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Supplementary Figures
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Fig. S1. Aligning stripes from multiple embryos. In order to minimize alignment errors when combining data from across multiple Drosophila embryos, an automated
routine was employed to define a new experimental axis for each data set based upon the spatial distribution of transcriptional activity in the mature eve stripe 2 pattern. (A)
Example of the spatiotemporal distribution of observed fluorescence for an individual embryo. Each circle corresponds to the fluorescence from a single locus at a single point
in time. Only observations after 30 min into nuclear cycle 14 were used. Circle size indicates fluorescence intensity. Color indicates temporal ordering: 30 min (blue) to 47
min (red). (B) A Gaussian filter was convolved with the raw data points in (A). This filtering ameliorated stripe fitting artifacts that arose due to the relative sparsity of the raw
data. The fitting procedure considered both a range of possible stripe orientations (θstripe) and, within each orientation, a range of possible positions of the stripe along the
anterior-posterior axis (xstripe) that, together constituted a set of possibilities for the new stripe center position and orientation. Here, the shaded red region indicates the range
of values for θstripe that were considered. The red line indicates the best stripe axis inferred by the algorithm and the green line indicates the corresponding optimal stripe
center. No constraints were placed on xstripe, save for the limits of the experimental field of view. (C) For each proposed stripe orientation (θstripe), a projected stripe profile was
generated by taking the average pixel intensity for each position, xi, along the proposed stripe axis. To determine the optimal center location for each orientation, a sliding
window with a width equal to 4% of the embryo length was used to determine the fraction of the total profile fluorescence that fell within 2% embryo length of the stripe center.
For example, the gray shaded region in (B) illustrates what this range would be for the green stripe center line (B). This fraction of the total profile was used as a baseline for the
comparison of potential stripe center positions. The θstripe and xstripe that maximized this metric (green profile in (C)) were taken to define a new, empirically determined stripe
center. (D) This inferred stripe position defined an experimental axis for each embryo that was used to aggregate observations from across embryos. Gray circles indicate
experimental observations (size corresponds to intensity as in (A)) and shading indicates distance from inferred stripe center.
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Fig. S2. Integrating MS2 Spots. (A) Sites of nascent transcription are identified in 3D using the Weka segmentation plugin for FIJI. Once identified, as described in (1), the
Z-plane corresponding to the maximum fluorescence intensity is determined. On this Z-plane, fluorescence of a site is measured by integrating raw pixel intensities in a circular
region around the fluorescent MS2 spot of a predefined area (indicated by the red circle) and then subtracting off the background intensity obtained by fitting a 2D Gaussian
profile as outlined in (B). (B) X-Z projection of 2D Gaussian function fitted to MS2 spot shown in (A). Background intensity is estimated using the offset value fo this Gaussian fit.
The per-pixel offset is then multiplied by the area of the integration region. This background value is then subtracted from the fluorescence integrated across the area shown in
(A). (C) The radius was chosen to be large enough to integrate the intensities from both sister chromatids, even when they are spatially separated and distinguishable .
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Fig. S3. Mean transcriptional activity. Mean transcriptional activity as a function of time for different positions along the stripe. (Average over 11 embryos, error bars indicate
bootstrap estimate of the standard error of the mean. See Materials and Methods).

4 of 47 Nicholas C Lammers, Vahe Galstyan, Armando Reimer, Sean A Medin, Chris H Wiggins, and Hernan G Garcia



A

time (min)nu
m

be
r o

f R
N

AP
m

ol
ec

ul
es

100 20 30 40
time (min)

100 20 30 40

transcriptional
time window

transcriptional
time window

B

C

-4 -2 0 2 4
distance from stripe center

    (% embryo length)      

0
2
4
6
8

10
12
14

t o
n (

m
in

)

-4 -2 0 2 4
distance from stripe center

    (% embryo length)      

0

10

20

30

40

t o
ff 

(m
in

)

Fig. S4. Regulation of the transcriptional time window. (A) Single-nucleus measurements reveal that the duration of transcription is modulated along the stripe and that
nuclei transcribe in a burst-like fashion. (B) Time for nuclei to activate transcription after mitosis, ton, as a function of position along the stripe. (C) Time for nuclei to enter the
quiescent transcriptional state, toff . (B,C, average over 11 embryos, error bars indicate bootstrap estimate of the standard error of the mean. See Materials and Methods).
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Fig. S5. Definition of stripe amplitude. (A) The normalized mRNA profile for the stripe can be separated into an offset and an amplitude. (B) Normalized mRNA profiles
and (C) stripe amplitude for the cytoplasmic pattern of mRNA as well as for the contributions from the various regulatory strategies.
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Fig. S6. Joint effect of mean rate, binary control, and fraction of active nuclei. Including of the predicted effect of anterior-posterior-dependent modulation of the fraction
of active nuclei has little effect on the predicted cytoplasmic mRNA profile (compare brown profile in Figure 1G, gray profile above). The remaining difference between the full
profile (red) and the gray profile can be attributed the effects of temporal variations in the mean rate of transcription.
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Fig. S7. Fraction of time spent in each transcriptional state. Fraction of time spent in the ON and OFF states as a function of the position along the stripe. (Error bars
indicate the magnitude of the difference between the first and third quartiles of cpHMM inference results for bootstrap samples of experimental data. See Materials and Methods
for details.)
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Supporting Information Text

Extended Materials and Methods

Data processing. Processed live-imaging movies were compiled from across 11 experiments (embryos) to form one master
analysis set. While the position of eve stripe 2 along the anterior-posterior axis of the embryo was found to be consistent to
within 1-2% of egg length, we sought to further reduce this embryo-to-embryo variation by defining new, “registered” AP axes
for each experiment using the observed position and orientation of the mature stripe. To this end, an automated routine was
developed to consistently establish the position and orientation of the eve stripe 2 center for each data set.

This routine, described graphically in Figure S1, used observed spatial patterns of fluorescence measured from 30 minutes
into nuclear cycle 14—the approximate time at which the mature stripe is first established (2)— to the time of last observation
(≥40 min) to find the natural position and orientation of the mature stripe. Generally, the eve stripes run roughly perpendicular
to the anterior-posterior (AP) axis of the embryo; however, the approach allowed for the possibility that the true orientation of
the eve 2 stripe deviated from the orientation implied by manual estimates of the anterior posterior axis. Thus, a variety of
orientations for the natural stripe axis were considered, ranging between ± 15 degrees from the line perpendicular to the stripe
with the manually specified anterior posterior axis. For each orientation, a sliding window of 4% embryo length in width was
used to find the position along the proposed orientation that captured the largest fraction of the total fluorescence emitted
by the mature stripe. The orientation and position that maximized the amount of fluorescence captured within this window
defined a line through the field of view that was taken as the stripe center. All anterior-posterior positions used for subsequent
analyses were defined relative to this center line.

Once the stripe centers for each set were established, fluorescence traces were interpolated to 20s resolution, with all times
shifted to lie upon a common reference time grid. Traces near the edge of the field of view or that exhibited uncharacteristically
large changes in fluorescence over a time step were flagged through a variety of automated and manual filtering steps. When
necessary, these traces were removed from subsequent analyses to guard against the influence of non-biological artifacts.

cpHMM inference. To account for finite RNA polymerase (RNAP)elongation times, a compound state Markov formalism was
developed in which the underlying two-promoter system—assumed to have three states (see Figure 4E,F)—was transformed into
a system with 3w compound gene states, where w indicates the number of time steps needed for an RNAP molecule to traverse
the full transcript (see Figure S34). These compound gene states played the role of the “hidden” states within the traditional
HMM formalism. See SI Appendix, section D for details regarding the model’s architecture. Following this transformation from
promoter states to compound gene states, it was possible to employ a standard version of the expectation-maximization (EM)
algorithm, implemented using custom-written scripts in Matlab, to estimate bursting parameters from subsets of experimental
traces (SI Appendix, section D). The scripts are available at the GarciaLab/cpHMM GitHub repository. Bootstrap sampling
was used to estimate the standard error in our parameter estimates. Subsets of 8,000 data points were used to generate
time-averaged parameter estimates. In order to accurately capture the time-averaged dynamics across the entirety of nuclear
cycle 14, the full length of each experimental trace was used for time averaged inference. Sample sizes for windowed inference
varied due to data set limitations. When possible, samples of 4,000 points were used. Only data points falling within a 15
minute window centered about the time point of interest were included in windowed inference runs. Inference was not conducted
for spatiotemporal regions for which fewer than 1,250 time points were available. A minimum of 10 bootstrap samples were
used to estimate each parameter value reported in this work. Reported values represent the median taken across bootstrap
samples.

Input-output logistic regressions. The input-output analysis presented in Figure 7 utilized input transcription factor data from
immunostaining experiments presented in (3), as well as live measurements of a Bicoid-GFP fusion courtesy of Jonathan Liu
and Elizabeth Eck. Logistic regression parameters were estimated in Matlab using the fmincon function. See SI Appendix,
section H for further details.

Bootstrap error calculation. Bootstrap resampling was used frequently throughout this work to estimate the standard error in
a variety of reported quantities, from trends estimated directly from raw experimental data in Figure 1 to cpHMM inference
results presented in Figure 5 and Figure 6. In this procedure, multiple bootstrap replicates, yiboot are generated by sampling
with replacement from the pool of available experimental data, Y (see, e.g. (4)). The parameter of interest (say, ton(x)) is then
calculated for each replicate and the mean of these estimates is taken as the bootstrap estimate of the parameter value, ˆton(x),
while the standard deviation across the pool of bootstrap parameter estimates is used to approximate the standard error in
our estimate of ton(x). In our case, simply performing this procedure across the available pool of nuclei failed to account for
biological variability that exists from embryo to embryo. To account for this, we introduced a hierarchical bootstrapping
procedure. The first step in this procedure was to draw bootstrap samples from across the 11 embryos used in this study.
Because these samples were taken with replacement, most bootstrap samples excluded some embryos out of the original set of
11 and included duplicates (or triplicates, etc.) of others. Each embryo-level bootstrap defined a subset of nuclei. The final
set of nuclei used for parameter estimation was generated by performing another round of bootstrap sampling on this pool.
Bootstrap averages and standard errors were then calculated as described above. This two-step procedure thus accounts for
both embryo-to-embryo and nucleus-to-nucleus variability.

We note that the limited number of data points available for many spatiotemporal regions prevented us from performing
this two-tiered bootstrap procedure in the case of our time-dependent cpHMM inference (Figure 6D-F and SI Appendix,
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section G–Figure S28D-E). In these cases, we used all available sets (essentially skipping the first bootstrap resampling step)
and took bootstrap samples from amongst available nuclei as in step two of the procedure described above.

Absolute calibration of MS2 signal. A major strength of the modelling techniques presented in this paper (e.g. cytoplasmic
mRNA prediction, csHMM, logistic regressions) is that they can be applied directly to MS2 data, without a need to convert the
signal into absolute counts of RNAP molecules. Because of this, none of the conclusions presented in this work depend upon
an absolute AU to RNAP calibration. Still, it can be informative to view quantities in terms of biologically meaningful units.

Thus, in order to frame our results with respect to units with a clear physical interpretation, we calibrated our fluorescence
measurements in terms of absolute numbers of mRNA molecules. This calibration was also used to inform our Poisson loading
sensitivities (SI Appendix, section D). To calculate this calibration for our eve stripe 2 data, we relied on measurements reported
by a previous study that utilized MS2 in conjunction with single molecule FISH to establish a calibration factor, α, between
the integrated MS2 signal, FMS2, and the number of mRNA molecules produced at a single transcriptional locus, NFISH, (1)
given by

α = NFISH

FMS2
. [1]

This calibration factor can be used to estimate the average contribution of a single mRNA molecule to the observed
(instantaneous) fluorescent signal. While the values for the parameters in 1 reported here pertain to the transcriptional output
driven by the Bicoid activated P2 enhancer and promoter during nuclear cycle 13, the calibration should generalize to all
measurements taken using the same microscope.

First, consider the total integrated fluorescence emitted by a single nascent mRNA while it is on the reporter gene,

F1 = fmax

1
2LI + LII

velong
, [2]

where fmax denotes the instantaneous fluorescence emitted by a nascent mRNA that has transcribed the full complement of
MS2 loops, LI indicates the length of the MS2 loops, LII indicates the distance between the end of the MS2 loop cassette and
the 3’ end of the gene, and velong indicates the elongation rate of RNAP molecules along the gene. We can solve for fmax using
α, namely,

F1 = 1
α

= fmax

1
2LI + LII

velong
, [3]

such that
fmax = velong

α

1
1
2LI + LII

. [4]

Here, we recognize that the cumulative fluorescence per RNAP molecule is simply the inverse of the number of molecules per
unit fluorescence (α). Now we have the pieces necessary to derive an expression for the instantaneous fluorescence of a single
RNAP molecule, that is,

FRNAP = 1
τelong

fmax

1
2LI + LII

velong

= velong

(LI + LII)
fmax

1
2LI + LII

velong

= fmax

1
2LI + LII

(LI + LII)

= velong

α

1
(LI + LII)

, [5]

resulting in
FRNAP = velongFMS2

NFISH

1
(LI + LII)

. [6]

Measurements performed in (1) give NFISH to be 220 (± 30) mRNA per nucleus and velong to be 1.5 (± 0.14) kb/min.
Experimental measurements on the P2 enhancer (courtesy of Elizabeth Eck, Maryam Kazemzadeh-Atoufi and Jonathan Liu)
indicate that the total fluorescence per nucleus, FMS2, is 9,600 (±320) AU minutes. For the reporter gene used to take these
measurements, LI and LII are 1.275 kb and 4.021 kb, respectively. Thus, we obtain

FRNAP = 1.5× 9610
220

1
(1.275 + 4.021)

= 13± 1.7 AU/RNAP. [7]

Though the error in our calibration is significant (>13%), the conversion from arbitrary units to numbers of nascent mRNA
nonetheless provides useful intuition for the implications of our inference results, and none of our core results depend upon
having access to a precise calibration of the observed signal in terms of absolute numbers of RNAP molecules.
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Appendices

A. Theoretical model to predict cytoplasmic mRNA levels given from in vivo measurements of transcriptional activity.

Derivation details. Here we provide a more detailed treatment of the mathematical framework for connecting transcriptional
activity in individual nuclei to levels of accumulated cytoplasmic mRNA. We begin with general expressions for the rate of
mRNA production during the transcriptionally active and quiescent periods that dictate the transcriptional time window.
When the promoter is actively transcribing (ton ≤ t ≤ toff), the net rate of mRNA production is

dmRNA
dt (x, t) = R(x, t)︸ ︷︷ ︸

transcription rate

− γmRNA(x, t)︸ ︷︷ ︸
degradation rate

, [8]

where γ is the mRNA degradation rate constant. For a promoter that has entered a transcriptionally quiescent state (t > toff),
we have

dmRNA
dt (x, t) = −γmRNA(x, t), [9]

such that degradation is now the only contribution to the change of mRNA concentration in time. Note that, in these two
equations, we have ignored the contribution of mRNA diffusion. Previous measurements have estimated a diffusion coefficient
of mRNA of 0.09 µm2/s (5) and a typical mRNA degradation rate of 0.14 min−1 (6). Given these numbers, we expect an eve
mRNA molecule to diffuse approximately 6 µm, which corresponds to one nuclear diameter or 1% of the embryo length, before
being degraded. Thus, given the overall width of the stripe mRNA profile of about 8% of the embryo length (Figure 3G),
we expect diffusion to play a minimal role in stripe formation. Finally, note that we are also ignoring the delay between
transcriptional initiation and the delivery of an mRNA molecule to the cytoplasm as a result of nuclear export. This delay
would affect the timing of pattern formation, but would leave our conclusions about the relative role of transcriptional bursting
and the regulation of the duration of the transcriptional time window unaffected.

To make progress, as in the main text, we make the simplifying assumption that the instantaneous rate of transcription can
be well approximated by the time average at each position given by

R(x) ≈ 〈R(x, t)〉t. [10]

We now consider the role of ton(x) in dictating pattern formation by envisioning a scenario where transcription begins at time
ton(x), but does not cease. In this scenario, the accumulated mRNA is given by

mRNAactive(x, t) = R(x)︸︷︷︸
transcription rate

× 1
γ

(
1− e−γ(t−ton(x)))︸ ︷︷ ︸
time window

. [11]

Note that if the system evolves for a long amount of time, the second term in the parenthetical in Equation 11 becomes
vanishingly small (γ(t− ton(x))� 1) such that all time dependence drops out of the expression and we recover the familiar
expression for mRNA levels in steady state

mRNAactive(x, t) = R(x)
γ

, [12]

where mRNA production and degradation are balanced.
Next, consider the impact of regulating the timing with which nuclei cease transcriptional activity and become quiescent,

toff . Here, when t > toff(x), the amount of mRNA produced during the period of activity is subsumed within a decaying
exponential envelope such that

mRNAquiescent(x, t) = e−γ(t−toff(x))︸ ︷︷ ︸
quiescent decay

[
R(x)︸︷︷︸

transcription rate

× 1
γ

(
1− e−γ(toff(x)−ton(x)))︸ ︷︷ ︸

time window

]
. [13]

Equation 13 represents a scenario in which the accumulation of cytoplasmic mRNA results from the interplay between two
distinct regulatory strategies: the modulation of when the transcription starts and stops (binary control of the transcription
time window) and the average rate with which transcription occurs within this time window (analog control of transcriptional
bursting). We refactor Equation 13 to reflect this distinction and consider the case when t > ton, giving

mRNAfull(x, t) = R(x)
γ︸ ︷︷ ︸

analog control

× e−γ(t−min(toff(x),t)) (1− e−γ(min(toff(x),t)−ton(x)))︸ ︷︷ ︸
binary control

, [14]
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which can be simplified slightly to yield

mRNA(x, t) = R(x)
γ︸ ︷︷ ︸

analog control

×
(
e−γ(t−min(toff(x),t)) − e−γ(t−ton(x)))︸ ︷︷ ︸

binary control

. [15]

Finally, we account for the fact that only some pactive(x) fraction of nuclei within each region ever engage in transcription
leading to

mRNA(x, t) = pactive(x)× R(x)
γ︸ ︷︷ ︸

analog control

×
(
e−γ(t−min(toff(x),t)) − e−γ(t−ton(x)))︸ ︷︷ ︸

binary control

. [16]

This equation constitutes the basis of our theoretical dissection of pattern formation by transcriptional bursting and the control
of the transcriptional time window.

Accounting for multiple transcriptional states. In the main text, Equation 3 expresses the mean rate of mRNA production, R(x), as
a function of the bursting parameters kon, koff , and r. We can combine this equation with Equation 16 to obtain an expression
for the predicted amount of cytoplasmic mRNA that includes the burst parameters inferred by our cpHMM

mRNA(x, t) = pactive(x)× r(x)
γ

kon(x)
kon(x) + koff(x)︸ ︷︷ ︸

analog control

×
(
e−γ(t−min(toff(x),t)) − e−γ(t−ton(x)))︸ ︷︷ ︸

binary control

. [17]

While we present our results in terms of an effective two-state model in the main text, the presence of two transcriptional
loci within each observed fluorescent spot suggests that the system is more naturally described using a three-state kinetic
model. Here, we extend the framework presented in Equation 17 to a scenario in which there are three distinct system states:
0 promoters on (0), 1 promoter on (1), and both promoters on (2) (see Figure 4). We begin with a general expression for this
scenario that takes the contribution from the analog control term shown in Equation 16 to be a sum over the output of each of
the 3 activity states, namely,

mRNA(x, t) = pactive(x)× 1
γ

( 2∑
i=0

ri(x)πi(x)
)

︸ ︷︷ ︸
analog control

×
(
e−γ(t−min(toff(x),t)) − e−γ(t−ton(x)))︸ ︷︷ ︸

binary control

, [18]

where ri(x) is the rate of RNAP loading for state i, and πi(x) indicates the fraction of time spent in state i. Note that the
independent effect of the duration of the transcription time window and of mRNA decay on cytoplasmic mRNA levels remain
unchanged in the multi-state case.

The fractional occupancies of the activity states (πi(x) terms in Equation 18) are a function of the rates with which the
promoter switches between activity states. In general, the fractional occupancy of each activity state, πi, may vary as a function
of time; however we focus on their steady state values here, such that:

0 = R(x)π(x), [19]

where R(x) is the transition rate matrix. Consistent with our inference results, we assume that no transitions are permitted
between the high and low states (0 & 2). Thus, the transition rate matrix takes the following form:

R(x) =

[−k01(x) k10(x) 0
k01(x) −k10(x)− k12(x) k21(x)

0 k12(x) −k21(x)

]
. [20]

Together, Equation 19 and Equation 20 allow us to solve for the fractional occupancy of each activity state as a function of the
transition rates that describe the system.

For the remainder of this derivation, we will drop the explicit x and t dependencies for ease of notation. Intuitively, the
steady state (or stationary) distribution represents a limiting behavior of the system such that, upon reaching π, no further
shifts occur in the mean fraction of time spent in each activity state. Equation 19 leads to a system of three equations:

0 = −π0k01 + π1k10 [21]

0 = π0k01 − π1
(
k10 + k12

)
+ π2k21 [22]

0 = π1k12 − π2k21. [23]
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Before proceeding, we note that, since π is a probability distribution, we can eliminate one of our unknowns by enforcing
normalization, that is,

1 = π0 + π1 + π2. [24]

With this in mind, we can solve Equation 21 for π1 to find

π1k10 = π0k01 [25]

π1 = π0
k01

k10
. [26]

Next, we use the normalization condition to eliminate π2 from Equation 23:

π1k12 = π2k21

= (1− π0 − π1)k21. [27]

By combining this result with Equation 26, we obtain

π0
k01

k10
k12 = (1− π0 − π0

k01

k10
)k21 [28]

π0
k01k12

k10k21
= 1− π0

k10 + k01

k10
[29]

π0 = k10k21

k10k21 + k01k21 + k01k12
. [30]

With Equation 30 in hand, it is then straightforward to solve for the remaining πi terms. First we obtain π1 by substituting
Equation 30 into Equation 26:

π1 = π0
k01

k10

= k01k21

k10k21 + k01k21 + k01k12
. [31]

And finally π2:

π2 = 1− π0 − π1

= k01k12

k10k21 + k01k21 + k01k12
. [32]

Thus, we arrived at the full expression for cytoplasmic mRNA levels in the 3-state case:

mRNA(x, t) = pactive(x) 1
γ

(
r1(x)k01(x)k21(x)

κ(x) + r2(x)k01(x)k12(x)
κ(x)

)
︸ ︷︷ ︸

analog control

×
(
e−γ(t−min(toff(x),t)) − e−γ(t−ton(x)))︸ ︷︷ ︸

binary control

, [33]

where, consistent with the 2-state case, we have taken r0(x) to be equal to zero and where κ(x) denotes the denominator in
Equation 30, Equation 31 and Equation 32, namely,

κ = k10k21 + k01k21 + k01k12. [34]

Thus, from Equation 33 we see that, while there are more terms comprising the analog control expression, the expression
nonetheless takes on the same essential form as in Equation 16.

Mapping the three-state model into an effective two-state model. Here we provide expressions relating the effective two-state parameters
presented in the main text to parameters from the full three-state model. As we have done throughout this work, we take
the transition rates between states (0) and (2) of the 3-state model to be negligible (consistent with inference results, see SI
Appendix, section G). First, the on rate, keff

on is directly equivalent to the transition rate between states (0) and (1), that is,

keff
on = k01. [35]

Similarly, since we do not observe from state (2) to state (0), keff
off is equal to the transition rate from (1) to (0), weighted by

the relative fraction of time the system spends in state (1) when it is in the effective ON state (1 or 2). Thus, we have:

keff
off = π1k10

π1 + π2
[36]

= k01k21k10

k01k21 + k01k12
[37]
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= k21k10

k21 + k12
. [38]

Finally, reff is the occupancy-weighted average of the initiation rates for states (1) and (2), namely,

reff = π1r1 + π2r2

π1 + π2
[39]

= r1k01k21 + r2k01k12

k01k21 + k01k12
[40]

= r1k21 + r2k12

k21 + k12
. [41]

B. Measuring the amount of produced mRNA. Here, we outline our methodology for estimating rates of mRNA production
depicted in Figure 3A and B, as well as the total cytoplasmic mRNA levels per nucleus shown in Figure 3G.

Calculating rates of mRNA production. The observed fluorescence signal at transcriptional loci as a function of time, F (t), is linearly
related to the number of actively transcribing RNAP molecules. Thus, after a period equal to the amount of time needed for
an RNAP molecule to transcribe the gene, τelong, the number of new mRNAs added to the cytoplasm will be proportional to
F (t) (2), that is,

F (t) ∝M(t+ τelong)−M(t), [42]

where M(t) indicates the total number of mRNA molecules that have been produced up to time t. We can relate this
fluorescence signal to absolute numbers of RNAP molecules using the calibration procedure described in the Extended Materials
and Methods. Drawing from the derivation provided in the SI Methods of (2), we take the rate of mRNA production at time t
to be approximately equal to the observed fluorescence at time t− τelong

2 ,

F
(
t− τelong

2

)
∝ dM(t)

dt . [43]

Here, the τelong
2 term accounts for the time lag between the number of transcribing nascent mRNA molecules and their release

into the cytoplasm. An alternative way to think about this is that Equation 42 is essentially an expression for the time
derivative of M(t), centered at time τelong

2 . For ease of notation, we will ignore this offset factor for the remainder of this
section. We will also treat the relationship in Equation 43 as one of equality.

Figure 3A depicts the time-averaged rate of mRNA production for each nucleus within the experimental field of view for one
of our 11 live imaging movies. For each nucleus, this quantity was obtained by averaging the fluorescence across all observed
time points, from when the nucleus first turned on (ton) through to the final time point where expression was detected (toff),
which is taken to be either the time at which the nucleus transitioned into a quiescent state or the time depicted in the figure
(40 minutes into nuclear cycle 14)—whichever came first. Thus the average rate of mRNA production for nucleus i is obtained
from

Ri =
α
∑toff

t=ton
Fi(t)∑toff

t=ton
1

, [44]

where the denominator is the total number of time points over which the averaging is performed and α indicates a conversion
factor with units of RNAP molecules per AU per unit time that accounts for two factors: (1) the conversion from fluorescence
to absolute numbers of RNAP molecules and (2) the dwell time of RNAP molecules on the gene. From Equation 7, we know
that we have one RNAP molecule for every 13 AU. The second factor is analogous to the velong/(LI + LII) component of
Equation 5, but with the appropriate lengths and elongation rates for the eve stripe 2 reporter. See SI Appendix, section J for
details about how we estimate the elongation time for our experimental system. Here, we will simply quote the results that
α = 0.037 RNAP molecules per AU per minute. Thus, the mean rate of mRNA production of a single nucleus is given by

Ri =
0.037

∑toff
t=ton

Fi(t)∑toff
t=ton

1
. [45]

A similar procedure was performed to estimate the average rate of mRNA production for each region along the anterior-posterior
that is depicted in Figure 3B. This time, however, we summed over observed fluorescence values for all nuclei within the
relevant region and time period and divided by the total number of time points such that

Rx =
0.037

∑N

i=1

∑toff
t=ton

Fi(t)∑N

i=1

∑toff
t=ton

1
, [46]

where N indicates the total number of nuclei falling within anterior-posterior region x.

14 of 47 Nicholas C Lammers, Vahe Galstyan, Armando Reimer, Sean A Medin, Chris H Wiggins, and Hernan G Garcia



Calculating full mRNA profiles. In contrast to the production rates calculated above, determining the relative contributions to
stripe formation from each regulatory strategy depicted in Figure 3G did not require an AU to RNAP calibration. Thus, we
capture the calibration factor, along with all other proportionality constants, with a generic term β, with the expectation that
β will drop out from all consequential stripe contribution calculations. For a given region along the axis of the embryo, the
average observed fluorescence across all N nuclei (active, quiescent, and those that never engaged in transcription) within the
region of interest was used as a proxy for the instantaneous rate of mRNA production per nucleus, given by

dM(x, t)
dt = β

N

N∑
i=1

Fi(x, t)

= β〈F (t)〉x. [47]

Here, Fi(x, t) is the fluorescence of nucleus i at time t and position x. The x subscript in Equation 47 indicates that the
average is taken over all nuclei falling within the same anterior-posterior region within the eve stripe 2 pattern.

Having obtained an expression for the rate of mRNA production as a function of space and time, we next sought to account
for the degradation of mRNA over time. As indicated in the main text, we assumed a constant rate of mRNA decay, γ, over
space and time. The next section in this appendix provides evidence for the validity of this assumption. For a constant mRNA
decay rate, calculating the average concentration of mRNA amounts to taking a weighted sum over all preceding production
rates for a position of interest, where the weight terms account for the effects of mRNA decay and are of the form e−γt. Thus,
we summed over all time points for each region of interest to estimate the total amount of cytoplasmic mRNA present on
average, yielding the quantity on the left-hand side of Equation 2, namely,

mRNA(x, t) = β

T∑
n=1

e−γ(t−n∆τ)〈F (t− n∆τ)
〉
. [48]

Here ∆τ is the experimental time resolution, and T = t
∆τ denotes the number of measurements taken through time t. The

exponential term within the summand on the right-hand side captures the effects of mRNA decay (see SI Appendix, section A).
Finally, to calculate the normalized mRNA profile shown in Figure 3G (red), the estimates for the total accumulated mRNA
per nucleus found using Equation 48 must be divided by the sum across all spatial regions considered, namely

mRNAnorm(xj , t) =

∑T

n=1 e
−γ(t−n∆τ)〈F (t− n∆τ)

〉
xj∑

xi∈X

∑T

n=1 e
−γ(t−n∆τ)

〈
F (t− n∆τ)

〉
xi

, [49]

where X denotes the set of all regions along the anterior-posterior axis that were considered for the profile analysis and
the subscripts i and j outside the angled brackets denote the spatial region over which the sum is taken. Note that the
proportionality constant β cancels in the final expression for mRNAnorm. As a final step, we subtract the minimum across the
anterior-posterior region considered to remove any basal offset such that

mRNAfull(xj , t) = mRNAnorm(xi, t)−min
x

(
mRNAnorm(xj , t)

)
. [50]

Validating the fluorescence model. We employed a stochastic simulation to test the validity of the relation proposed in Equation 47
and, more generally, of the approximate equality between time-lagged fluorescence and mRNA production asserted in Equation 42.
Simulated traces were generated using the Gillespie Algorithm (7), adjusted to allow system parameters to vary in time. We
assumed an effective off rate of 0.667 transitions per minute and an initiation rate of 16 RNAP molecules per minute. To
generate a temporal trend, we varied the effective on rate from an initial value of 1.6 transitions per minute (0 to 12 minutes of
our simulation) to a basal value of 0.5 transitions per minute (27.5 to 35 minutes of our simulation). Figure S8 compares the
rate of mRNA production predicted using the time-lagged average of simulated fluorescence traces, to the true rate of mRNA
production.
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Fig. S8. Comparison of actual and estimated mRNA production rates. The black trend indicates the true rate of mRNA production as a function of time used for the
simulation of transcription. The blue trend indicates the rate estimated from these simulated fluorescence traces. Error bars indicate standard deviation across 10 replicates
containing 100 simulated traces each.

As expected, the approach faithfully recapitulates the true trend. Indicating that using spot fluorescence as a proxy for
mRNA production should yield reliable results.

Calculating mRNA profiles due to the binary control of the transcriptional time window. The predicted profile due to binary control of
the transcriptional time window alone (Figure 3G, blue) was calculated following the same procedure as for the full mRNA
profile described above, save for the fact that, in this case, instantaneous fluorescence values for individual nuclei were converted
to binary indicator variables (fi(t)) that were set equal to 1 if t < tioff and 0 otherwise. Additionally, only nuclei that were
active at some point during nuclear cycle 14 were included in order to distinguish the effects of the transcriptional time window
(Figure 1C) from the control of the fraction of active nuclei (Figure 1D). Thus, in this scenario, the “average rate” of mRNA
production is equivalent to the fraction of nuclei engaged in transcriptional activity at a given point in time such that the rate
of mRNA production is given by

d mRNAbinary(x, t)
dt = 1

N(x)

N(x,t)∑
i=1

fi(t)

= 〈f(x, t)〉

= Nc(x, t)
N(x) , [51]

where Nc(x, t) indicates the number of transcriptionally engaged nuclei at time t and position x, N(x) indicates the total
number of nuclei at position x that were transcriptionally competent at some point during nuclear cycle 14, and 〈f(x, t)〉
indicates the fraction of competent nuclei at position x and time t. The binary equivalent to Equation 48 takes the form of a
time-weighted sum of the fraction of active nuclei within a region

mRNAbinary(x, t) =
T∑
n=1

e−γ(t−n∆t)Nc(x, n∆t)
N(x) . [52]

The steps for calculating the the normalized binary mRNA levels comprising the blue profile in Figure 3G from Equation 52
are identical to those shown for the full mRNA profile in Equation 49 and Equation 50 and are therefore not repeated here.

Comparison between predicted and measured cytoplasmic mRNA profiles. As a check for the validity of our approach to predicting
levels of cytoplasmic mRNA from live imaging data (Equation 49 and Equation 50), we sought to compare our model’s
predictions to existing mRNA FISH data for the endogenous eve stripe 2 (8). For this comparison, we elected to use live
imaging data for eve stripe 2 activity that was driven by a BAC containing the full eve locus (see (9) for details). This was done
to minimize potential differences with the activity of the endogenous gene. Most notably, unlike the BAC reporter construct,
the minimal reporter construct used for the majority of this work does not contain an enhancer sequence that is responsible for
driving eve expression late in nuclear cycle 14 (10).
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The researchers who generated the mRNA FISH data used the percent invagination of cellular membranes through
cellularization as a means to break individual fixed embryos into rough temporal cohorts (11). We cross-referenced the
invagination ranges for each temporal group in the FISH data from (11) with data provided by precise measurements of
invagination for different time points in (3) to obtain estimates for the range of times encapsulated by each of these cohorts.

We elected to use the cohort comprised of embryos with ages ranging between 38 to 48 minutes into nuclear cycle 14 because
this range was much narrower than the preceding cohort and because the stripe appeared to be relatively stable during this
time period. We note that the authors of (11) measured invagination on the ventral surface of the embryo, while the authors in
(3) used the dorsal surface. This difference could lead to inconsistencies, since invagination is known to proceed more rapidly
on the ventral side of the embryo (11). However, the authors in (11) reported that this discrepancy is minimal up to the point
where cell membrane extension has progressed to approximately 40% of its eventual full extent. The lower and upper bounds
on the percent membrane invagination for the chosen cohort are 26% and 50% respectively. Thus, we expect the time estimate
derived for the beginning of the period to be reasonably accurate, since dorsal and ventral membrane progression was reported
to be comparable during this period. Moreover, to the degree that ventral invagination outpaces dorsal invagination at the end
of our period of interest, this would result in an over-estimation of ending time. Thus, if anything, the true temporal window
encompassed by the selected cohort may actually be tighter than 10 minutes, since the ending time might in fact be earlier
than 48 minutes into nuclear cycle 14. Given the relative stability of the stripe profile during this period of development, we do
not expect this potential discrepancy to have a material impact on our conclusions.

SI Appendix, section B Figure S9 summarizes the results of this comparison. To account for uncertainty regarding the
precise dorsal-ventral (DV) orientation of embryos within our live-imaging set, we compared our model’s predictions to mRNA
measurements for a range of DV positions, encompassed by the green-shaded profile. We found a high degree of agreement
between model predictions and reported levels of cytoplasmic mRNA. This conclusion is relatively insensitive to our assumptions
regarding the average lifetime of eve mRNA as shown by the blue and red lines in the figure (predictions assuming mRNA
lifetimes of 7 and 15 minutes, respectively). We thus concluded that the assumptions underlying our model for predicting
cytoplasmic mRNA levels from in vivo single-cell transcriptional activity measurements are valid.

mRNA FISH measurement
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Fig. S9. Comparison of predicted cytoplasmic mRNA by live-imaging measurements to direct measurements by FISH. In an effort to check the validity of our modelling
assumptions, we compared the predicted cytoplasmic mRNA profile stemming from live-imaging measurements of stripe 2 of an eve reporter from a BAC containing the
full eve locus (9) to direct measurements of eve cytoplasmic mRNA levels using FISH (11). Here, the blue and red lines indicate our model’s predictions under two different
assumptions for the rate of mRNA degradation, and the shaded green profile indicates the range of reported mRNA levels for different ranges of dorsal-ventral positions.
Comparisons indicate a high degree of agreement between prediction and measurement, indicating that our modelling assumptions are justified.

Sensitivity of results to mRNA lifetime assumption. In the main text we assume a degradation rate for eve of 0.14 min−1 (corresponding
to a lifetime of roughly τ = 7 min). Since, to our knowledge, the decay rate of eve mRNA has not been measured directly, we
follow (2) and base this estimate off of measurements for another of the pair rule genes, fushi tazu (ftz) (12). In this section,
we examine the degree to which the apparent contributions of each regulatory strategy (Figure 1) change under different
assumptions for eve mRNA lifetime. Rather than conducting an exhaustive survey, we instead focus primarily on two limiting
cases: rapid mRNA decay (τ = 1 min) and no mRNA decay (τ =∞).

Figure S10 summarizes the results of our analysis. We find that, regardless of the assumed mRNA lifetime, our model
predicts that eve stripe 2 is formed almost entirely via the interplay between the binary control of the transcriptional time
window and the analog modulation of the mean rate of transcription (compare brown and red profiles in Figure S10). However,
we find that the relative importance of each factor depends, somewhat, on the assumed decay rate. In the case of rapid mRNA
decay, as well as for the decay rate assumed in the main text, the time window (blue profile) is clearly the dominant factor in
driving pattern formation (Figure S10A and B). If we assume the true mRNA lifetime is 15 minutes, slightly more than double
our best guess of 7 minutes, we find that the time window is still predicted to contribute slightly more to stripe formation, but
that the two contributions are now of order with one another (Figure S10C). Finally, in the limit where there is effectively no
mRNA decay, the effects of the mean rate and time window are roughly equivalent (Figure S10D). This result can be explained
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by the fact that the mean rate strategy is insensitive to the decay rate, whereas the effect of the time window is enhanced by
the action of mRNA decay.

Thus, overall, we found that our model’s prediction that the control of the transcriptional time window plays a primary role
in stripe formation holds for mRNA lifetimes less than or equal to 15 minutes, which is more than double the measured life
time of ftz mRNA (6). Perhaps more importantly, both factors are found to play a significant role, irrespective of mRNA decay
rate, indicating that our central finding is robust to our assumption regarding mRNA decay dynamics.

0

0.05

0.1

st
rip

e 
am

pl
itu

de

actual
distribution

analog control
of mean transcription

rate

binary control of
transcriptional
time window

control of the
fraction of

active nuclei

analog + binary
control

τ =7 minτ =1 min τ = ꝏ 
A B C

-4 -2 0 2 4
distance from stripe center

(% embryo length)
distance from stripe center

(% embryo length)
distance from stripe center

(% embryo length)
distance from stripe center

(% embryo length)

τ =15 min
D

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Fig. S10. Sensitivity of regulatory strategy contribution to assumed mRNA lifetime. The average lifetime of eve mRNA is a significant assumed parameter in our model.
This figure compares the predicted contributions of each regulatory strategy for the mRNA lifetime assumed in the main text (τ = 7 min) to limiting cases in which mRNA is
assumed to decay almost instantaneously (τ = 1 min) on the one hand, and infinitely slowly on the other (τ =∞). Even at these extremes, the central conclusion that the
stripe is formed via the join action of mean rate modulation (green profile) and the time window (blue profile) remains intact. As expected, the relative contribution of the time
window is sensitive to the assumed τ , yet even in the limit of no significant mRNA decay, its impact is still of order with the effect of mean rate modulation.

Control strategy contributions for eve BAC. A key question regarding the results in the main text is whether and to what degree
the relative contributions of the regulatory control strategies we identified in Figure 1 and Figure 3 for the reporter containing
only the eve stripe 2 enhancer hold true for the formation of the stripe in the endogenous context. While we cannot directly
query activity at the endogenous eve locus, we were able to examine the dynamics of stripe formation for an eve BAC used
in the companion paper to this manuscript (9). Since this BAC contains the full eve regulatory locus, it likely provides a
better proxy for stripe formation in the endogenous context than the isolated eve 2 reporter. Figure S11 shows the results of
this analysis. As with the reporter construct used in the main text (Figure S11A), we find that in the endogenous context
(Figure S11B) the stripe is formed primarily through the interplay between two regulatory strategies: the modulation of the
average rate of production (green) and of the duration of transcriptional activity (blue). As with the reporter, the binary
control of the transcriptional time window is the dominant driver of stripe formation (compare with Figure 1G). Interestingly,
unlike the reporter construct, the full predicted profile (red profile) that accounts for the interplay between mRNA decay
temporal fluctuations in the mean rate of mRNA production differs substantially from the simpler model (brown profile) that
approximates mRNA production as constant over time. We speculate that this difference is attributable to the influence of the
“late enhancer”—which is present in the eve BAC but not in the reporter—that takes over control of eve activity late in nuclear
cycle 14. Further work will be necessary to fully elucidate the regulatory impact of this late element on the formation of the
mature eve stripe pattern.
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Fig. S11. Regulatory strategy contributions to eve stripe 2 formation in endogenous context. (A) Control strategy contributions for the reportereve stripe 2 reporter
construct (reproduced from Figure 3G), (B) Predicted contributions for eve BAC. As with the reporter construct, the formation of eve stripe 2 in the context of the full eve
regulatory locus is dominated by the interplay between mean rate modulation (green) and control of the time window of transcriptional activity (blue).
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C. Accounting for effects of experimental detection threshold. A number of analyses in this work rely (directly or indirectly)
on the estimation of when gene loci first enter into a transcriptionally engaged state (ton) as well as when they stop transcribing
(toff). These quantities are estimated using our live imaging data. Because live imaging experiments are subject to a detection
limit (below which dim loci will not register as being active), there is a potential for bias in our estimates of ton and toff, as
well as other metrics that derive in part from these quantities (duration of transcriptional activity, for instance). Similarly,
there is a potential for bias in the measurements of the fraction of active nuclei as well as the transcriptional time window
(Figure 3C-F) and the contributions of these regulatory strategies to pattern formation depicted in Figure 3G. These quantities
were calculated assuming that undetected loci produced no mRNA when, in fact, it is possible that they produce at low levels
periodically or even throughout the whole nuclear cycle. To estimate the nature and severity of these potential biases, we
first estimated the detection limit for our live imaging experiments. Where appropriate, we used this limit to determine its
potential effect on our conclusions.

Estimating the detection limit. We followed a methodology that was laid out in a previous work that employed the MS2 system in
the fly to estimate the detection limit of our live imaging experiments (1). Specifically, we calculated the minimum observed
fluorescence value for each gene locus in our dataset. We then fit a Gaussian distribution to this set of minimum values to
estimate the detection limit for our dataset. As shown in Figure S12, this procedure returned an estimated detection limit of
54 AU± 1 which, according to our estimate of the absolute calibration, corresponds to approximately 4 RNAP molecules.
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Fig. S12. Estimating the fluorescence detection limit. Distribution of minimum observed fluorescence values for each fluorescence trace in our data set (N=1484). The
solid black line indicates the Gaussian probability density function that best fits the empirical data. The vertical dashed line indicates the inferred detection limit of 54 AU± 1.

Estimating detection threshold artifacts for ton and toff . As illustrated in Figure S13A, the presence of a detection threshold will
generally lead to estimated on-times that are too late and estimated off-times that are too early. To gain quantitative estimates
for these biases, we used the results of our burst parameter inference shown in Figure 5 to simulate 50 activity trajectories for
each region along the anterior-posterior axis that accurately recapitulated observed position-specific burst dynamics. For each
simulated trace, we imposed a detection threshold of 54 AU and examined how far the resulting threshold-impacted estimates
for ton and toff diverged from the true on and off times. Averaging these effects across 50 traces for each anterior-posterior
region indicated that the detection limit did lead to biases. Specifically, we found that it would result in a 30-60 second
overestimate (too late) of ton (Figure S13B) and a 20-50 second underestimation (too early) of toff (Figure S13C). These errors
compound for our estimate of the duration of the transcriptional time window, leading to underestimates of between 50 and 100
seconds (Figure S13D). As shown in the figure, while statistically significant, comparisons between raw and threshold-adjusted
estimates for these three quantities reveal that these biases are small compared to the quantities of interest, and thus have a
minimal effect on the observed trends.

In addition to the estimation of average on and off times as a function of AP position, analyses presented in Figure 6C
(fraction of quiescent nuclei over time) and Figure 7A,D, and E (input/output inference for the transcriptional time window
time window) of the main text, as well as Figure S32 in this SI, required us to distinguish between transcriptionally engaged
and quiescent nuclei. In these cases we employed a simpler definition of toff , taking it to be equal to the last time at which
fluorescence was observed for a given locus. According to the results for our toff analysis in Figure S13B, we would expect the
impact of this simpler (but more empirical) approach to be minimal, leading to a slight overestimation of toff (1-2 minutes).
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Fig. S13. Accounting for effects of detection limit on off and on time calculations. (A) Example of a simulated fluorescence trace. Red dashed line indicates the
estimated detection limit of 54 AU. Blue lines indicate the true on and off times and gray lines indicate the apparent on and off times due to the effects of the detection threshold.
(B-D) Plots of raw and adjusted anterior-posterior trends for (B) ton, (C) toff, and (D) the duration of the time window (toff − ton).

Possibility of basal expression does not impact conclusions about regulatory strategy contributions. This work invokes two regulatory
strategies, the control of the transcriptional time window and of the fraction of active nuclei (Figure 1C,D), that assume that
undetected loci are transcriptionally silent; that is, that they do not produce any mRNA. Yet, due to the detection limit of our
experiment, we cannot completely rule out the possibility that some undetected loci are actually expressing at a basal level. We
thus examined what effects, if any, the existence of such basal expression would have on the conclusions presented in this work.

First, we examined how the predicted contributions of each regulatory control strategy in Figure 3G would change in the
presence of basal expression. We first examined what would happen to our predictions if all nuclei that we classified as never
having turned on during the whole nuclear cycle actually expressed at a basal level equal to our detection limit of 54 AU for
the duration of the nuclear cycle. Figure S14A and B compare the predicted contributions to stripe formation in the absence
and presence of this basal transcriptional activity amongst this population. For the analysis in Figure S14B, we maintained the
distinction between active and inactive loci, but assumed that all transcriptionally inactive loci (those for which transcription
was never detected) were actually expressing at a rate equal to the detection limit throughout nuclear cycle 14. Thus, instead
of emitting no fluorescence (or, equivalently, producing no mRNA), they were assumed to emit at a constant fluorescence of
54 AU. As a result, the influence of the control of the fraction of active nuclei in pattern formation was reduced, but not
eliminated. The size of the effect depends on the relative magnitudes of the detection threshold and the average expression
level amongst active gene loci. For our data, the detection limit is approximately 10% of the average expression level. As shown
in the figure, this is small enough that the effects of this potential basal expression are predicted to be minuscule. Indeed, it is
difficult to distinguish between Figure S14A and B by eye. This is because (1) the fraction of active nuclei contributes negligibly
to stripe formation in the first place, and (2) the detection threshold is quite small compared to the average transcription rate
amongst transcriptionally engaged loci.

We next examined an even more extreme case wherein all undetected loci—both those that were never detected as
transcriptionally active and those that shut off early as a part of the control of the transcriptional time window—expressed at
the basal rate throughout the nuclear cycle (Figure S14C). As expected, incorporating basal activity at all undetected loci has
the effect of decreasing the overall prominence of the stripe pattern, since the expression floor is effectively raised from 0 to
54 AU. However, despite this change, the core conclusion that the analog control of the mean rate and binary control of the
transcriptional time window jointly drive pattern formation (Figure 3) remains valid. Thus, we conclude that these results are
robust to the possible existence of basal activity amongst quiescent nuclei.
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Fig. S14. Impact of possible basal expression on control strategy contributions to stripe formation. Predicted contributions of the regulation of the mean rate (green),
time window (blue), and fraction of active nuclei (yellow) to pattern formation. (A) Predicted contributions assuming no basal activity. (B) Predicted contributions with all nuclei
that never turn on assumed to express at detection limit of 54 AU. (C) Predicted contributions with both all nuclei that never turn on and all nuclei that become quiescent at
some point during nuclear cycle 14 assumed to express at detection limit.

Any undetected basal expression would have radically different burst dynamics. To remain undetected a reporter gene must never have
more than four nascent RNAP molecules actively transcribing along its length. In the main text, we invoke the two-state
model of bursting to describe the highly stochastic expression patterns exhibited by eve gene loci. A fundamental feature of
this model is that gene loci transition between an active and an inactive state (see Figure 4). If basally expressing loci also
adhered to this model, the burst parameters (kon, koff , and r) would need to be such that the bursts were either small enough
or rare enough such that basal loci never contain more than four actively transcribing RNAP molecules at any time point.
With this in mind, let us consider the consequences of tuning each burst parameter (see Figure 6A) to satisfy this requirement.

Figure S15A features a simulated fluorescence trace generated using the bursting parameters inferred at the anterior flank of
the stripe (anterior-posterior position −4 in Figure 5D and E). How would these bursting dynamics have to change in order to
seemingly silent nuclei to be transcribing at a low, basal rate?

First, if the difference between basally expressing and detectable loci stems from a reduction in kon, it would still be the
case that bursts, when they occurred, would last about 90 s (1/koff in Figure 5E) and load RNAP molecules at a rate of
about 1/3 s−1 (Figure 5D), resulting in the loading of approximately 32 RNAP molecules over the duration of the burst. This
number of RNAP molecules on the gene could not escape detection, as it is significantly over our detection limit of four RNAP
molecules. Thus, as illustrated in Figure S15B, the only way for loci to avoid detection in this scenario is for kon to be so low
that it is unlikely for a single burst to occur within the approximately 40 minute time window of our observation. If we require
that the odds of observing a single burst during the 40 minute window of observation be at most 90%, then we have

pburst ≤ 0.10 [53]

1− e−40kon ≤ 0.10 [54]

−kon ≥
ln 0.9

40 [55]

kon ≤ 0.003 min−1, [56]

Where pburst is the probability of a burst occuring. We see that this requirement results in a kon value that is two orders of
magnitude lower than what is observed in detected loci (Table S1, low kon). Such a locus would be active a mere 0.4% of the
time (compared to around 50% among observed loci). As a result, even if these loci did transcribe with bursting dynamics, these
dynamics would be so different from those considered in this work that basally expressing loci would constitute a qualitatively
distinct population from detected, high-expressing loci, and not a mere population of active loci that happened to present
slightly lower fluorescence values.

Second, if basal expression is realized by increasing koff (decreasing burst duration), the decrease must be sufficiently large
that the probability of loading more than 4 RNAP molecules in a burst is low. At a loading rate of 20.5 RNAP per minute, this
means that it must be rare for bursts to last for more 4 RNAP/(20.5RNAP/min ≈ 0.2 min. If we demand that the probability
of observing such a burst is no greater than 10%, this yields

plong ≤ 0.10 [57]

e−0.2koff ≤ 0.10 [58]

koff ≥ −
ln 0.1
0.2 [59]

koff ≥ 11.5 min−1. [60]

Here, plong denotes the likelihood of a burst longer than 0.2 minutes. The koff value consistent with these constraints is already
an order of magnitude larger the koff inferred for transcriptionally engaged loci. However we have not yet accounted for the
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fact that are typically multiple bursts over the course of the nuclear cycle and we require that it be unlikely for any single
burst to crest the detection limit. This means that the basal koff would need to be larger still. If we assume (conservatively)
that there will be approximately 10 bursts per 40 minute time period, then we have

(1− plong)10 ≥ 0.9 [61]

e−0.2koff ≤ 1− 0.90.1 [62]

koff ≥ −
ln(0.011)

0.2 [63]

koff ≥ 23 min−1. [64]

Thus we see that this additional requirement implies a koff of at least 23min−1, ∼ 30-times higher than the values observed for
this magnitude throughout this work. As illustrated in Figure S15C, this would lead to a dramatically different kind of activity
(compare to Figure S15A). In such a scenario, bursts would only last 3 seconds on average, with only a single RNAP loaded
per burst. Thus, as with kon, we conclude that the dramatic modulation of koff necessary to explain the presence of basally
expressing loci would demand that these loci behave qualitatively different from active ones.

Finally, if we assume that basal expression is realized by decreasing the rate of RNAP loading during transcriptional bursts,
similar arguments to those considered above for koff indicate that an undetected gene locus must load RNAP molecules at a
rate no faster than 0.5/min to remain undetected (Table S1); a rate that is 40 times higher than that of active loci.

All of the above scenarios strain the bursting model to the breaking point. If kon is modulated in basally expressing loci,
then this would imply that basal gene loci are active a mere 0.4% of the time (Figure S15A). If koff or r are modulated, then
“bursts” would consist, on average, of a single polymerase loading event (Figure S15C and D). Further studies employing
single-molecule techniques will be needed to establish the presence or absence of low-level expression. In the meantime, we
conclude that while we cannot rule out the existence of basal expression, we can confidently state that, if it exists, such activity
must be radically different in character from the burst dynamics observed amongst the “transcriptionally engaged” loci we
identify in the main text.

Table S1. Comparing burst characteristics of three possible basal expression schemes to “normal” loci expressing above the detection limit.

normal low kon high koff low r

burst frequency 0.5 min−1 0.003 min−1 0.5 min−1 0.5 min−1

burst duration 1.5 min 1.5 min 0.05 min 1.5 min
initiation rate 20.5 RNAP min−1 20.5 RNAP min−1 20.5 RNAP min−1 0.5 RNAP min−1

burst size 31.5 RNAP 31.5 RNAP 0.9 RNAP 0.9 RNAP
% of time bursting 41.1 % 0.4% 1.8 % 41.1 %
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Fig. S15. Possible basal burst dynamics scenarios. Simulated activity traces illustrating bursting dynamics for basally expressing gene loci. Vertical red lines indicate RNAP
initiation events. Dashed blue line indicates detection limit. (A) illustrative trace generated using burst parameters from anterior stripe flank. (B-D) hypothetical basal traces with
(B) reduced kon (0.003 min−1), (C) elevated koff (23.7 min−1), and (D) reduced RNAP loading rate (0.5 RNAP min−1). Gray region in (B) indicates the time period coming
after 40 minutes of observation.

D. The compound-state hidden Markov model.

Model introduction. To model the dynamics of an observed fluorescence series, y = {y1, y2, ..., yT }, where T is the number of data
points in a trace, we assume that, at each time step, the sister promoters can be in one of K effective states. In the analysis of
eve stripe 2 data, we use a simple model with the number of effective states equal to three (K = 3). The method, however,
allows for more complex transcription architectures with higher numbers of states. Transitions between the effective promoter
states are assumed to be Markovian, meaning that the hidden promoter state zt at time step t is conditionally dependent
only on the state in the previous time step. This dependency is modeled through a K × K transition probability matrix
A = p(zt|zt−1), where Akl is the probability of transitioning from the lth state into the kth state in the time interval ∆τ , where
∆τ is the data sampling resolution. We assign a characteristic RNAP initiation rate, r(k), with units of RNAP per minute, to
each effective promoter state, z(k), 1 ≤ k ≤ K. Thus, the number of polymerases initiated between time steps t− 1 and t will
be r(zt)∆τ . Because the fluorescence intensity contributed by each polymerase depends on the number of transcribed MS2
stem loops, the contribution will vary with the position of the polymerase on the gene. In our transcription model we assume
that polymerase elongation takes place at a constant rate. Therefore, if τMS2 is the time it takes to transcribe the MS2 loops,
the fluorescence contribution of an RNAP molecule will initially grow linearly (τ ≤ τMS2) and will then stay constant for the
remainder of transcription (τMS2 ≤ τ ≤ τelong). Given this time dependence, we define a maximum fluorescence emission per
time step for each state as v(k) = FRNAPr(k)∆τ , 1 ≤ k ≤ K, where FRNAP is the fluorescence calibration factor determined
using smFISH experiments (see Materials and Methods).
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Fig. S16. Schematic overview of the cpHMM architecture. The sister promoters are modeled as undergoing a series of Markovian transitions between effective transcriptional
states (zt). Each promoter state uniquely determines the number of polymerases initiated in a single time step (r(zt)∆τ ). Fluorescence emissions from polymerases initiated
in the most recent w steps combine to produce the observed fluorescence intensity (yt). The color bar indicates the mean fraction of MS2 loops that have been transcribed
and contribute fluorescence at the moment of observation. The color corresponding to the more recently initiated polymerases is therefore lighter (fewer loops transcribed) than
that corresponding to polymerases initiated at earlier times (more loops transcribed).

The instantaneous fluorescence intensity is the cumulative contribution from polymerases initiated in the previous w time
steps, where w = τelong/∆τ is the system-dependent integer memory. Here ∆τ indicates the observational time resolution, a
quantity set by experimental conditions. The time required for an RNAP molecule to transcribe our reporter gene (τelong) is a
priori unknown. We developed an autocorrelation-based method to estimate τelong directly from our experimental data (see
SI Appendix, section J and (13)). The observation yt at time step t conditionally depends not only on the hidden promoter
state zt, but also on the hidden states in the previous w time steps, {zt, zt−1, ..., zt−w+1}. To be able to describe the observed
system dynamics through a hidden Markov model, the observation at time step t needs to be conditionally independent
from the states at earlier time steps. We therefore introduce the concept of a compound state, st = {zt, zt−1, ..., zt−w+1},
which, together with the set of model parameters, θ, is sufficient to define the probability distribution of the observation yt,
thereby satisfying the Markov condition. Since zt ∈ {1, ...,K}, each compound state can take one of Kw different values,
st ∈ {1, ...,Kw}. While the number of possible compound states is Kw, only K different transitions are allowed between them,
since the most recent w − 1 promoter states are deterministically passed from one compound state to the next, i.e. the last
w − 1 elements in st+1 = {zt+1, zt, ..., zt−w+2} are present in st as well. The schematic overview of the cpHMM architecture is
shown in Figure S16.

We model the fluorescence emission probabilities corresponding to each hidden compound state as Gaussian distributions
with a standard deviation σ, which we learn during inference. The joint probability distribution p(y, s|θ) of the series of hidden
compound states, s = {s1, s2, ..., sT }, and fluorescence values, y = {y1, y2, ..., yT }, is given by

p(y, s|θ) = p(s1|π)
T∏
t=1

p(yt|st, v, σ)
T∏
t=2

p(st|st−1,A). [65]

Here π is a K-element vector, with πk being the probability that the trace starts at the kth effective promoter state, and v is a
K-element vector of fluorescence emission values per time step.

Our goal is to find an estimate of the model parameters, θ̂ = {π̂, v̂, Â, σ̂}, which maximizes the likelihood p(y|θ) of observing
the fluorescence data, namely,

θ̂ = argmax
θ

p(y|θ). [66]

The likelihood can be obtained by marginalizing the joint probability distribution, p(y, s|θ), over the hidden compound
states, that is,

p(y|θ) =
∑

s={s1,s2,...,sT }

p(y, s|θ). [67]

Note that the summation is performed over all possible choices of s — a vector of T elements, each of which can take Kw

possible values. The total number of terms in the sum is thus equal to KwT , which grows exponentially with the number
of time points. To make the estimation of the model parameters tractable, we use an approximate inference method, the
expectation-maximization (EM) algorithm.
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We note that the notion of a compound state was also introduced in an earlier work (14) to account for the memory effect in
hidden Markov modeling of actin transcription and then an EM methodology was applied to learn the kinetic parameters from
MS2-based transcription data. Unlike their approach, however, we do not explicitly model the recruitment of individual RNAP
molecules, but instead, assign a continuous RNAP initiation rate to each promoter state. Additionally, our model estimates the
magnitude of the background noise present in the experimentally measured fluorescence signal, whereas the model presented
in (14) takes this quantity as an input, requiring that it be estimated separately. We believe that these differences serve to
make our model more flexible. Moreover, by eliminating the need for absolute calibration and noise estimation, we hoped to
facilitate the use of our model in a wide variety of experimental contexts, for which one or the other quantity may not be
readily obtainable. In the "Continuous vs. Poisson promoter loading" section of SI Appendix, section E we demonstrate that
relaxing the continuous RNAP loading assumption when generating synthetic data does not significantly affect the accuracy of
the cpHMM inference.

Expectation-maximization (EM) algorithm. Consistent with standard EM approaches (cf. Bishop (15), Chapter 13), at each iteration
we maximize the lower bound of the logarithm of the likelihood using the current estimate of the model parameters, namely,

θ̂k+1 = argmax
θ

L(θ |y, θ̂k), [68]

L(θ |y, θ̂k) =
∑

s={s1,s2,...,sT }

p(s|y, θ̂k) log p(y, s|θ) ≤ log p(y|θ). [69]

Here L(θ |y, θ̂k) is the objective function, θ̂k is the estimate of the model parameters in the kth expectation step of the EM
algorithm. Since we model the transitions between the effective sister promoter states as a Markov process, the logarithm of
the joint probability distribution, log p(y, s|θ), can be written as

log p(y, s|θ) = log p(s1|π) +
T∑
t=1

log p(yt|st, v, σ) +
T∑
t=2

log p(st|st−1,A). [70]

Now, we introduce several notations: sit := 1 if and only if st = i; ∆(st, d) := the dth digit of the promoter state sequence
st = {zt, zt−1, ..., zt−(w−1)}, starting from the left end; Czs = 1 if and only if ∆(s, 1) = z; Bs′,s = 1 if and only if the transition
s → s′ between the compound states s and s′ is allowed, which happens when the latest (w − 1) promoter states in the
compound state s match the earliest (w − 1) promoter states of the compound state s′. With these notations in hand, the
terms in Equation 70 can be rewritten as

log p(s1|π) =
Kw∑
i=1

K∑
k=1

si1Cki log πk, [71]

log p(yt|st, v, σ) = 1
2

Kw∑
i=1

sit
(
log λ− log(2π)− λ(yt − Vi(v))2) , [72]

log p(st|st−1,A) =
Kw∑
i,j=1

K∑
k,l=1

Bijs
i
ts
j
t−1CkiClj logAkl. [73]

Here λ = 1/σ2 is the Gaussian precision parameter, and Vi(v) is the aggregate fluorescence produced in the w consecutive
promoter states of the ith compound state.

Because of the finite time τMS2 it takes a single polymerase to transcribe the MS2 sequence, the fluorescence contribution of
polymerases is weighted at different positions in the window of w time steps. If we define nMS2 = τMS2/∆τ as the number of
time steps (not necessarily an integer) necessary for transcribing the MS2 sequence, the mean fraction of the full MS2 sequence
transcribed by a polymerase at the dth time step of the elongation window will be given by

κ(d) =


1, if dnMS2e < d ≤ w
d− nMS2 + n2

MS2−(d−1)2

2nMS2
, if bnMS2c < d ≤ dnMS2e

d−1/2
nMS2

, if 1 ≤ d ≤ bnMS2c

where dnMS2e and bnMS2c are the ceiling and the floor of nMS2, respectively. The dependence of the weighting function κ(d) on
the position for a specific choice of parameters is illustrated in Figure S17.
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Fig. S17. The weighting function κ(d) evaluated at different positions along the genome. The dashed line represents the fraction of the MS2 loops transcribed at a
given position. Parameters used for plotting: τelong = 100 sec, τMS2 = 50 sec, ∆τ = 20 sec, w = τelong/∆τ = 5, nMS2 = τMS2/∆τ = 2.5.

Accounting for the weighted fluorescence contribution of polymerases, the aggregate fluorescence Vi(v) becomes

Vi(v) = Fi,:v, [74]

where the ith row of the Kw ×K matrix F is the number of times each promoter state is present in the ith compound state,
weighted by the position-dependent function κ(d). For example, if we consider a promoter with K = 3 states and memory
w = 5, then the row of F corresponding to the compound state s = {1, 1, 3, 2, 3} will be [κ(1) + κ(2), κ(4), κ(3) + κ(5)].

Having all the pieces of the logarithm of the joint probability distribution, log p(y, s|θ), we obtain a final expression for the
objective function, namely,

L(θ |y, θ̂k) =
Kw∑
i=1

K∑
k=1

〈si1〉Cki log πk

+ 1
2

T∑
t=1

Kw∑
i=1

〈sit〉
(
log λ− log(2π)− λ(yt − Fi,:v)2)

+
T∑
t=1

Kw∑
i,j=1

K∑
k,l=1

Bij〈sitsjt−1〉CkiClj logAkl. [75]

Here 〈sit〉 and 〈sitsjt−1〉 are the expectation coefficients at the kth step of the EM algorithm defined as

〈sit〉 =
∑

s={s1,s2,...,sT }

sit p(s|y, θ̂k), [76]

〈sitsjt−1〉 =
∑

s={s1,s2,...,sT }

sits
j
t−1 p(s|y, θ̂k). [77]

Using the current estimate of the model parameters, θ̂k, the expectation coefficients 〈sit〉 and 〈sitsjt−1〉 are calculated using the
forward-backward algorithm. From the definitions in Equation 76 and Equation 77, we obtain

〈sit〉 =
∑

s1,s2,...,sT

sit p(s1, s2, ..., sT |y, θ̂k) =
∑
st

sit p(st|y, θ̂k), [78]

〈sitsjt−1〉 =
∑

s1,s2,...,sT

sits
j
t−1 p(s1, s2, ..., sT |y, θ̂k) =

∑
st,st−1

sits
j
t−1 p(st, st−1|y, θ̂k). [79]

Following the conventional implementation of the forward-backward algorithm (cf. Bishop (15), Chapter 13), we use the
Markov property of the promoter state dynamics, together with the sum and products rules of probability, to write

p(st|y, θ̂k) = αt(st)βt(st)
p(y| θ̂k)

, [80]

p(st−1, st|y, θ̂k) = αt−1(st−1) p(yt|st, θ̂k) p(st|st−1, θ̂k)βt(st)
p(y| θ̂k)

, [81]

αt(i) = p(y1, ..., yt, st = i| θ̂k), [82]

βt(i) = p(yt+1, ..., yT |st = i, θ̂k). [83]
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Here αt(i) is the joint probability of observing the fluorescence emission values in the first t steps and being at the ith compound
state at step t; while βt(i) is the conditional probability of observing fluorescence values from the time point (t+ 1) till the end
of the series, given that the compound state at time t is i. Note that α and β can be treated as Kw × T matrices, where each
column is a vector of length Kw, accounting for the Kw possible values of i in Equation 82 and Equation 83. We evaluate the
elements of α and β matrices recursively as

αt(i) = p(yt|st = i, θ̂k)
Kw∑
j=1

αt−1(j) p(st = i|st−1 = j, θ̂k), [84]

βt(i) =
Kw∑
j=1

βt+1(j) p(yt+1|st+1 = j, θ̂k) p(st+1 = j|st = i, θ̂k). [85]

The boundary values for α1(i) and βT (i) at the first and last columns of α and β matrices, respectively, are given by

α1(i) = p(y1|s1 = i, θ̂k) p(s1 = i| θ̂k), [86]
βT (i) = 1, [87]

where the first follows from the definition of αt(i), and the second is obtained from Equation 80 by setting t = T . Having
evaluated the α and β matrices, the likelihood p(y| θ̂k) that appears in the denominator of Equation 80 and Equation 81 can
be found by setting t = T in Equation 80 and summing over sT , namely,(

Kw∑
sT =1

p(sT |y, θ̂k)

)
p(y| θ̂k) ≡ p(y| θ̂k) =

Kw∑
sT =1

αT (sT ). [88]

With the probabilities p(st|y, θ̂k) and p(st−1, st|y, θ̂k) known, the expectation coefficients follow directly from Equation 78
and Equation 79.

The optimal model parameters in the (k + 1)th step of the EM algorithm are obtained by maximizing the objective function
L(θ |y, θ̂k) in Equation 75 with respect to {π, v, λ,A}, subject to the probability constraints

∑K

k=1 πk = 1 and
∑K

k=1 Akl = 1,
1 ≤ l ≤ K. The update equations for the model parameters are found as

initial state probabilities: π̂m =
∑Kw

i=1〈s
i
1〉Cmi∑K

k=1

∑Kw

i=1〈s
i
1〉Cki

, [89]

fluorescence emission rates: v̂ = M−1b, where [90]

Mmn =
T∑
t=1

Kw∑
i=1

〈sit〉FinFim, [91]

bm =
T∑
t=1

Kw∑
i=1

〈sit〉ytFim, [92]

noise: 1
λ̂

= σ̂2 =
∑T

t=1

∑Kw

i=1〈s
i
t〉(yt − Fi,:v̂)2∑T

t=1

∑Kw

i=1〈s
i
t〉

, [93]

transition probabilities: Âmn =
∑T

t=1

∑Kw

i,j=1 Bij〈s
i
ts
j
t−1〉CmiCnj∑K

k=1

∑T

t=1

∑Kw

i,j=1 Bij〈s
i
ts
j
t−1〉CkiCnj

. [94]

We note that in the update steps we impose no constraints on the inferred emission rates for the generality of treatment and
therefore, expect the effective OFF state to have a nonzero but small inferred emission rate compared with that of the ON
states.

Pooled inference on multiple traces. Since the information available in a single MS2 fluorescence trace is not sufficient for the
accurate inference of underlying model parameters, we perform a pooled EM inference assuming that the traces are statistically
independent and governed by the same parameters. If y1:N are N different fluorescence traces with corresponding trace lengths
T1:N , and s1:N are the hidden compound state sequences corresponding to each trace, we obtain

p(y1:N , s1:N |θ) =
N∏
n=1

p(yn, sn|θ), [95]

p(sn|y1:N , θ̂k) = p(sn|yn, θ̂k), 1 ≤ n ≤ N. [96]
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Therefore, the objective function L(θ |y1:N , θ̂k) maximized at each EM iterations takes the form

L(θ |y1:N , θ̂k) =
∑

s1,s2,...,sN

p(s1:N |y1:N , θ̂k) log p(y1:N , s1:N |θ)

=
N∑
n=1

∑
sn

p(sn|y1:N , θ̂k) log p(yn, sn|θ)

=
N∑
n=1

∑
sn

p(sn|yn, θ̂k) log p(yn, sn|θ)

=
N∑
n=1

Ln(θ |yn, θ̂k). [97]

From the above equation, we recognize that the objective function for the pooled inference is the sum of objective functions
written for each individual trace. Using the expression for the single-trace objective function obtained earlier (Equation 75), we
find

L(θ |y1:N , θ̂k) =
N∑
n=1

Kw∑
i=1

K∑
k=1

〈si1(n)〉Cki log πk

+ 1
2

N∑
n=1

Tn∑
t=1

Kw∑
i=1

〈sit(n)〉
(
log λ− log(2π)− λ(yt(n)− Fi,:v)2)

+
N∑
n=1

Tn∑
t=1

Kw∑
i,j=1

K∑
k,l=1

Bij〈sit(n)sjt−1(n)〉CkiClj logAkl, [98]

where 〈sit(n)〉 and 〈sit(n)sjt−1(n)〉 are now the expectation coefficients obtained for the nth fluorescence trace via the forward-
backward algorithm, and yt(n) is the fluorescence at time step t in the nth trace. The update equations are then derived
analogous to the single-trace case, with an additional summation performed over all traces, namely,

initial state probabilities: π̂m =
∑N

h=1

∑Kw

i=1〈s
i
1(h)〉Cmi∑K

k=1

∑N

h=1

∑Kw

i=1〈s
i
1(h)〉Cki

, [99]

fluorescence emission rates: v̂ = M−1b, where [100]

Mmn =
N∑
h=1

Th∑
t=1

Kw∑
i=1

〈sit(h)〉FinFim, [101]

bm =
N∑
h=1

Th∑
t=1

Kw∑
i=1

〈sit(h)〉yt(h)Fim, [102]

noise: 1
λ̂

= σ̂2 =
∑N

h=1

∑Th

t=1

∑Kw

i=1〈s
i
t(h)〉(yt(h)− Fi,:v̂)2∑N

h=1

∑Th

t=1

∑Kw

i=1〈s
i
t(h)〉

, [103]

transition probabilities: Âmn =
∑N

h=1

∑Th

t=1

∑Kw

i,j=1 Bij〈s
i
t(h)sjt−1(h)〉CmiCnj∑K

k=1

∑N

h=1

∑Th

t=1

∑Kw

i,j=1 Bij〈s
i
t(h)sjt−1(h)〉CkiCnj

. [104]

Execution of the cpHMM method. Execution of the cpHMM method starts by initializing the model parameters. π and each column
of A, both of which are vectors of size K, are initialized by randomly sampling from a Dirichlet distribution given by

f(x) ∼
Γ
(∑K

k=1 uk
)∏K

k=1 Γ(uk)

K∏
k=1

x
uk−1
k . [105]

The Dirichlet distribution parameters uk are all set equal to one, which makes each initial promoter state equally likely to be
occupied, and equally likely to be transitioned into.

To initialize the fluorescence emission rates, r, and the Gaussian precision parameter, λ = 1/σ2, we first treat the fluorescence
data y1:N as identical and independently distributed (i.i.d.) and use a simplified time-independent EM algorithm to find their
optimal values (cf. Bishop (15), Chapter 13). We initialize the highest emission rate by randomly choosing a value between
70% and 130% of the highest emission rate inferred by the i.i.d. approach. The lowest emission rate is initialized to 0 because
of the apparent silent periods in the activity traces. The remaining (K − 2) emission rates are initialized by choosing random
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values between 0 and the highest emission rate. Finally, we initialize the Gaussian noise σ by randomly choosing a value
between 50% and 200% of the noise inferred by the i.i.d. approach.

After initializing the model parameters, we iterate between the expectation and maximization steps of the EM algorithm
until the relative changes in the Euclidean norms of the model parameters after consecutive iterations become smaller than
ε = 10−4 or the number of iterations exceeds 500. Because EM approaches typically infer locally optimal parameter values, the
algorithm is run on the same dataset using multiple randomly chosen initial parameters (10-20 in our implementations), and
the globally optimal set of values is chosen in the end. In the Matlab implementation of the EM algorithm, the variables are all
stored in logarithmic forms to avoid overflow and underflow issues, which could occur when recursively evaluating the elements
of the α and β matrices. Also, special care is taken when accounting for time points less than the elongation time, i.e. t < w,
in which case the compound state is a collection of not w, but t promoter states, i.e. st = {zt, zt−1, ..., z1}.

Because of the exponential scaling of the model complexity with the integer memory window (w = 7 for the eve construct
with ∆τ = 20 sec data sampling resolution), significant computational resources were used when conducting inference on
simulated and experimental data. It took approximately 2 hours to conduct 25 cpHMM inferences with different initialization
conditions on a machine with 24 CPU cores. Users of the cpHMM method are advised to have this metric as a reference when
estimating the computational cost of their inference.

Windowed cpHMM. To investigate temporal trends in bursting parameters, we extended the cpHMM method to allow for a sliding
window inference approach. From a technical perspective, this required a revision of the inference formalism to be compatible
with fragments of fluorescent traces in which the beginning of the trace (initial rise in yt from t = 1) was not included.

To that end, we modified the first term in Equation 70 to allow for all possible promoter state sequences that could lead to
the observation of the first fluorescence measurement in the chosen time window ([T1, T2]), namely,

log p(yT1:T2 , sT1:T2 |θ) = log p(sT1 |π
(T1−w+1),A) +

T2∑
t=T1

log p(yt|st, r, σ) +
T2∑
t=T1

log p(st|st−1,A), [106]

log p(sT1 |π
(T1−w+1),A) = log

(
p(zT1−w+1|π(T1−w+1))

T1∏
t=T1−w+2

p(zt|zt−1,A)

)

=
Kw∑
i=1

K∑
n=1

siT1D
w
ni log π(T1−w+1)

n +
Kw∑
i=1

w∑
d=2

K∑
k,l=1

siT1D
d−1
ki Dd

li logAkl. [107]

Here π(T1−w+1) is the probability distribution of the earliest promoter state that still has an impact on the observation of the
first measurement in the sliding window, and Dd

ni is an indicator variable which takes the value 1 only if the promoter state in
the dth position of the ith compound state is n.

The modified expression for the joint probability distribution does not change the functional form of the equations used for
calculating the expectation coefficients. Maximization equations for the emission rates and the noise also remain intact. Only
the maximization equation for the transition probabilities is revised from Equation 94 into

Âmn =
∑T2

t=T1

∑Kw

i,j=1 Bij〈s
i
ts
j
t−1〉CmiCnj +

∑Kw

i=1

∑w

d=2〈s
i
T1〉D

d−1
mi D

d
ni logAmn∑K

k=1

∑T2
t=T1

∑Kw

i,j=1 Bij〈s
i
ts
j
t−1〉CkiCnj +

∑K

k=1

∑Kw

i=1

∑w

d=2〈s
i
T1
〉Dd−1

ki Dd
ni logAkn

. [108]

We make a steady-state assumption within the sliding window and choose π(T1−w+1) to be the stationary distribution of the
current transition probability matrix, i.e. Aπ(T1−w+1) = π(T1−w+1). We therefore use the current estimate of A to evaluate
π(T1−w+1) at each EM iteration, instead of performing a maximization step.

E. Statistical validation of cpHMM. We validated cpHMM for the three-state (K = 3) architecture schematically illustrated
in Figure S18A by generating synthetic trajectories of effective promoter states using the Gillespie algorithm (7) and adding
Gaussian noise to the resulting activity traces. Parameters in Table S2 were used for data generation. Pooled inferences were
conducted on 20 independent datasets, each containing 9,000 data points, representative of the number of experimental data
points in a central stripe region. The top panel of Figure S18B shows the kinetic architecture used to simulate the promoter
trajectory in Figure S18C (yellow) as it switches through the multiple possible states. This promoter trajectory leads to the
simulated trace of Figure S18D (red). Using cpHMM, we found the best fitted path for our observable (Figure S18D, black)
and the corresponding most likely promoter state trajectory (Figure S18C, blue).
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Fig. S18. Statistical validation of cpHMM. (A) Three-state cpHMM architecture where ON and OFF promoter states on each sister chromatid result in an effective three-state
model. The trajectory of effective promoter states over the memory time window given by the elongation time dictates the number of RNAP molecules loaded onto the gene. (B)
Flow diagrams of promoter states and transition rates for the true parameters used to simulate trajectories (top) and corresponding average inference results obtained from 20
independent datasets (bottom). The area of each state circle is proportional to the relative state occupancy, and the thickness of the arrows is proportional to the transition rates.
Dashed lines correspond to inferred transitions with very slow rates that were absent in the simulation. Rates are in min−1 and dwell times are in min. Error bars for the mean
inferred parameters are shown in Figure S19. (C) Sample simulated promoter activity trace (yellow) generated using the parameters in (B), overlaid with the best fitted trace
(blue) obtained using the Viterbi algorithm (16). (D) Simulated and best fitted observable number of RNAP molecules corresponding to the promoter trajectory shown in (C).

Table S2. Parameter values used for generating synthetic datasets in the statistical validation of the model. In order to perform this validation,
we chose parameters that approximated those obtained through the cpHMM inference on experimental data shown in Figure 5.

Parameter Value

Promoter switching rates (k01, k10, k12, k21) (1.2, 1.26, 0.72, 4.2) min−1

RNAP initiation rates (r0, r1, r2) (0, 18.5, 46) RNAP/min
Measurement noise (σ) 4.5 RNAP
RNAP elongation time (τelong) 140 sec
Data sampling resolution (∆τ ) 20 sec
Memory window (w = τelong/∆τ ) 7
MS2 loop transcription time (τMS2) 30 sec
Duration of each trace 30 min
Number of time points per dataset 9,000
Number of traces per dataset 100
Number of independent datasets 20

As shown in Figure S18B and Figure S19, comparison of the simulated and inferred parameters indicates that we reliably
recovered the parameters used to generate our simulated data with high precision. We accurately inferred transition rates, dwell
times, fraction of time spent in each state, and the rates of RNAP loading over 20 independent datasets of simulated traces.
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Validation details. We used the relation between the transition rate matrix, R, and the inferred transition probability matrix, A,
defined in SI Appendix, section D to obtain estimates of the transition rates, namely,

A = eR∆τ , [109]

Rij =
( 1

∆τ log A
)
ij
. [110]

Here, the exponential and logarithm operations act on matrices R∆τ and A, respectively. Occasionally, taking the matrix
logarithm of the transition probability matrix A yielded small negative values for transition rates between states (0) and
(2), which were originally zero during data generation. In those cases, we assigned them a 0 value to keep them physically
admissible.

Continuous vs. Poisson promoter loading. To demonstrate the validity of our choice to use continuous RNAP initiation rates in
the transcription model (SI Appendix, section D), we repurposed our simulation to, instead of considering a constant rate of
RNAP loading, explicitly account for individual RNAP loading events when generating the traces. We assumed that individual
polymerase molecules traverse at a constant elongation rate (velong = 46 bp/sec, SI Appendix, section J) and that their arrival
to the promoter region has a Poisson waiting time distribution, provided that the promoter is cleared from the previous
polymerase molecule which has a finite footprint size of lRNAP = 50 bp (17). This led to a two-step model for the process of
RNAP initiation, with Poisson-distributed wait times for the recruitment of RNAP to the promoter followed by a finite wait
period as the RNAP cleared the promoter—a process taken to be approximately deterministic. With this information in hand,
we expressed the mean loading time of RNAP at a single promoter (r−1

1 ) as the sum of the mean time of polymerase arrival at
an empty promoter, 〈τarrival〉, and the time required to clear it after arrival, lRNAP

velong
, that is,

1
r1

= 〈τarrival〉+ lRNAP

velong
. [111]

Having the values of r1, lRNAP, and velong, we found 〈τarrival〉 and used it in simulating the arrival events of individual
polymerases.

We performed inference on these simulated traces using cpHMM with the objective of determining whether a Poisson
loading rate had an effect on the obtained parameters. As shown in Figure S20, when the data is generated using Poisson
RNAP loading, cpHMM slightly overestimates the high transition rate, but otherwise manages to accurately recover the model
parameters. This therefore justifies our modeling approach of assigning continuous RNAP initiation rates to each promoter
state, instead of explicitly modeling the recruitment of individual polymerases.
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Fig. S20. Validation of cpHMM on Poisson RNAP loading data. (A) Transition rates, (B) state occupancies and (C) RNAP loading rates inferred from 15 independently
generated datasets assuming Poisson loading of RNAP. (Error bars represent one standard deviation calculated across these 15 independent replicates.)

Sensitivity of cpHMM to data sampling resolution. In our cpHMM framework, we modeled the stochastic transitions between effective
promoter states using a discrete time Markov chain model which assumes that the state of the promoter remains constant
during the experimental time step (∆τ), and that transitions to the next promoter state can occur only at the end of each
step. This means that, if the fastest promoter switching rate is greater than the data sampling rate (1/∆τ), our model might
be unable to capture all those transitions. To study this possible limitation of cpHMM, we conducted inference on synthetic
activity traces generated with varying sampling rates. Since the system memory (w = τelong/∆τ) needs to be an integer, we
varied w in the [3, 7] range, correspondingly changing the sampling resolution from low (τelong/3 ≈ 46s) to high (τelong/7 = 20s).
We used the values in Table S2 for the remaining model parameters.

Figure S21 summarizes the findings of this study. As expected, the accuracy of inference improves with increasing data
sampling rate, and inference results get very close to the ground truth values when the highest sampling rate (1/20 sec =
0.05s−1) becomes comparable to the fastest transition rate (0.07s−1). Except for the fastest transition rate, all other rates are
inferred accurately for the whole spectrum of sampling resolutions (Figure S21A). The accuracy of inferred state occupancies
is also remarkably high, making it robust to variations in the data sampling rate (Figure S21B). The high RNAP loading
rate tends to be underestimated for slower sampling resolutions, which is reasonable since the chances of promoter leaving
state (2) during a single time step become greater, effectively reducing the net rate of loaded RNAP molecules per time
step (Figure S21C). Generally, we find the inference of model parameters to be reasonably accurate for the entire spectrum
of experimentally realizable data sampling rates, and highly accurate when the timescale of the fastest transition and data
sampling are comparable.
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Performance of cpHMM in different kinetic regimes. Thus far, the validation of cpHMM was performed on datasets that were
generated using parameters similar to those inferred for the eve promoter. These parameters have characteristic low ON
rates (k01, k12) and a high OFF rate (k21), where “low" and “high” are relative to the data sampling frequency, which for
our experimental setup is 3/min. To assess the utility of our inference method for a generic choice of model parameters, we
performed additional inference studies in three different parameter regimes: low ON rates and low OFF rates (E–Figure S22A-C),
high ON rates and low OFF rates (Figure S22D-F), and high ON rates and high OFF rates (Figure S22G-I).

As expected, the inference is the most accurate when the data sampling frequency is greater than the transition rates
(Figure S22A-C), in which case multiple transitions within a single time frame occur only rarely, making our discrete Markovian
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representation of the state dynamics a valid approximation. The largest deviations of the inferred model parameters from
their ground truth values occur when the ON rates are high and the OFF rates are low (Figure S22D-F). Since the promoter
rarely remains in the lower initiation states (0 or 1) for the entire duration of a frame and tends to rapidly transfer into a
higher initiation state (1 or 2, respectively), the rates of RNAP loading for states 0 and 1 are significantly overestimated
(Figure S22F). Despite the inaccuracies in estimating the RNAP loading rates, all transition rates, with the exception of k10,
are inferred with a high accuracy (Figure S22D). Remarkably, the deviations caused by the high ON rates get substantially
suppressed when the OFF rates are also made comparably high (Figure S22G-I). This can be thought of as a consequence of
an effective counterbalancing between unwanted ON and OFF transitions within a single time frame.

Overall, these additional studies, together with the statistical validation studies discussed earlier (Figure S19), elucidate the
domain of applicability of cpHMM: the method performs accurate inference when the ON/OFF transition rates are respectively
slow/slow, slow/high, or high/high; and is not successful in accurately inferring some of the model parameters when the ON
rates are high, but the OFF rates are low. We hope that these characteristics of the method will be useful in informing the
design of promoter architectures and new experiments.
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Fig. S22. Study of cpHMM performance for different choices of the ON/OFF transition rates Comparison of inference performance for different ON/OFF rates using a
data sampling frequency of 3/min. (A-C) low/low, (D-F) high/low, (G-I) high/high. The statistics of inferred model parameter values is obtained from 20 independent datasets.
(Error bars indicate one standard deviation calculated across these 20 independent replicates.)

Windowed cpHMM. To check that our windowed cpHMM was capable of fitting time-varying data, we conducted statistical
validation using simulated traces exhibiting various time-dependent trends in the bursting parameters. We studied three
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scenarios that mimicked ways in which bursting parameters could, in principle, be modulated to drive the onset of transcriptional
quiescence: a decrease in kon over time, an increase in koff and a decrease in r. We also studied the case of increasing kon,
as this was the strongest temporal trend observed in our experimental data. Figure S23 summarizes the results for these
validation tests.

For each test, 100 simulated traces, 40 minutes in length, were generated (∆τ =20 s) that exhibited the desired parameter
trends. Consistent with our approach to the experimental data, a sliding window of 15 minutes was used for inference, meaning
that for each inference time, τinf , all data points within 7.5 minutes of τinf were included in the inference. This led to inference
groups consisting of 4500 data points, with the exception of the first and last time points, each of which had 3700 data points
(first and last w + 1 points were excluded from inference). Transition and initiation rates shown in Figure S23 are associated
with state (1) of the three-state model (kon = k01/2, koff = k10 and r = r1 in Figure S25A), as these were found to provide the
most faithful indication of underlying system trends.
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Fig. S23. Validation of windowed cpHMM inference. The method’s accuracy was tested for four distinct sets of parameter time trends. Results for each scenario are
organized by column. In each plot, the black dashed line indicates the true parameter value as a function of time. Connected points (outlined in black) indicate the median
inferred parameter value at each time point across 10 distinct replicates. Translucent points indicate inference values from individual replicates. Thus, the dispersion of these
replicates at a given time point indicates the precision of the inference.

For each scenario, we assessed whether and to what degree the windowed cpHMM method could accurately recover the
temporal profiles. In general, the method was found to perform quite well within the parameter regimes that were tested. For
both the increasing and decreasing kon scenarios (Figure S23A-C,D-E), windowed cpHMM inference accurately captured the
modulation in kon with no significant variation evident in the r and koff trends. In the case of increasing koff (Figure S23G-I),
we observed deviations in kon and r from their true values at the inflection point of the koff curve (around 30 min). However,
the deviation in r is relatively mild and the “blip” in kon, while of larger magnitude, is comprised of only two time points and
so would likely not be mistaken for a legitimate indication of underlying system behavior. In the case of a decrease in the
initiation rate (Figure S23J-L) we observe a ∼ 5 min delay in the model response. We attribute this delay to the finite dwell
time of RNAP molecules on the gene (in this case τelong =140 sec, although further studies will be needed to determine why
the observed lag appears larger than the elongation time). In addition, we note a degradation in the precision of the inference
of kon and koff at low r (RHS of Figure S23J, K).

Overall, we conclude that the windowed cpHMM method is capable of accurately inferring time-resolved parameter values.
An important caveat to these results is that the size of the sliding window (15 min in this case) places an inherent limit on
the time scales of the parameter trends the model is capable of inferring. Changes that occur on shorter time scales will
be registered, but the temporal averaging introduced by the sliding window will lead to underestimates of the rate of the
parameter changes in the underlying system.
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Fig. S24. Live imaging data indicate timing of sister chromatid appearance. (A) Distribution of observation times for frames in which chromatids were resolveable (red)
and diffraction-limited (blue). Bars indicate empirical probability distribution function. Lines indicate cumulative density function. Data indicate the presence of chromatids by no
later than 7-8 minutes into nuclear cycle 14. (B) Fraction of frames featuring resolved chromatids as a function of time. Trend suggests replication of relevant portion of genome
across all observed nuclei is completed by approximately 10 minutes into nuclear cycle 14. Initial lag is likely attributable—at least in part—to stochastic turn-on times between
sister eve loci and lower fluorescence levels early on in the nuclear cycle.

Detection of sister chromatid appearance. Previous studies have indicated that the D. melanogaster genome is quickly replicated at
the beginning of each nuclear cycle in early development (18, 19) , suggesting that each diffraction-limited spot in our imaging
data likely contains two distinct eve loci. We sought use our live imaging data to verify whether genome replication occurred
early enough in the nuclear cycle such that the presence of the replicated promoters would have to be taken into account.
While the two eve loci are located within a diffraction-limited spot for the majority of frames in our data, there are a subset of
frames in which two distinct puncta can be clearly observed due to fluctuations in the separation between chromatids (see
Figure 4D). We reasoned that, by tracking the frequency of frames with resolved puncta over time, we could ascertain how the
timing of genome replication compares to the onset of transcription. If replication precedes the onset of transcription, then
the fraction of resolved frames should be relatively stable over for the duration of eve expression in nuclear cycle 14. If, on
the other hand, replication happens after the onset of transcription, we should see a significant increase in the frequency of
resolved sister chromatids over time as development progresses.

To pursue this question, we randomly selected snapshots of transcriptional loci in 100 different nuclei for each of the 11
embryos used in this study. We then determined the fraction of these sampled snapshots in which two distinct puncta were
clearly visible by eye and observed how these instances of resolved chromatids were distributed in time. As indicated in
-Figure S24A, we see evidence for resolved puncta by around 7 minutes into nuclear cycle 14. This is well within the average
range for turn-on times observed throughout the stripe (see Figure S4B). Our results indicate that, at the very least, the
genomic region containing our eve stripe 2 reporter is replicated within some nuclei by 6-8 minutes into nuclear cycle 14.
Figure S24B tracks the share of total observations for which we detected resolved puncta as a function of time. A systematic
delay in DNA replication would be expected to result in a progressive increase in this metric over time. However, such a trend
is not evident. While we see no resolved sister loci between 4 and 8 minutes (first point in the plot in Figure S24B), this
absence could be attributed to other factors at play early on in nuclear cycle 14. For example, part of this apparent lag could
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be attributable to the fact that loci are, on average, dimmer early on in the nuclear cycle, which could mask the presence of
two eve loci by reducing the probability of both producing observable amounts of fluorescence at the same time. It is also
possible that the precise timing of locus turn-on varies for each sister locus, as it does for loci in different nuclei. Regardless,
even if the initial rise between 6 and 10 minutes in Figure S24B is reflective of the replication of the locus during this period of
time, the relative stability of the frequency of resolved loci from 10 minutes onward indicates that this process is restricted
to the first few minutes of transcription. Additional experiments are needed to further elucidate the interplay between DNA
replication and the onset of transcription. Regardless, the examination of our live imaging data supports the conclusion that
the majority of our data consist of diffraction limited spots containing two distinct eve loci.

Probing for interactions between sister chromatids.
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Fig. S25. Probing combined transcription of sister chromatids. (A) Revised three-state model of promoter switching within a fluorescent punctum that accounts for
the combined action of both sister chromatids. (B) Summary of bursting parameter ratios. All three bursting parameter ratios deviate from their expected values under the
independence assumption given by the horizontal dashed line. (Error bars indicate magnitude of difference between first and third quartiles of cpHMM inference results for
bootstrap samples of experimental data over multiple embryos. See Materials and Methods for details )

If each fluorescent punctum contains two promoters (Figure 4D), then it is necessary to revisit the widely used two-state
model of transcriptional bursting. In this revised scenario, each promoter on one of the sister chromatids undergoes fast
ON/OFF switching. Therefore, each spot (encompassing two identical loci) can be in one of three states: (0) both promoters
OFF, (1) one promoter ON and the other OFF, and (2) both promoters ON (Figure S25B). States (1) and (2) are expected to
exhibit different rates of RNAP loading, r1 and r2, respectively. See SI Appendix, section A and SI Appendix, section D and for
details regarding the implementation of this three-state model.

The presence of two transcriptional loci within each fluorescent punctum suggests three constraints on the relationship
between bursting parameters in the model shown in Figure S25A. First, if these two promoters transcribe independently,
then state (2) will have double the loading rate of state (1) such that r2 = 2r1. Second, the probability of both promoters
transitioning simultaneously should be negligible; we expect no transitions between states (0) and (2) such that k02 = k20 = 0.
Finally, if the promoters switch between their states in an independent manner, then there will be an extra constraint on their
transitions rates. For example, there are two paths to transition from (0) to (1) as either promoter can turn on in this case.
However, there is only one possible trajectory from (1) to (2) because only one promoter has to turn on. This condition sets
the constraint k01 = 2k12. Similarly, k10 = k21/2.

While the independence of sister chromatids is supported by recent single-molecule FISH experiments (20, 21), classic
electron microscopy work suggests a scenario in which sister chromatids are tightly correlated in their transcriptional activity
(22, 23). Given this uncertainty regarding chromatid independence, we elected to employ a general three-state model that
makes no assumptions about the nature and strength of sister chromatid interactions. In addition to permitting greater
flexibility, this agnostic approach also meant that the structure of the kinetic model returned by cpHMM inference provided
clues regarding the nature of the coupling between sister loci. Specifically, we examined the ratios between the high and low
on rates (k01 and k12), off rates (k21 and k10), and initiation rates (r2 and r1). A deviation from these expectations would
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indicate either that the two sister loci do not initiate RNAP independently (first constraint), or that they do not transition
between activity states independently (second and third constraint).

Overall, our results suggest that the two loci are coupled to a nontrivial degree. We observe that the rate of initiation
for the high state, r2(x), (corresponding to two active promoters) is consistently greater than twice the middle state, r1(x)
(Figure S25B, bliue). This trend suggests some sort of synergy in the RNAP initiation dynamics of the sister promoters. Even
more strikingly, we observe that the rate of switching from (2) to (1), k21, is much higher than twice the rate of switching
from (1) to (0), k10, (Figure S25C, red). This indicates that each promoter is more likely to switch off when its sister locus is
also active. This anti-correlation is consistent with some form of competition between the loci, a scenario that could arise, for
instance, if local concentrations of activating TFs are limiting. In addition, we observe substantial variation in the relationship
between the high and low on rates (k01 and k12, respectively), ranging from one of near equality in the anterior flank to nearly
the 2-to-1 ratio that would be expected of independent loci in the stripe center and posterior (Figure S25C, green). Finally, as
shown in Figure S26, we observe no transitions between the (0) and (2) states, lending support to the hypothesis that, despite
their correlation, our spots do contain two promoters.

Further experiments in which the sister chromatids are labeled in an orthogonal manner are needed to confirm and elaborate
upon these results. One important consideration to address is the fact that the spatial proximity of the two loci appears to
fluctuate significantly over time. Thus, if (as seems plausible) the strength of the coupling between loci depends in some way
upon the radial separation of the loci, then the results reported here are effectively an average of time-varying system behavior.
Valuable information may be obscured as a result of this averaging.

G. cpHMM inference sensitivities.

Full three-state inference results. For the sake of simplicity, we presented our inference results in the main text using an effective
two-state model in which two distinct active transcriptional states were combined into a single effective ON state (see
Figure 4E and F). Here, for completeness, we include time-averaged and time-resolved inference results for the full three-state
model where, as shown in Figure S25, (0) corresponds to the state where both promoters are in the OFF state, (1) indicates
the state where either promoter is in the ON state, and (2) represents the states where both promoters are in the ON state.

As indicated in the main text, the full three-state results (Figure S26) exhibited the same trends as were evident in the
effective two-state plots (Figure 5). In agreement with the effective two-state model, the rate of transcript initiation is not
modulated to a significant degree across the stripe (Figure S26D). Moreover, we once again see that activation rates, and
specifically the rate of switching from OFF to the middle ON rate (states 0 and 1 in Figure S26E) are strongly elevated in the
stripe center.

Like the time-averaged results, time-resolved inference trends for the full three-state model agree closely with effective
two-state results shown in main text (compare Figure S27 to Figure 6D-F). Due to a lack of statistics for state (2), we show
only transition rates into and out of the first active state (middle state in Figure 4E).

Two-state inference results. Although the presence of sister chromatids indicated that the three-state model was most appropriate
for the eve stripe 2 system, we wanted to check that our conclusions were robust to this assumption. To do this, we conducted
time-averaged and windowed inference assuming a simpler, two-state model (see, e.g. Figure 4B). Note that this approach
is distinct from the effective two-state results presented in the main text. There, as outlined in Figure 4D-F, a three-state
model was specified for inference and the results for the two active (ON) states were aggregated after the fact to simplify the
presentation of the results. Conversely, here, we explicitly conducted inference using a two-state model.

Most of our findings remained unchanged in the context of the two-state model. Consistent with the three-state case, the
two-state time-averaged cpHMM inference indicated that the fraction of time spent in an active state, rather than the rate of
RNAP initiation, drives the difference in mRNA production rates across the stripe (Figure S28A-C). Moreover, as with the
three-state case, two-state results indicated that the bulk of this variation stem from modulation in kon (Figure S28C, green).
Interestingly, whereas we did see a degree of spatial dependence in koff for 3-states, we observed no such trend for 2-states
(Figure S28C, red). In general, this is not surprising, as our use of a simpler model likely means that multiple switching rates
are being projected onto the koff parameter. Specifically, if the eve stripe 2 system is indeed a true three-state system, then we
would expect the two-state koff estimate to reflect the joint action of the k10, k21, and k12 rates from the three-state model. As
a result, the spatial dependence of each one of these rates would get averaged out when combined onto koff .
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Fig. S27. Full three-state results for time-dependent cpHMM inference. (A) Transition rate from transcriptionally inactive state (0) to the first active state (1). Same trends
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Fig. S28. Two-state cpHMM inference. (A-C) Time-averaged 2-state inference results. (A) Consistent with three-state inference results, we observed no significant modulation
in the rate of initiation along the axis of the embryo. Moreover, we found that kon (green plot in (B)) was modulated along the anterior-posterior axis to vary the amount of time
the promoter spent in the ON state (green curve (C)). In a departure from the three-state case, we observed no significant spatial trend in koff , though we noted a spike in koff
at 3% of the stripe center. (D-F) Time-resolved (windowed) two-state cpHMM results. (D) Consistent with the 3-state inference, we saw little to no modulation in the rate of
RNAP loading r over time, although we noted a mild downward trend across all AP bins that was most pronounced in the posterior flank (red curve). (E) Two-state inference
indicated no significant temporal trends in koff . (F) kon time trends largely agreed with the three-state case, although we noted that the decrease in kon in the posterior flank
that was apparent in the three-state results was not observable in this two-state context (Figure 6E, red). (Error bars indicate the magnitude of the difference between the first
and third quartiles of cpHMM inference results for bootstrapped samples of experimental data. See Materials and Methods for details.)

As with the time-averaged case, we found that results for two-state windowed cpHMM were generally consistent with
three-state trends. A notable exception to this rule was the absence of any significant decrease in kon in the posterior stripe
flank (Figure S28F, red). This is not entirely surprising, as the trend returned by the three-state inference was relatively mild
(Figure 6E, red), encompassing only the final two time points for which there was sufficient data to conduct inference. It is
possible that the added complexity of the three-state model allowed it to register a subtle shift in the activation rate that was
convolved with countervailing features in the two-state case. Future work will seek to elucidate the source of this discrepancy
and further test the validity of the trend uncovered in the three-state case.

Comparing true and effective two-state inference results. Here, for completeness, we provide direct comparisons between the time-
averaged inference for the effective two-state results presented in the main text and the true two-state results presented in the
previous section.

-4 -2 0 2 4-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

fra
ct

io
n 

of
 ti

m
e 

in
 s

ta
te

-4 -2 0 2 4

ra
te

 o
f R

N
AP

 lo
ad

in
g 

(1
/m

in
)

tra
ns

iti
on

 ra
te

 (1
/m

in
)

B CA

distance from stripe center
(% embryo length)

distance from stripe center
(% embryo length)

distance from stripe center
(% embryo length)

ON

OFF

ON

OFF

two-state inference
three-state inference projected
onto two-state model

0

1

2

3

4

0

10

20

30

40

50

Nicholas C Lammers, Vahe Galstyan, Armando Reimer, Sean A Medin, Chris H Wiggins, and Hernan G Garcia 39 of 47



Fig. S29. Comparing two- and three-state cpHMM inference results. Three-state inference results can be presented in terms of a two-state model in which states (1) and (2)
are aggregated into a single ON state (see Figure 4E and F). Here, color schemes are consistent with those employed in Figure S28A-C. Squares indicate true two-state results
(presented in the previous section) and circles indicate effective two-state trends derived from the three-state results presented in Figure 5. (A) Anterior-posterior-dependent
trends in the rate of RNAP initiation are nearly identical between the true and effective initiation rates, however the initiation rate returned by two-state cpHMM inference (green
squares) is roughly twice as large as that implied by the three state results (green circles). (B) As with the initiation rates, we observe similar trends between the true and
effective cases, but substantial differences in magnitude. The effective two-state model recovers an ON state occupancy that is roughly double that returned by two state
cpHMM inference. (C) While the ON rate trends and magnitudes are nearly identical, the OFF rate returned by two-state cpHMM inference is roughly triple that implied by
three-state inference. Thus it is clear that this difference in OFF rate underlies the observed departures in both state occupancies (B) and state initiation rates (A). (Error bars
indicate magnitude of the difference between the first and third quartiles of cpHMM inference results for bootstrap samples of experimental data. See Materials and Methods for
details.)

As Figure S29 makes clear, while anterior-posterior-dependent parameter trends are by and large consistent between the true
and effective two state models, we do observe substantial differences in the absolute magnitudes of parameter values. These
differences originate (directly or indirectly) from the three-fold difference in the value of koff between the true and effective
models (Figure S29C, red squares and circles, respectively). The koff value for the effective two-state model is defined as

koff = k10k21

k21 + k12
. [112]

See SI Appendix, section A for expressions for all three effective two-state bursting parameters (kon, koff , and r) in terms of
these three-state transition rates. This value represents the inverse of the mean amount of time the system, upon switching out
of state (0), spends in one of the active states before returning to (0), and we can see that it is necessarily less than or equal to
k10.

Thus, the two- and three-state results imply that the systems switch out of the active state(s) on substantially different
timescales. On the other hand, the ON rates are strikingly similar across the two models. As a result, the effective two-state
model implies that the system is in one of the active states for between 40 and 70% of time, whereas two-state cpHMM
inference implies significantly lower shares falling between 20 to and 40%. Since both models must reproduce the same mean
production rate—this is an inherent feature of the experimental traces—we see that the two-state cpHMM inference returns an
estimated initiation rate that is consistently twice as large as the initiation rate implied by the effective two-state model.

Thus, while most of the conclusions featured in this paper are robust to our choice of model architecture, this decision does,
nonetheless hold important implications for how we understand the underlying system. Further work is needed elucidate the
root cause of this discrepancy and move towards a more concrete understanding of the correspondence between the structure of
the model and that of the physical system.

H. Input-Output analysis details. In this appendix, we provide additional information about data sources, inference methodology,
and inference sensitivies related to the input-output analysis presented in the main text.

Data sources. The input-output analysis presented in the main text made use of previously published data sets for the
spatiotemporal concentration profiles of the gap genes Hunchback, Krüppel, and Giant (Figure S30A, C and D). These data
derive from elegant experiments in which individual embryos were co-immunostained for transcription factors of interest and
precisely staged by measuring progressive cellularization over the course of nuclear cycle 14 to generate a time series of protein
concentration profiles spanning the course of this period of development (3). The Bicoid concentration data used for this
analysis derives from live imaging experiments using a Bicoid-GFP fusion established by (24). These data come courtesy of
Jonathan Liu and Elizabeth Eck (Figure S30B).
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spatiotemporal window of interest.

Data processing. To prepare the Krüppel, Giant, and Hunchback profiles for use in our logistic regression analysis, we adopted an
approach similar to that described in (3). Dorso-ventral orientation of embryos was found to have negligible effect on calculated
intensity profiles and was ignored (i.e. all embryos were included, regardless of orientation). For each time point in nuclear
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cycle 14, a weighted temporal average was calculated using a sliding Gaussian kernel with σt = 5 min. For each time point,
the minimum observed value across all anterior-posterior positions was then calculated and subtracted in order to remove
background fluorescence. Normalized profiles were then calculated using the formula

Inorm = Iraw
max(Iraw)−min(Iraw)

[113]

An identical procedure was followed for processing the Bicoid-GFP data, with the addition of a spatial averaging step using
a sliding Gaussian window of σAP = .5 % embryo length. This step was necessitated by the fact that, because individual
embryos were imaged for the duration of nuclear cycle 14, multiple experiments contributed concentration data along the
anterior-posterior axis for each time point. Thus averages in both space and time were needed in order to effectively aggregate
these data into a single average spatiotemporal profile.

Finally, we discovered that the anterior-posterior axes in our live imaging data (both for eve stripe 2 and Bicoid-GFP)
were inconsistent with the axes employed by the fixed data reported by the authors in (3). We addressed this issue by using
eve stripe 2 as a fiduciary mark to register the positions of the fixed and live data sets. Specifically, we aligned the mRNA
peak predicted by our model at 40 minutes into nuclear cycle 14 with the peak in second stripe of the eve protein profile at
40 minutes, as reported in (25).

Logistic regression framework. The binomial logistic regression is a widely used statistical method for assessing the relationship
between a set of predictor variables and a response variable of interest that is constrained to take on one of only two possible
outcomes. In the context of our analysis, the predictor variables were the normalized transcription factor concentration profiles
and the response variables were (i) the overall transcriptional state given by the transcriptional time window (active or silent?)
and (ii) the bursting state amongst trancriptionally active loci (ON or OFF?). Inference was conducted at the level of individual
gene loci. fmincon, a standard matlab function for constrained optimization, was used to fit all models discussed both in the
main text and in this appendix.

To prevent overfitting at the stripe centers, the selection of data sets for input-output inference were weighted to ensure
equal representation of data points from across all regions of space and time included in the analysis. The data were divided
into cells of size 1% of the embryo length in width and 1 minute in duration for the purpose of calculating and assigning these
weights. The number of data points in adjacent regions were factored into each region’s weight score using a 2D Gaussian
averaging kernel. Regions with fewer than 25 total data points were not included in the inference.

Inference details: transcriptional time window. For the time window input-output analysis, we considered only loci that were
transcriptionally active for one or more time steps in nuclear cycle 14. Loci were classified as transcriptionally active for all
time points between the first and last time points for which they exhibited detectable levels of transcriptional activity and silent
for all time points following their final shut-off for which their nuclei were still present in the experimental field of view. Time
points preceding the onset of activity were discarded. Figure S31A illustrates how this quantity varies over space and time in
our experimental data. We considered a class of logistic regression models in which each transcription factor was permitted to
appear at most once, thus requiring that each factor act on eve2 in a uniform manner through space and time; i.e., the same
protein could not activate expression on one stripe flank and repress on the other.

Inference details: transcriptional bursting. The bursting input-output analysis focused exclusively on transcriptionally engaged loci.
The Viterbi algorithm was used to infer the instantaneous activity state (ON vs. OFF) for all loci. This activity state was
taken as the response variable in our regression analysis. In all other respects, the inference procedure was identical to that
conducted for the time window.

Results of unconstrained inference: time window. For the input-output inference results presented in the main text (Figure 7), we
used prior knowledge about the regulatory function of each input transcription factor to constrain its range of permissible values
in our inference. Specifically, we constrained the activators Bicoid and Hunchback to play activating roles in our model and,
likewise, required that the repressors Krüppel and Giant played repressing roles. In several cases, this constrained inference led
to models in which one or more transcription factors played no significant regulatory role (Bicoid and Hunchback for the time
window and Bicoid for transcriptional bursting). In this section, we tested the sensitivity of the conclusions presented in the
main text to our use of functional constraints by conducting unconstrained input-output inference runs.

The results of our unconstrained input-output inference for the transcriptional time window are identical to those presented
in the main text. Despite the fact that no limitations were imposed on the regulatory function of each factor, we nonetheless
recovered a model in which the two repressors, Giant and Krüppel, are necessary and sufficient to explain the onset of
transcriptional quiescence in the stripe flanks. In agreement with the constrained case, we found that the addition of Hunchback
and Bicoid to this two-repressor model had no qualitative effect on the output profile predicted by the model (Figure S31B).
A quantitative comparison of model fit scores confirmed that the addition of Hunchback and Bicoid did nothing to improve
model fit (Figure S31C). Thus, we conclude that our finding that the transcriptional time window can be explained entirely by
the joint repressive action of Krüppel and Giant is insensitive to our choice to impose functional constraints.
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Fig. S31. Unconstrained inference results for the transcriptional time window. (A) Observed fraction of quiescent nuclei as a function of space and time. Identical data
to that presented in Figure 7A. (B) Relaxing constraints on the functional nature of each transcription factor had no appreciable effect on the inference results. Profiles shown
here are indistinguishable from those shown in Figure 7D. Once again, we find that the joint action of the repressors Giant and Krüppel is sufficient to explain the progressive
onset of transcriptional quiescence in the stripe flanks. (C) A quantitative comparison of model fits reinforces the qualitative conclusions drawn from (B). Models including 3
and 4 transcription factors cannot improve on the fit achieved by the simpler double repressor model. Here blue dots indicate models for which only Giant and Krüppel make
significant contributions to the model fit. This indicates that, while the 3 and 4 transcription factor models include additional parameters, these do not contribute appreciably to
overall model fit, emphasizing the fact that these models behave, effectively, as double repressor models.

Results of unconstrained inference: transcriptional bursting. In the context of the transcriptional bursting input-output analysis,
the removal of functional constraints led to a significantly more complex landscape of inferred regulatory models. While the
functional roles of Krüppel, Giant, and Hunchback were consistent with the constrained case (repressing, repressing, and
activating, respectively), Bicoid was consistently inferred to play a repressing role. Despite this complication, the three-factor
Krüppel-Giant-Hunchback model favored by the constrained inference remained the best-fitting three-factor model (Figure S32C,
red circle). While the addition of Bicoid as a repressor to create a model dependent on all four input transcription factors led
to a small improvement in model fit (Figure S32C), comparison of this four-factor model’s predicted activity profile with that
of the Krüppel-Giant-Hunchback model revealed no material improvement in the model’s agreement with the experimental
data (Figure S32B, bottom left vs. bottom right). Moreover, there is (to our knowledge) no experimental evidence for Bicoid
playing a repressive role in the regulation of eve stripe 2. Indeed, there is strong evidence that Bicoid is necessary for eve stripe
2 activity (26). We thus conclude the Krüppel-Giant-Hunchback model remains the most plausible option in the unconstrained
case.
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Fig. S32. Unconstrained inference results for transcriptional bursting. (A) Observed fraction of transcriptionally active nuclei in the ON (bursting) state. Identical data to
that presented in Figure 7B. (B) As with time window, relaxing the constraints on the functional nature of each transcription factor did little to alter the inference results presented
in the main text (compare to Figure 7E). As with the constrained results, the joint action of Giant, Krüppel, and Hunchback appears sufficient to explain the spatiotemporal
activity pattern revealed by cpHMM inference. (C) A quantitative comparison of model fits.

I. Inherent limits of burst parameter inference. By definition, the onset of transcriptional quiescence coincides with the cessation
of observable bursting activity. If this cessation is driven by changes in the bursting parameters as in scenario (ii) in Figure 6A,
there is an inherent limit to the timescale of such changes that could be detected: changes that unfold over time scales of
the same order or faster than the characteristic timescale of the process of transcriptional bursting itself (1-3 min) cannot be
detected. Notably, this is not a limit of the cpHMM method, but, rather is inherent to the system—in order to infer bursting
parameters, we must observe bursts and, in order to infer a change in parameters, we must have access to bursting activity
that reflects this change. Thus, the characteristic frequency of bursts sets an insurmountable resolution limit for any kind of
bursting parameter inference. To illustrate this limitation, we simulated three scenarios in which kon decreases to 0 over periods
15, 5, and 1 min in length. We then sought to recover the trend in kon. To emphasize that the limitations are not specific
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to cpHMM, but rather, are an inevitable consequence of the structure of the system, we used the true promoter trajectories
(those used to generate the simulated data) to estimate kon. These estimates thus represent the absolute best-case scenario for
parameter inference, in which we recover the underlying behavior of the system exactly.

Figure S33G-H indicate that, even with perfect knowledge of the bursting state at each gene locus, it is not possible to
recover a change in the on rate that happens within the span of one minute. These results show that—even under ideal
circumstances—there exists a time scale below which time-dependent burst parameter inference will fail to detect shifts in
burst parameter values. The absence of bursts following the transition means that, not only are we unable to accurately recover
the true trend, but we are also unable even to determine whether any decrease in kon occurred (on any time scale). Thus, in
this scenario, it would be impossible to determine that a modulation in the bursting parameters—as opposed to a transition
into some alternative, silent state—drives the onset of quiescence.
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fluorescent traces. (B) The temporal trend in the average fluorescence across simulated traces (blue curve) reflects this gradual decrease in kon. Note that variation in
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min transition. (D) We are able to recover first half of kon trend, but due to the speed of transition, insufficient active traces remain to permit the accurate recovery of the full
profile. (E, F) The onset of quiescence is much starker than in the 15 min case. Because the transition happens faster than in (A-C), there are fewer bursts that unfold during
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single burst. As a result, we are unable to recover the temporal trend. (H-I) The period of observation is divided in a nearly binary fashion. (A,D,G, error bars indicate 95 %
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J. Determining the RNAP dwell time using autocorrelation. In order to conduct cpHMM inference, it is necessary to specify
the number of time steps w required for an RNAP molecule to traverse the reporter gene,

w = τelong

∆τ , [114]

where ∆τ is set by the temporal resolution of our data acquisition and τelong is the elongation time which is unknown a priori.
Past studies have estimated elongation rates for other systems involved in early patterning in the Drosophila embryo, but there
is substantial disparity between the reported values. A live imaging study of transcriptional activity driven by the hunchback
P2 enhancer reported an elongation rate of 1.4− 1.7 kb min−1 (1). However, a recent study of the same regulatory element
reported elongation rates of 2.4− 3.0 kb min−1—nearly twice as fast (27). These results suggested that RNAP elongation rates
measured for other systems might not apply to our eve stripe 2 reporter. Thus, in order to ensure the validity of our inference,
we developed an approach that uses the mean autocorrelation function of experimental fluorescence traces to estimate the
elongation time directly from our data.

The autocorrelation function RF (τ) quantifies the degree to which a signal, F (t), is correlated with a lagged version of itself,
F (t− τ), and is given as a function of the time delay, τ , between the two signal copies being compared such that

RF (τ) = E[(F (t)− µf )(F (t− τ)− µf )]
σ2
f

, [115]
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where µf is the average observed fluorescence, σf is the standard deviation of the fluorescence and E denotes the expectation
value operator. As illustrated in Figure S34A, the fact that it takes RNAP molecules some finite amount of time to traverse the
gene implies that the observed fluorescence at a transcriptional locus at some time t, F (t), will be correlated with preceding
fluorescence values F (t− τ) so long as τ < τelong because the two time points will share a subset of the same elongating RNAP
molecules. As τ increases, the correlation between F (t) and F (t− τ) due to these shared RNAP molecules will decay in a
linear fashion until it reaches zero when τ = τelong (Figure S34B, blue curve).

The dramatic change in the slope of the autocorrelation function that occurs at τ = τelong can be used to estimate the
elongation time of the system; however, it is not the only feature present in Equation 115. Because the time series of promoter
states constitutes a Markov chain, the instantaneous promoter state and, therefore, the instantaneous rate of RNAP loading,
exhibits a nontrivial, positive autocorrelation due to the promoter switching dynamics of the system. For instance, if it
takes the promoter an average of 1 minute to switch states, then it is clear that promoter activity for τ < 1 min will be
strongly correlated with itself. Thus, we see that the rates of promoter switching dictate the speed with which this “dynamic”
autocorrelation decreases with increasing τ . More precisely, the dynamics autocorrelation will take the form of a decaying
exponential in τ , with the time scale set, approximately, by the second largest eigenvalue of the Markov chain’s transition rate
matrix (Figure S34B, red curve)

RP (τ) ∼ e−λ2τ . [116]

Thus, the observed autocorrelation function contains, at a minimum, signatures of both the finite RNAP dwell time (τelong) and
of promoter switching dynamics. As a result, inferring elongation times from the change in slope in the mean autocorrelation is
often relatively subtle in practice.

A theoretical analysis of RF (τ) indicated that the second derivative of the mean autocorrelation function reliably exhibits a
peak that can be use to read out the value of τelong. Figure S34C shows the analytic prediction for the autocorrelation and
second derivative when τelong is equal to 7 time steps (w = 7). We confirmed that the same second derivative approach works
in the context of stochastic simulations using realistic parameters for the eve stripe 2 system (Figure S34D). Having confirmed
the efficacy of the autocorrelation method for simulated data, we next applied the same technique to uncover τelong for our
experimental traces.

The black profile in Figure S34E indicates the form of the autocorrelation second derivative for the set of traces used for
cpHMM inference. We observed that, while there is a definite inflection point, the peak for the experimental data is much
broader than for simulated traces. The most likely cause of this feature is the existence of variability in τelong (see below).
From comparisons of the position of the second derivative peak for experimental traces with simulated profiles, we concluded
that an elongation time of w = 7 (τelong = 140 s) best characterized our data (Figure S34E, green curve). This implies that

velong = 6444 bp
140 s

= 46 bp s−1

= 2.8 kb min−1, [117]

where the length used represents the distance from the start of the MS2 step loop sequence to the end of the 3’ end of the
construct. Interestingly, this elongation rate falls within the 2.4− 3.0 kb min−1 range reported in (27).

Figure S34F shows how a simple adjustment to our simulation approach, wherein the elongation time steps w for individual
RNAP molecules were drawn from a Gaussian distribution with mean µw = 7 and standard deviation σw = 2.5 time steps can
qualitatively reproduce the wider profile observed in experimental data, indicating that our observations are indeed consistent
with the presence of variability in RNAP elongation times. Additional experimental and theoretical work will be necessary to
uncover the biological source of this variability.

In light of the ambiguity introduced by the broad second derivative peak exhibited by our experimental data, we also verified
that our inference was robust to the choice of τelong, testing cases where τelong = 120 s and τelong = 160 s (see below).

cpHMM inference is insensitive to small changes in RNAP dwell time. Due to the uncertainty in our estimate of τelong, we conducted
sensitivity estimates to ensure that our inference results were robust to our input assumption for w. As shown in Figure S35,
we conducted cpHMM inference on our experimental data assuming different values of w. Based upon our autocorrelation
analysis, w values of 6, 7 and 8 seemed the most plausible candidates for the average system elongation time (see Figure S34E).
While small quantitative difference are apparent across these three cases (with a median coefficient of variation of 11%), the
results for different values of w showed a constant offset throughout the embryo , such that qualitative trends were largely
robust to the assumed w value.
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Fig. S34. Using the autocorrelation of the fluorescence signal to estimate RNAP dwell time. (A) It takes a finite amount of time for RNAP molecules to transcribe the
full length of the reporter gene. As a result, successive fluorescence measurements will contain some of the same GFP-tagged RNAP molecules. Dark blue-shaded regions
indicate the subset of RNAP molecules that are present on the gene for successive measurements. (B) This overlap causes successive measurements to be correlated, and
the degree of correlation due to the overlap decays linearly, reaching zero when the separation between measurements is equal to the elongation time, τelong (blue curve).
However, the trace autocorrelation function contains other signatures that can obscure the inflection induced by RNAP elongation dynamics. For instance, successive time
points also exhibit correlation due to the promoter switching dynamics (red curve). (C) Theoretical analysis of the autocorrelation function and (D) stochastic simulations indicate
that the second derivative of the mean autocorrelation function (dark blue curves) can be used to find the structural break in the function (black curves) that corresponds to
τelong. Here, a peak at 6 time steps of delay indicates an elongation time of 7 times steps (140 s). (E) Simulated traces with elongation time of 7 time steps (green curve)
exhibit a peak in the second derivative that coincides with the maximum of the experimental curve. Inset plots show corresponding mean autocorrelation curves for experimental
data and simulations. (F) Stochastic simulations in which we allow for variation in elongation times distributed around a mean of 7 time steps qualitatively recapitulates the
observed curve. (C-F, second derivative profiles depicted here are normalized relative to their maximum value for ease of depiction.)
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Movies

Movie S1. Video 1. Transcriptional activity of eve stripe 2 reported by MS2. Raw MS2 signal where
fluorescent puncta report on the number of actively transcribing RNAP molecules.

Movie S2. Video 2. Mean rate of transcription of eve stripe 2 reported by MS2. Nuclei false colored by their
time-averaged transcriptional activity (up to the depicted time point).

Movie S3. Video 3. Transcriptional time window. Nuclei along the stripe false colored after the duration of
their transcriptional time window.

Movie S4. Video 4. Fraction of active nuclei. Nuclei along the stripe false colored according to whether they
engaged in transcription at any time point during the nuclear cycle.

Movie S5. Video 5. Fluorescent puncta contain sister chromatids. Fluorescent puncta transiently separate
to reveal the presence of sister chromatids as shown by the white circles throughout the movie.

Movie S6. Video 6. Real-time inferred promoter states. Real-time inference of effective promoter ON (green)
and OFF (red) state in individual nuclei.

Movie S7. Video 7. Average embryo containing all inputs and the output. Average concentrations of Bicoid
(blue), Hunchback (red), Kr̈uppel (green) and Giant (yellow) combined with the average transcriptional
activity of the eve reporter (purple). (Hunchback, Kr̈uppel and Giant data obtained from (3)).
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