	TGTACGGCCGgtacacctac	4.997	0.471	0.903	0.074	0.918
8472	Alt. isoform/cryptic acceptor	acacctacagCGATATCAAC	3.154	0.543	0.614	0.363	0.409
8497	Alt. isoform/cryptic acceptor	catcatgcagACCCGGGAAA	2.271	0.471	0.944	0.053	0.944
8521	Constitutive acceptor	cctctctaagATCTCCGAGT	5.017	0.500	0.424	0.562	0.245
8538	Alt. isoform/cryptic donor	GTTGGATGAGgtggtggaaa	4.678	0.529	0.945	0.039	0.958
8583	Constitutive acceptor	cttaccttagGGGCGAAGAG	8.039	0.486	0.196	0.792	0.753

The putative intron splicing sites of wild-type RdRp gene sequence was predicted by Alternative Splice Site

Predictor (ASSP) (http://wangcomputing.com/assp/).

* Scores of the preprocessing models reflecting splice site strength, i.e. a PSSM for putative acceptor sites, and an

MDD model for putative donor sites. Intron GC values correspond to 70 nt of the neighboring intron.

** Activations are output values of the backpropagation networks used for classification. High values for one class

with low values of the other class imply a good classification. Confidence is a simple measure expressing the

differences between output activations. Confidence ranges between zero (undecided) to one (perfect classification).

					Activa	tions**	-	
Position (bp)	Putative splice site	Sequence	Score*	Intron GC*	Alt./Cryptic	Constitutive	Confidence**	•
36	unclassified donor	GGTGGTGAAGgtgagcctgt	13.078	0.514	0.408	0.496	0.000	
93	Constitutive acceptor	ttattttcagGGCTACCGAC	11.782	0.500	0.182	0.810	0.775	
183	Alt. isoform/cryptic acceptor	ccgctgctagCATTCAGCGG	3.056	0.500	0.929	0.067	0.928	
259	Alt. isoform/cryptic donor	AGGCAGATTCgtgaggaaga	4.761	0.500	0.860	0.108	0.875	
297	Alt. isoform/cryptic acceptor	tcgctggcagCACTACCCAG	5.498	0.514	0.952	0.046	0.952	
318	Alt. isoform/cryptic donor	GATTATCTCCgttagcgacc	4.792	0.529	0.928	0.056	0.940	
324	Alt. isoform/cryptic acceptor	tctccgttagCGACCTGCCT	2.244	0.471	0.679	0.308	0.547	
364	Alt. isoform/cryptic acceptor	atctctgaagTGCGAGATCA	3.458	0.500	0.845	0.145	0.828	
405	Alt. isoform/cryptic donor	TTACTACCAGgtcgagaaca	5.199	0.529	0.954	0.034	0.965	
406	Alt. isoform/cryptic acceptor	ttactaccagGTCGAGAACA	5.238	0.500	0.592	0.383	0.354	
437	Alt. isoform/cryptic donor	ACTCTTGCGTgtcagattct	4.710	0.529	0.923	0.057	0.938	
443	Alt. isoform/cryptic acceptor	tgcgtgtcagATTCTGCTGA	5.120	0.514	0.630	0.357	0.433	
504	Alt. isoform/cryptic donor	GTTCTCTAAGgtgccagtga	9.430	0.500	0.831	0.124	0.851	
529	Alt. isoform/cryptic acceptor	tatcaccaagCTGGACAACA	2.328	0.500	0.853	0.139	0.837	
552	Alt. isoform/cryptic donor	GCACTTCTCTgtgggcacca	6.302	0.514	0.893	0.079	0.912	
592	Constitutive acceptor	tctgacccagGACAACTACC	3.778	0.543	0.341	0.630	0.460	
649	Alt. isoform/cryptic acceptor	gtctcttcagACCGTTAAGC	6.880	0.529	0.693	0.295	0.574	
708	Alt. isoform/cryptic donor	CCCGTATACCgtgagcatta	8.383	0.514	0.655	0.278	0.576	
728	Constitutive acceptor	acctctccagAGAAGATCAT	6.756	0.514	0.388	0.598	0.352	
780	Alt. isoform/cryptic donor	TGAGCACAAGgtgatctcat	9.170	0.514	0.526	0.387	0.264	
824	Alt. isoform/cryptic acceptor	ttcaccgaagAGATGCTGGA	3.783	0.529	0.805	0.185	0.770	
835	Alt. isoform/cryptic donor	ATGCTGGATGgtgagcacaa	9.886	0.514	0.525	0.389	0.260	
894	Alt. isoform/cryptic donor	CAACAAGCGTgtgagggact	8.781	0.500	0.825	0.132	0.840	
914	Alt. isoform/cryptic donor	GCATCATCAAgtacagcaag	6.287	0.514	0.880	0.089	0.899	
969	Constitutive acceptor	cttggattagGCTGATCCTG	5.033	0.486	0.190	0.798	0.761	
1008	Constitutive acceptor	tccctattagATGGCTGGTG	7.158	0.500	0.176	0.808	0.782	
1046	Alt. isoform/cryptic donor	TTTTCTTGTGgtacgatctg	8.598	0.486	0.789	0.158	0.800	
1106	Alt. isoform/cryptic donor	GCCTGTGGAAgtactttccg	5.205	0.500	0.934	0.049	0.948	
1123	Alt. isoform/cryptic acceptor	tccgttcaagTGCAGCAACT	4.432	0.471	0.799	0.192	0.760	
1128	Alt. isoform/cryptic acceptor	tcaagtgcagCAACTGCGGC	3.238	0.486	0.858	0.136	0.842	

Table S2. The predicted intron splicing sites of wild-type GP gene.

1328	Alt. isoform/cryptic donor	GCCTGCTTAAgttcgtgacc	5.154	0.514	0.929	0.051	0.945
1356	Alt. isoform/cryptic donor	GATCGGTCTGgtgatcctta	4.853	0.486	0.642	0.284	0.558
1368	Alt. isoform/cryptic acceptor	tgatccttagCCAGATGCCT	2.891	0.500	0.795	0.198	0.751
1372	Alt. isoform/cryptic acceptor	ccttagccagATGCCTATGT	3.041	0.529	0.730	0.259	0.646
1443	Alt. isoform/cryptic donor	CCCTGTGCTGgtgaceteta	6.777	0.471	0.866	0.100	0.884
1463	Alt. isoform/cryptic donor	AGTTTGAAAAgtgccctgag	5.015	0.543	0.964	0.026	0.973
1631	Alt. isoform/cryptic donor	TGGGCTGCGAgtacetggac	4.582	0.500	0.967	0.024	0.975
1783	Alt. isoform/cryptic donor	AAGATCAGCGgtatgatcgc	7.260	0.529	0.671	0.262	0.610
1795	Alt. isoform/cryptic donor	ATGATCGCTGgtgacagcct	7.023	0.500	0.803	0.149	0.814
1883	Alt. isoform/cryptic donor	TGGATGGCAAgtaccggtat	5.025	0.500	0.926	0.053	0.943
1889	Alt. isoform/cryptic donor	GCAAGTACCGgtatatggtt	5.618	0.486	0.814	0.135	0.834
1992	Alt. isoform/cryptic donor	CATCAAGAGCgtgggcatcc	5.600	0.514	0.825	0.138	0.833
2010	Alt. isoform/cryptic donor	CCACTACGAGgtgtcagaga	7.706	0.500	0.765	0.178	0.767
2044	Alt. isoform/cryptic acceptor	tcctattcagTCTACCCACA	4.199	0.514	0.801	0.186	0.768
2077	Constitutive donor	ACCTGCACCGgtaattgcga	7.342	0.500	0.414	0.502	0.176
2097	Alt. isoform/cryptic acceptor	atacctgcagAAAGAACCAG	4.833	0.529	0.869	0.122	0.860
2125	Constitutive acceptor	aggetttcagGACTTCTGCA	3.662	0.500	0.451	0.529	0.148
2191	Alt. isoform/cryptic donor	ATTAACGAGGgtgctacttg	4.511	0.529	0.955	0.033	0.966
2253	Alt. isoform/cryptic acceptor	ggatctacagCGTGCTGAAG	3.191	0.514	0.910	0.086	0.906
2280	Alt. isoform/cryptic donor	CGTTGCCGACgtgtgcatct	6.880	0.514	0.904	0.073	0.919
2331	Alt. isoform/cryptic donor	TACCGAAGAGgttccatacg	4.991	0.500	0.959	0.029	0.970
2359	Constitutive acceptor	tctgttccagGCTGATATTC	5.600	0.514	0.373	0.611	0.389
2401	Alt. isoform/cryptic donor	ATCACCATTGgtgagcttat	11.534	0.529	0.522	0.395	0.242
2443	Alt. isoform/cryptic donor	ATCTACTCCGgtaacattgc	9.301	0.529	0.591	0.337	0.430
2469	Alt. isoform/cryptic donor	GAACGACCCGgtgaagatgt	5.862	0.500	0.788	0.167	0.788
2494	Alt. isoform/cryptic acceptor	tcatcctcagCTTACTCATG	6.466	0.514	0.705	0.287	0.594
2618	Alt. isoform/cryptic donor	ACACTTACAGgttcaggtct	7.293	0.500	0.904	0.068	0.925
2619	Alt. isoform/cryptic acceptor	acacttacagGTTCAGGTCT	5.949	0.500	0.773	0.215	0.722
2624	Alt. isoform/cryptic donor	ACAGGTTCAGgtctggtctt	8.772	0.486	0.925	0.054	0.942
2625	Alt. isoform/cryptic acceptor	acaggttcagGTCTGGTCTT	3.359	0.514	0.684	0.296	0.567
2641	Alt. isoform/cryptic acceptor	tcttgagcagATCTCTGACA	4.449	0.529	0.945	0.051	0.946
2661	Alt. isoform/cryptic acceptor	tccccatcagCTTCAAGGAC	3.473	0.514	0.769	0.222	0.711
2668	Alt. isoform/cryptic acceptor	cagcttcaagGACTTCAGCT	3.339	0.514	0.785	0.206	0.737

2676	Alt. isoform/cryptic acceptor	aggacttcagCTCATTCTTC	2.357	0.500	0.795	0.197	0.753
2751	Alt. isoform/cryptic donor	TCTTTTCAAGgttgcaccta	5.168	0.529	0.935	0.047	0.950
2752	Alt. isoform/cryptic acceptor	tcttttcaagGTTGCACCTA	3.558	0.500	0.699	0.281	0.598
2787	Constitutive acceptor	cttctactagGCTTAACTGC	5.710	0.500	0.455	0.528	0.138
2815	Alt. isoform/cryptic donor	CTTCTTTGTGgtcagggcct	9.649	0.529	0.757	0.184	0.757
2821	Alt. isoform/cryptic acceptor	ttgtggtcagGGCCTTTCTT	6.984	0.529	0.502	0.483	0.039
2865	Alt. isoform/cryptic acceptor	tgacettcagCACCGCCATC	4.796	0.529	0.876	0.117	0.867
2908	Alt. isoform/cryptic acceptor	tacctaccagCTGGCTGTGA	6.831	0.500	0.696	0.293	0.579
2933	Alt. isoform/cryptic donor	GCAGCAACAAgtacaacatc	6.089	0.500	0.851	0.108	0.873
2958	Alt. isoform/cryptic acceptor	tgttctgcagCGCAAACCCG	4.988	0.500	0.635	0.350	0.448
3021	Alt. isoform/cryptic donor	TTCTGTTGAGgtgctcgtga	5.200	0.514	0.963	0.028	0.971
3146	Alt. isoform/cryptic donor	ATTACATCAAgtccccgttc	5.088	0.500	0.945	0.041	0.956
3171	Alt. isoform/cryptic acceptor	tcattgccagCTACTTCGGC	3.870	0.471	0.816	0.173	0.788
3183	Alt. isoform/cryptic acceptor	acttcggcagCTTCTTCGAT	3.003	0.486	0.868	0.128	0.853
3201	Alt. isoform/cryptic acceptor	atacaatcagGGTGATCCTG	2.559	0.471	0.787	0.200	0.745
3201	Alt. isoform/cryptic donor	TACAATCAGGgtgatcctgc	5.357	0.500	0.829	0.130	0.843
3249	Alt. isoform/cryptic acceptor	acttetgcagCATCCTGACC	7.746	0.471	0.516	0.472	0.086

The putative intron splicing sites of wild type GP gene sequence was predicted by ASSP).

* Scores of the preprocessing models reflecting splice site strength, i.e. a PSSM for putative acceptor sites, and an

MDD model for putative donor sites. Intron GC values correspond to 70 nt of the neighboring intron.

** Activations are output values of the backpropagation networks used for classification. High values for one class

with low values of the other class imply a good classification. Confidence is a simple measure expressing the

differences between output activations. Confidence ranges between zero (undecided) to one (perfect classification).

Construct	Abbreviation	Primer sequence (5' to 3')	Purpose
		F: GGGGTACCATGTCTAAGGTTAAGCTC	
-2200 M	N	А	To amplify TSWV N and cloned into
p2300-IN	1	R: ACGTCGACTTAAGCAAGTTCTGCAA	p2300S
		GTTTTG	
		F: CGGGATCCATGAACATCCAGAAAATA	
n2200 PdPn ^{wt}	D dD n ^{wt}	С	To amplify TSWV wild-type RdRp and
р2500-какр	Кикр	R: GACGTCGACTTAATCCGTGTCTTCTT	cloned into p2300S
		CTTC	
		F: CTCGGTACCATGAACATTCAGAAGAT	
- 2200 D JD-001	D OF	CCAAAAGC	To amplify TSWV optimized RdRp and
p2300-KdKp ⁺	Какр	R: GACTCTAGACTAATCGGTGTCCTCTT	cloned into p2300S
		CCTC	
		F: CTCGGTACCATGTCTTCAAGTGTTTA	
		TGAG	To amplify TSWV NSs and cloned into
pCASN-NSs	1105	R: GACTCTAGATTATTTTGATCCTGAAGC	pCXSN
		ATATG	
		F: CGAAAACCCGGTATCCCGGGTTCAG	
		AGCAATTGTGTCATAATTTTATTC	To amplify the TSWV genomic RNA
		R: GGTGGAGATGCCATGCCGACCCAGA	sequence for construction of $S_{(\cdot)}$
	<u> </u>	GCAATTGTGTCAATTTTATTCAAAC	
pCB301-HH-S _(·) -KZ-NOS	S ₍₋₎	F: GTTTGAATAAAATTGACACAATTGCT	
		CTGGGTCGGCATGGCATCTCCACC	To amplify the pCB301 backbone for
		R: GAATAAAATTATGACACAATTGCTCT	construction of S ₍₋₎
		GAACCCGGGATACCGGGTTTTCG	
		F: CGAAAACCCGGTATCCCGGGTTCAG	
		AGCAATTGTGTCAATTTTATTCAAAC	To amplify the TSWV antigenomic
		R: GGTGGAGATGCCATGCCGACCCAGA	RNA sequence for construction of $S_{\left(^{+}\right) }$
	0	GCAATTGTGTCATAATTTTATTCTTA	
pCB301-HH-S(+)-KZ-NOS	S (+)	F: GAATAAAATTATGACACAATTGCTCT	
		GGGTCGGCATGGCATCTC	To amplify the pCB301 backbone for
		R: GTTTGAATAAAATTGACACAATTGCT	construction of $S_{(+)}$
		CTGAACCCGGGATACCGGGTTTTCG	
		F: GCTTTTTTTATAATTTAACTTACAACT	
		GCTTTTACTTGTACAGCTCGTCCATGCC	
		GAGA	To amplify the eGFP for construction of
pCB301-HH-S(-)cGFP-RZ-NOS	SR _{(-)eGFP}	R: GTCAAAGCATATAACAACTTCTACG	SR _{(-)eGFP}
		ATCATCATGGTGAGCAAGGGCGAGGAG	
		CTGTTC	
		F: GAACAGCTCCTCGCCCTTGCTCACC	To amplify the pCB301 backbone for

Table S3. List of primers used in the study.

		ATGATGATCGTAGAAGTTGTTATATGCT	construction of SR _{(-)eGFP}
		TTGAC	
		R: TCTCGGCATGGACGAGCTGTACAAG	
		TAAAAGCAGTTGTAAGTTAAATTATAAA	
		AAAGC	
		F: CACAGTACCAATAACCATAATGGTGA	
		GCAAGGGCGAGGAGGATAAC	To amplify the mCherry for
		R: GAAAAGCTGGACACGGCAAGATTA	construction of $SR_{(-)mCherry&eGFP}$
		AGATCTGTACAGCTCGTCCATGCCGC	
pCB301-HH-S(-)mCherry&eGFP-KZ-NOS	SR(-)mCherry&eGFP	F: GCGGCATGGACGAGCTGTACAGATC	
		TTAATCTTGCCGTGTCCAGCTTTTC	To amplify the pCB301 backbone for
		R: GTTATCCTCCTCGCCCTTGCTCACCA	$construction \ of \ SR_{(-)mCherry \& cGFP}$
		TTATGGTTATTGGTACTGTG	
		F: GAAATTAATACGACTCACTATAGGAG	
		AGCAATTGTGTCAATTTTATTCAAAC	to amplify the eGFP and mCherry
		R: GGTGGAGATGCCATGCCGACCCAGA	TT-SD
$pCB301\text{-}T7\text{-}S_{(\cdot)mCherry\&cGFP}\text{-}RZ\text{-}NOS$		GCAATTGTGTCATAATTTTATTCTTA	1 /: SK(-)mCherry&eGFP
	1 /:SK(-)mCherry&eGFP	F: GTTTGAATAAAATTGACACAATTGCT	
		CTCCTATAGTGAGTCGTATTAATTTC	To amplify the pCB301 backbone for
		R: GAATAAAATTATGACACAATTGCTCT	$construction \ of \ T7: SR_{(-)mCherry\&eGFP}$
		GGGTCGGCATGGCATCTC	
		F: GGAAAAGCTGGACACGGCAAGATTA	
		CTTGTACAGCTCGTCCATGCCGAG	To amplify the eGFP for construction of
		R: GAACACAGTACCAATAACCATAATG	$SR_{(+)eGFP}$
		GTGAGCAAGGGCGAGGAGCTGTTC	
20201 HH S P7 NOS	SD	F: GAACAGCTCCTCGCCCTTGCTCACCA	
pCB501-HH-S _{(+)eGFP} -KZ-INOS	SK(+)eGFP	TTATGGTTATTGGTACTGTGTTC	
		R: CTCGGCATGGACGAGCTGTACAAGT	To amplify the pCB301 backbone for
		AATCTTGCCGTGTCCAGCTTTTCC	construction of $SR_{(+)eGFP}$
		R: GAATAAAATTATGACACAATTGCTCT	
		GAACCCGGGATACCGGGTTTTCG	
		F: CGAAAACCCGGTATCCCGGGTTCAG	
		AGCAATCAGTGCATCAGAAATATACC	To amplify the TSWV genomic M-
		R: GGTGGAGATGCCATGCCGACCCAGA	RNA sequence for construction of $M_{(\cdot)}$
	М	GCAATCAGTGCAAACAAAAAC	
pCB301-HH-M(-)-KZ-NOS	IM(-)	F: GTTTTTGTTTGCACTGATTGCTCTGG	
		GTCGGCATGGCATCTCCACC	To amplify the pCB301 backbone for
		R: GGTATATTTCTGATGCACTGATTGCT	construction of $M_{(-)}$
		CTGAACCCGGGATACCGGGTTTTCG	
		F: CGAAAACCCGGTATCCCGGGTTCAG	
PCD201 HH M P7 NOS		AGCAATCAGTGCAAACAAAAACTC	To amplify the TSWV antigenomic M-
рсдэл1-шц-л(+)-құ-моя	1 V1 (+)	R: GGTGGAGATGCCATGCCGACCCAGA	RNA sequence for construction of $M_{(\mbox{\tiny +})}$
		GCAATCAGTGCGTCAGAAATATAC	

		F: GTATATTTCTGACGCACTGATTGCTC	
		TGGGTCGGCATGGCATCTCCACC	To amplify the pCB301 backbone for
		R: GAGTTTTTGTTTGCACTGATTGCTCT	construction of $M_{(+)}$
		GAACCCGGGATACCGGGTTTTCG	
		F: GAATCAAATTTAGCCTGTGACAAGC	
		AGACTTACTTGTACAGCTCGTCCATGC	To amplify the eGFP for construction of
		R: CCATTATAATCTGAGCAGACGTATA	MR(-)eGFP
		AGATGGTGAGCAAGGGCGAGGAGCTG	
pCB301-nn-M _{(-)cdFP} -KZ-NOS	MR(-)eGFP	F: CAGCTCCTCGCCCTTGCTCACCATCT	
		TATACGTCTGCTCAGATTATAATGG	To amplify the pCB301 backbone for
		R: GCATGGACGAGCTGTACAAGTAAGT	construction of $MR_{(-)eGFP}$
		CTGCTTGTCACAGGCTAAATTTGATTC	
		F: GAATCAAATTTAGCCTGTGACAAGC	
		AGACTTAAGATCTGTACAGCTCGTCCAT	
		GC	To amplify the mCherry for
		R: CCATTATAATCTGAGCAGACGTATA	construction of $MR_{(-)mCherry}$
		AGATGGTGAGCAAGGGCGAGGAGGAT	
$pCB301\text{-}HH\text{-}M_{(\cdot)mCherry}\text{-}RZ\text{-}NOS$	MR _{(-)mCherry}	AAC	
		F: GTTATCCTCCTCGCCCTTGCTCACCA	
		TCTTATACGTCTGCTCAGATTATAATGG	
		R: GCATGGACGAGCTGTACAGATCTTA	construction of MP or re
		AGTCTGCTTGTCACAGGCTAAATTTGAT	construction of ivin(-)mcherry
		TC	
		F: CTCTACCTTAGGCTGTTGAACTCAA	
		AATGTAGACTCTTTTCGGTAATAAGG	To amplify the NSm ^{Mut} for construction
		R: GCATGGACGAGCTGTACAAGTAAGT	of $MR_{(-)eGFP\&NSmMut}$
PCP201 HH Ma arrays of P7 NOS	MD	CTGCTTGTCACAGGCTAAATTTGATTC	
pcb501-IIII-IM(-)eGFP&NSmMut-IA2-IAO5	IVIIC(-)eGPP&NSmMut	F: GAATCAAATTTAGCCTGTGACAAGC	
		AGACTTACTTGTACAGCTCGTCCATGC	To amplify the pCB301 backbone for
		R: CCTTATTACCGAAAAGAGTCTACAT	$construction \ of \ MR_{(\text{-})eGFP\&NSmMut}$
		TTTGAGTTCAACAGCCTAAGGTAGAG	
		F: CGAAAACCCGGTATCCCGGGTTCAG	
		AGCAATCAGGTACAACTAAAAC	To amplify the TSWV genomic L-RNA
		R: GGTGGAGATGCCATGCCGACCCAGA	for construction of $L_{(\boldsymbol{\cdot})}$
PCP201 HH L . P7 NOS	Lo	GCAATCAGGTAACAACGAT	
pCB301-nn-L(-)-KZ-NO3	L(-)	F: ATCGTTGTTACCTGATTGCTCTGGGT	
		CGGCATGGCATCTCCACC	To amplify the pCB301 backbone for
		R: GTTTTAGTTGTACCTGATTGCTCTGA	construction of $L_{(-)}$
		ACCCGGGATACCGGGTTTTCG	
		F: CGAAAACCCGGTATCCCGGGTTCAG	
nCB301_HH_L P7_NOS	L ₍₊₎	AGCAATCAGGTAACAACGAT	To amplify the TSWV antigenomic L-
рсвз01-нн-L ₍₊₎ -кZ-NOS		R: GTGGAGATGCCATGCCGACCCAGAG	RNA for construction of L(+)
		CAATCAGGTACAACTAAAAC	

		F: GTTTTAGTTGTACCTGATTGCTCTGG	
		GTCGGCATGGCATCTCCAC	To amplify the pCB301 backbone for
		R: ATCGTTGTTACCTGATTGCTCTGAAC	construction of L(+)
		CCGGGATACCGGGTTTTCG	
		F: ATCAGGTAACAACGATTTTAAGCAA	
		ACATGAACATTCAGAAGATCCAAAAGC	
		TG	To amplify the RdRp-optimized for
		R: CATGCATTGTTAGGCATTACTTTTAA	$\text{construction of } L_{(\div)\text{opt}}$
		TCTAATCGGTGTCCTCTTCCTCATCAG	
$pCB301\text{-}HH\text{-}L_{(+)opt}\text{-}RZ\text{-}NOS$	L(+)opt	F: CTGATGAGGAAGAGGACACCGATT	
		AGATTAAAAGTAATGCCTAACAATGCA	
		TG	To amplify the pCB301 backbone for
		R: CAGCTTTTGGATCTTCTGAATGTTCA	construction of $L_{(+)opt}$
		TGTTTGCTTAAAATCGTTGTTACCTGAT	
		F: ACCATTATAATCTGAGCAGACGTAT	
		AAGATGAGGATCCTGAAGCTTCTTG	To amplify the GP-optimized for
		R: GAATCAAATTTAGCCTGTGACAAGC	construction of M _{(-)opt}
		AGACCTAAACAAGATGAGAGAAATC	
pCB301-HH-M _{(-)opt} -RZ-NOS	M _{(-)opt}	F: GATTTCTCTCATCTTGTTTAGGTCTG	
		CTTGTCACAGGCTAAATTTGATTC	To amplify the pCB301 backbone for
		R: CAAGAAGCTTCAGGATCCTCATCTT	construction of $M_{(-)opt}$
		ATACGTCTGCTCAGATTATAATGGT	()-r-
		Е. СТЕААТАСТААССАСТСАААС	To amplify the sense-NSs for
		F: GITAATACTAACGGAGTGAAAC	construction of pGEM-NSs to generate
pGEM-NSs	-	R: GATTGAAATTTGGCTTGAAACAGTA	the DIG-labeled probes of S agRNA in
		С	Northern blot
			To amplify the antisense-NSs for
		F: GATTGAAATTTGGCTTGAAACAGTA	construction of pGEM-anti-NSs to
pGEM-anti-NSs	-	С	generate the DIG-labeled probes of S
		R: GTTAATACTAACGGAGTGAAAC	gRNA in Northern blot
		F. CCTTTCACTAAACCTATCCATAC	To amplify the sense-NSm for
		F. GETTIGACIAAAGETATGGATAC	construction of pGEM-NSm to
pGEM-NSm	-	D. TOTTOTATTOTTOCOTOCACATO	generate the DIG-labeled probes of M
		K. ICHGIAIICHGGCIGCACAIC	agRNA in Northern blot
			To amplify the antisense-NSm for
pGEM-anti-NSm		F: TCTTGTATTCTTGGCTGCACATC	construction of pGEM-anti-NSm to
	-		generate the DIG-labeled probes of M
		R: GCTTTGACTAAAGCTATGGATAC	gRNA in Northern blot
		Γ: ΑGAGCAATCAGGTACAACTAAAAC	To amplify the L 5' UTR for
	-	., AUAUGAATCAUUTACAACTAAAAA	construction of pGEM-L 5' UTR to
pGEM-L 5' UTR		R. AAGTAATGCCTAACAATGCATGA	generate the DIG-labeled probes of L
		N, AAUTAATUUTAAUATUUATUA	agRNA in Northern blot
CEM anti I 5/ LITD		Ε. Α ΑΩΤΑ ΑΤΩΩΩΤΑ ΑΩΑ ΑΤΩΩΑΤΩ Α	To applify the anticones I 5217TD 6
pGEM-anti-L 5' UTR	-	r: AAGTAATGUUTAACAATGUATGA	to amplify the antisense-L 5'UTR for

		construction of pGEM-anti-L 5'UTR to
	R: AGAGCAATCAGGTACAACTAAAAC	generate the DIG-labeled probes of L
		gRNA in Northern blot
pGEM-eGFP -	F: ATGGTGAGCAAGGGCGAGGAGCTGT	To amplify the sense-eGFP for
	TC	construction of pGEM-eGFP to
	R: TTACTTGTACAGCTCGTCCATGCCGA	generate the DIG-labeled probes of
	GA	antisense-eGFP RNA in Northern blot
pGEM-anti-eGFP -	F: TTACTTGTACAGCTCGTCCATGCCGA	To amplify the antisense-eGFP for
	GA	construction of pGEM-anti-eGFP to
	R: ATGGTGAGCAAGGGCGAGGAGCTGT	generate the DIG-labeled probes of
	TC	sense-eGFP RNA in Northern blot
	F: GGTGGAGATGCCATGCCGACCCAGA	
	GCAATTGTGTCATAATTTTATTCTTA	To amplify the of $S_{(\mathchar`)eGFP}$ minigenome
	R: GGTGGAGATGCCATGCCGACCCAGA	by RT-PCR
	GCAATTGTGTCAATTTTATTCAAAC	
	F: GTTCATTTCATTTGGAGAGGAGAGC	
	ATCAGTGCAAACAAAAAC	To amplify the of $M_{(\text{-})\text{mCherry}}$ and $M_{(\text{-})\text{eGFP}}$
	R: GGTGGAGATGCCATGCCGACCCAGA	minigenome by RT-PCR
	GCAATCAGTGCGTCAGAAATATAC	
	F: GAATCAAATTTAGCCTGTGACAAGC	
	AGACCTAAACAAGATGAGAGAAATC	To amplify the of M _{(-)opt} genomic RNA
	R: GGTGGAGATGCCATGCCGACCCAGA	by RT-PCR
	GCAATCAGTGCAAACAAAAAC	
	F: GATCAAGGATGTTAATTTCAGCATGC	
	TTATCCCGATCCTCGAC	To amplify the of $L_{(+)opt}$ antigenomic
	R: GAATCAAATTTAGCCTGTGACAAGC	RNA by RT-PCR
	AGACCTAAACAAGATGAGAGAAATC	

References

- Fang XD, *et al.* (2019) A cytorhabdovirus phosphoprotein forms mobile inclusions trafficking on the actin/ER network for viral RNA synthesis. *J Exp Bot* 70(15): 4049-4062.
- 2. Herold J & Andino R (2000) Poliovirus requires a precise 5' end for efficient positive-strand RNA synthesis. *J Virol* 74(14):6394-6400.
- Shen Y, *et al.* (2014) A versatile complementation assay for cell-to-cell and long distance movements by cucumber mosaic virus based agro-infiltration. *Virus Res* 190:25-33.
- Jiang L, *et al.* (2017) Occurrence and diversity of tomato spotted wilt virus isolates breaking the Tsw resistance gene of Capsicum chinense in Yunnan, southwest China. *Plant Pathol* 66(6):980-989.
- Voinnet O & Baulcombe DC (1997) Systemic signalling in gene silencing. *Nature* 389(6651):553.
- Wang Q, et al. (2015) Rescue of a plant negative-strand RNA virus from cloned cDNA: insights into enveloped plant virus movement and morphogenesis. *PLoS Pathog* 11(10):e1005223.
- Ganesan U, *et al.* (2013) Construction of a sonchus yellow net virus minireplicon: a step toward reverse genetic analysis of plant negative-strand RNA viruses. *J Virol* 87(19):10598-10611.
- 8. Li J, *et al.* (2019) A plant immune receptor adopts a two-step recognition mechanism to enhance viral effector perception. *Mol Plant* 12(2):248-262.
- 9. Feng MF, *et al.* (2018) Identification of strawberry vein banding virus encoded P6 as an RNA silencing suppressor. *Virology* 520:103-110.
- Kong L, Wu J, Lu L, Xu Y, & Zhou X (2014) Interaction between rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. *Mol Plant* 7(4):691-708.