SUPPLEMENTARY INFORMATION FOR: ## Substrate Selectivity by the Exonuclease Rrp6p. Armend Axhemi ^(1, 2), Elizabeth V. Wasmuth ⁽³⁾, Christopher D. Lima ^(3, 4) & Eckhard Jankowsky ^(1, 2, 5) - Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA - Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA - Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA - (4) Howard Hughes Medical Institute - ⁽⁵⁾ Corresponding Author: <u>exj13@case.edu</u> #### This PDF file includes: Figs. S1 to S12 (with captions) Table S1 Fig. S1. Processivity measurements with A_{36} substrate. (*A*) Reaction scheme for the pulse-chase control reaction. (*B*) Representative control reaction of Rrp6p (27 nM) incubated with scavenger (10 μ M) before addition of A₃₆ (1 nM). t_1 : incubation time before addition of labeled substrate, t_2 : reaction time after addition of labeled substrate. (*C*) Reaction scheme for a pulse-chase reaction. (*D*) Representative pulse-chase reaction of Rrp6p (27 nM) with A₃₆ (1 nM) and scavenger RNA (10 μ M). t_1 : reaction before scavenger addition, t_2 : reaction after scavenger addition [panel (*C*)]. (*E*) Histograms of the relative abundance of each substrate species (A_i / Σ (A₃₆ ...A_n) as a function of substrate length, before (blue) and after (red) scavenger addition. ### Fig. S2. Rrp6p activity under different reaction conditions. (*A*) Contour plot of a degradation reaction. The left panel shows a representative PAGE (Fig. 2*A*), the right panel the corresponding contour plot. The coloring shows the fraction of degraded intermediates $[A_n / \Sigma(A_{36} ... A_4)]$ versus time, as indicated in legend bar on the right $[A_i = 0]$ (black) to 0.043 (yellow)]. (*B*) Non-productive dissociation constants, $K_{1/2}$, for degradation of A₃₆ under normal reaction conditions. Error bars show the standard error of global fit. (*C*) Contour plots for reactions of Rrp6p (216 nM, A₃₆: 1 nM) at different temperatures, as indicated. (*D*) Contour plots for reactions of Rrp6p (432 nM, A₃₆: 1 nM) at different NaCl concentrations, as indicated. (*E*) Contour plots of reactions of Rrp6 (432 nM, A₃₆: 1 nM) at different pH. (*F*) Contour plots of reactions of Rrp6 (432 nM, A₃₆: 1 nM) at different MgCl₂ concentrations. В Fig. S3. Rrp6p activity in the presence of adenosine 5'-monophosphate (AMP). (*A*) Contour plots for reactions with Rrp6p (27 nM, A_{36} : 1 nM) in the absence and presence of 2 mM AMP. (*B*) Contour plots for reactions with Rrp6p (15 nM, A_{36} : 500 nM) in the absence and presence of 2 mM AMP at pH 6.5 and pH 8.0. ### Fig. S4. Parameter calculation for the kinetic framework. (A) Pipeline for the calculation of the kinetic parameters for each cleavage step. The explicit models and the global data-fits are explained in the Materials and Methods Section. (B) Plots of degradation rate constants ($k_{\rm f}$) and apparent dissociation constants for productive binding ($K_{1/2}^{\rm P}$) obtained from global data fits of reactions with only enzyme excess (open circles) or only substrate excess (red filled circles) for A₃₆ degradation. (C) Correlation between the experimental data of degradation intermediates (A_i) for pulse-chase experiments of Rrp6p on A₃₆ versus the corresponding data calculated with the kinetic model. (D) Correlation between the experimental data of degradation intermediates (A_i) for reactions with excess Rrp6p over A₃₆ versus the corresponding data calculated with the kinetic model. (E) Correlation between the experimental data of degradation intermediates (A_i) for reactions with excess A₃₆ over Rrp6p versus the corresponding data calculated with the kinetic model. (F) Representative plots of normalized χ^2 vs. kinetic parameters (indicated at the x-axis) for 36-mer (top panel) and 16-mer species (bottom panel) for global fits of A₃₆. The vertical dashed line indicates the optimum parameter value at χ^2 of 1. The points where the horizontal dashed line intersects the curve indicate the lower and upper boundaries of the kinetic parameter ($\chi^2 = 0.95$). (G) Representative plots of normalized χ^2 vs. kinetic parameters (indicated at the x-axis) for 36-mer (top panel) and 16-mer species (bottom panel) for global fits of the mixed sequence substrate R₃₆. The points where the horizontal dashed line intersects the curve indicate the lower and upper boundaries of the kinetic parameter ($\chi^2 = 0.95$). Fig. S5. *Processivity* for different RNA substrates. (*A-F*) Processivity of Rrp6p at single nucleotide resolution measured for the substrates indicated. The average number of steps (right axis) was calculated according to $P = (N-1) \cdot N$ (P: processivity, N: number of steps). Data points represent an average of three independent measurements. Error bars show one standard deviation. A B **Fig. S6. Non-productive binding for U**₃₆ **and C**₃₆ **substrates** (A) Non-productive dissociation constants, $K_{1/2}$ NP for degradation of U₃₆. Error bars show the standard error of global fit. (B) Plot corresponding to (A) for degradation of C₃₆. Fig. S7. Non-productive binding for 5'-A $_{26}C_{10}$ -3', 5'-C $_{26}A_{10}$ -3', R $_{36}$ and R $_{41}$ substrates. (*A*) Ratio between productive and non-productive dissociation constants (P/NP) for each step for the degradation of 5'- $A_{26}C_{10}$ -3' (black circles) and 5'- $C_{26}A_{10}$ -3' (aqua circles). Error bars show the standard error of the ratio. (*B*) Ratio between productive and non-productive dissociation constants (P/NP) for each step for the degradation of the mixed sequence substrate R_{36} (sequence is shown above the plot). Error bars show the standard error of the ratio. (*C*) Ratio between productive and non-productive dissociation constants (P/NP) for each step for the degradation of the substrate R_{41} , which contains the A_4C repeats (sequence is shown above the plot). Error bars show the standard error of the ratio. Fig. S8. Deviation of $K_{1/2}^{P}$ values for 3 nt RNAs from competitive inhibition experiments from values extrapolated with the kinetic framework. (*A*) Polynomial fit of $K_{1/2}^{P}$ values (A_{36}) determined from the global datafit with the kinetic framework (black filled circles), values extrapolated with the polynomial fit for species with 4 and 3 nt (open circles), and experimental values for species with 3 and 4 nt from competitive inhibition experiments (red circles, Fig. 5*A-C*). The value for the 4 nt species from the competitive inhibition experiments is similar to the corresponding value extrapolated from the polynomial fit. The value for the 3 nt species from the competitive inhibition experiments is significantly higher than the corresponding value extrapolated from the polynomial fit. This discrepancy indicates that binding mode of the 3 nt species deviates significantly from the binding mode of the 4 nt species. (*B*) Zoom into the plot in panel (*A*) for 12 to 3 nt species. (*C*) Alternative plot of the data shown in panel (*A*): the Y axis shows the change in dissociation constant for each degradation, indicating that the value of $K_{1/2}^{P}$ obtained from the competitive inhibition for the 3 nt is higher than the value expected from the polynomial fit by a factor of approximately F ~ 150. # Fig. S9. Contributions of RNA length and 3'-terminal quadruplet to the free energy of productive binding for different substrates. (A) Upper panel: polynomial fit of $K_{1/2}^{P}$ values for U_{36} , determined from the global datafit with the kinetic framework (black filled circles) and values extrapolated with the polynomial fit for species with 7 to 4 nt (open circles). The free energy contribution of the U₄ 3'-terminal quadruplet was calculated from the extrapolated $K_{1/2}^{P}$ value of U₄, according to Eq. 5 (Materials and Methods). Lower panel: contributions of upstream RNA (light grey) and 3'-terminal (U₄) quadruplet to the total free energy of productive binding (ΔG_{TOTAL}) as a function of RNA length for U_{36} . (B) Upper panel: polynomial fit of $K_{1/2}^{P}$ values for C_{36} , determined from the global datafit with the kinetic framework (black filled circles) and value extrapolated with the polynomial fit for species with 4 nt (open circle). The free energy contribution of the C₄ 3'-terminal quadruplet was calculated from the extrapolated $K_{1/2}$ value of C_4 , according to Eq. 5 (Materials and Methods). Lower panel: contributions of upstream RNA (light grey) and 3'-terminal (C₄) quadruplet to the total free energy of productive binding (ΔG_{TOTAL}) as a function of RNA length for C_{36} . (C) Upper panel: Free energy values (ΔG_{TOTAL}) of productive binding for the AU-rich R₃₆ substrate (sequence indicated above the plot), calculated from experimentally determined $K_{1/2}^{\ \ P}$ values. Red circles indicate quadruplets for which $\Delta G_{Quadruplet}$ had been determined with other substrates. For these quadruplets (3'UUUA), ΔG_{UPSTREAM} was calculated according to eq. 4 (Materials and Methods). Middle panel: polynomial fit for known values of $\Delta G_{UPSTREAM}$ (red circles: 3'-UUUA, upper panel; black circles from U₃₆ and A₃₆ homopolymers, Fig. 5K). Values for ΔG_{UPSTREAM} for unknown quadruplets were extrapolated from the polynomial fit. Bottom panel: contributions of upstream RNA (light grey) and 3'-terminal quadruplet (dark grey) to free binding energy for productive binding for each nucleotide for the AU-rich R₃₆ substrate. (D) Upper panel: Free energy values (ΔG_{TOTAL}) of productive binding for the R₄₁ substrate (sequence indicated above the plot), calculated from experimentally determined $K_{1/2}^{P}$ values. Red circles indicate quadruplets for which ΔG_{Quadruplet} had been determined with other substrates. Middle panel: polynomial fit for known values of ΔG_{UPSTREAM} (red circles: 3'-AAAN, upper panel; black circles from U₃₆ and A₃₆ homopolymers, Fig. 5K). Values for $\Delta G_{UPSTREAM}$ for unknown quadruplets were extrapolated from the polynomial fit. Bottom panel: contributions of upstream RNA (light grey) and 3'-terminal quadruplet (dark grey) to free binding energy for productive binding for each nucleotide for the R₄₁ substrate. # Fig. S10. Contributions of RNA length and 3'-terminal quadruplet to the free energy of non-productive binding. (A) Dependence of total free energy of non-productive binding (ΔG_{TOTAL}^{NP}) on RNA length for different substrates, as indicated. (B) Contribution of upstream RNA to the free energy of non-productive binding ($\Delta G_{UPSTREAM}^{NP}$) for different substrates, as indicated. (C-I) Contributions of upstream RNA component (light grey) and 3'-terminal quadruplet (dark grey) to free binding energy for non-productive binding for each nucleotide for the indicated substrates. Positive free energy values suggest either no length contribution, or a slightly destabilizing RNA length contribution to the free energy of non-productive binding. Fig. S11. Kinetic parameters for degradation of A_{32} -GGAC and A_{32} -UCCA (A) Estimation of kinetic parameters for degradation of indicated substrates (left panel: $K_{1/2}^{P}$; right panel: k_f). (B) Correlation between experimentally measured free energies of binding ($\Delta G_{Binding}$) and corresponding values calculated with the PWM in Fig 6B. Error bars indicate the standard error for the experimental and predicted free energies. Fig. S12. The impact of the 3'-terminal quadruplet on non-productive binding. (A) Distribution of free energy contributions ($\Delta\Delta G_{Binding}$) for all experimentally tested 3'-terminal quadruplet sequences to non-productive binding, compared to the A_4 variant [$\Delta\Delta G_{Binding}(A_4) = 0$] Bottom: sequence probability logo for the 10 tightest (left) and the 10 weakest (right) bound sequence variants. (B) Position weight matrix (PWM) for the free energy contributions of quadruplet sequence variants. Higher linear coefficients indicate higher energy contribution. (C) Correlation between free energy contributions of 3'-terminal quadruplet sequences to productive (Y axis) and non-productive binding (X-axis). | Substrate | Enzyme excess
(Substrates: 1 nM) | Nr. of
Replicates | Pulse chase
(Substrates: 1 nM) | Nr. of
Replicates | Substrate excess | Nr. of
Replicates | |---------------------------------|--|----------------------|--|----------------------|---|----------------------| | A ₃₆ | Rrp6: 13, 27, 55, 110, 220, 440, 880 & 1760 nM | 6 | Rrp6p: 27, 55, 110 nM
Scavenger: 10μM | 3 | Rrp6: 200nM
A ₃₆ : 100, 200, 400, 800,
1600, 3200 & 5,000 nM | 2 | | U ₃₆ | Rrp6: 13, 27, 55, 110, 220, 440 & 880 nM | 3 | Rrp6p: 27, 55, 110 nM
Scavenger: 10μM | 3 | Rrp6: 80nM
U ₃₆ : 80, 160, 320, 640,
1280 & 2560 nM | 2 | | C ₃₆ | Rrp6: 55, 110, 220, 440,
880 & 1760nM | 2 | Rrp6p: 27, 55, 110 nM
Scavenger: 10μM | 3 | Rrp6: 80nM
U ₃₆ : 80, 160, 320, 640,
1280 & 2560 nM | 2 | | A ₂₆ C ₁₀ | Rrp6: 55, 110, 220, 440,
880 & 1760 nM | 2 | Rrp6p: 27, 55, 110 nM
Scavenger: 10µM | 3 | N/A | | | C ₂₆ A ₁₀ | Rrp6: 55, 110, 220, 440,
880 & 1760 nM | 2 | Rrp6p: 27, 55, 110 nM
Scavenger: 10µM | 3 | N/A | | | R ₂₄ | Rrp6: 55, 110, 220, 440
& 880 nM | 2 | Rrp6p: 27, 55, 110 nM
Scavenger: 10μM | 3 | Rrp6: 50 nM
R ₂₄ : 250, 500, 750, 1000 &
1500 nM | 1 | | R ₃₆ | Rrp6: 55, 110, 220, 440
& 880 nM | 2 | Rrp6p: 27, 55, 110 nM
Scavenger: 10µM | 3 | N/A | | | R ₄₁ | Rrp6: 55, 110, 220, 440
& 880 nM | 2 | Rrp6p: 27, 55, 110 nM
Scavenger: 10µM | 3 | N/A | | Table S1. Rrp6p and substrate concentrations for experiments used in global data fits.