
Supplementary Information

August 19, 2019

1 Overview of the model

We simulate the process of tumorigenesis in a tissue T by simulating the evo-
lutionary dynamics of all cells composing that tissue. Since the evolution of a
tissue is mainly driven by the division and death rates of each stem cell present
in that tissue, we let T := Ts ∪ Td, where Ts is the set of stem cells and Td
is the set of non-stem cells, i.e. progenitors and fully differentiated cells. The
key defining characteristic of what we define as stem cells is their ability to pro-
duce daughter cells that are as undifferentiated as their mother cell. We further
partition the tissue, or equivalently the set of all its cells, into spatially sepa-
rated units that we term “crypts”. The evolution of the tissue has two phases:
A development or growth phase, and a post-development or adulthood phase.
The two phases transition at a certain time that we denote by TG. During the
development phase, the number of crypts forming the tissue will grow determin-
istically to then stay constant after TG. Thus, when approaching TG, the stem
cells’ high self-renewing division rate required to form that tissue will decrease
as a function of time to a fixed value. This fixed value is the rate enabling the
adult tissue to stay in homeostasis after time TG.

The division cycle of each stem cell in our model can be described in the
following way:

• Between any two events (division/death), each cell waits a random time
according to an exponential distribution. The intensity parameter of that
exponential distribution depends on the fitness of the stem cell.

• When an event occurs, the cell can either die or divide. The specific
division and death rates of a stem cell will depend on the number of stem
cells sharing the same crypt, the age of the individual (before TG) (Note:
how about afterwards, the aging effect), and the genotype of the cell, i.e,
whether or not the cell is normal or mutated and, if mutated, depending
on the type/number of driver mutations it has acquired.

• When the cell divides, three possible events can occur: 1) a symmetric
division that creates two stem cell daughters, 2) an asymmetric division
that creates one daughter stem cell and one more differentiated non-stem
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daughter cell, or 3) a symmetric differentiation where both daughters are
non-stem cells.

• Once a non-stem cell is created, it goes through a differentiation cycle, i.e.
a fixed number of Ndiff divisions happening at deterministic time steps
denoted by ∆tprog. After Ndiff divisions, all the 2Ndiff fully differentiated
cells descending from that original non-stem cell wait some deterministic
length of time Tl and then die.

• Each crypt has a carrying capacity: The division rate decreases to a lim-
iting rate as the total number of cells in a crypt increases.

• When a stem cell undergoes a symmetric division, any one of the two
daughter cells may acquire a mutation with a certain probability. A mu-
tation may also occur in the stem cell daughter during asymmetric differ-
entiation. Note that we disregard the possibility of a mutation enabling a
differentiated cell to undifferentiate and regain stem cell status. Therefore
mutations in non-stem cells can be neglected since their effect will be lost.

• A driver mutation, defined as a mutation conferring a fitness advantage
to the stem cell, can have three possible types of effects corresponding
to the three different categories of genes that may be hit (see Fig. 7 in
Vogelstein et al. Science 2013): Cell Fate (CF), Cell Survival (CS) and
Genome Maintenance (GM). Hitting the CF gene category will result in
an increase of the probability that a division, when it occurs, is symmetric,
therefore decreasing by the same amount the probability of a symmetric
differentiation or death (note: I have included death which is equivalent to
symmetric differentiation for a stem cell). The probability of asymmetric
division remains unchanged. Hitting the CS category will result in an
increase in the overall division rate. Finally, hitting the GM category will
result in increasing the probability of a mutation at division.

• It is possible to acquire multiple mutations in the same driver gene cat-
egory, but we stop increasing the fitness advantage after two such muta-
tions. Moreover, each category of genes is itself partitioned into pathways,
and multiple mutations happening in the same pathway do not increase
fitness after the first event.

• We declare that a tissue has cancer once we observe a clone of cells with
more than Nc,stem stem cells in a crypt whose total size, stem plus non-
stem cells, must be at least Nc,total, and with a total of Nc,mut driver
mutations over at least Nc,cat different gene categories. Here the Nc =
(Nc,stem, Nc,total, Nc,mut, Nc,cat) defining cancer is tissue dependent. For
example, for colon cancer, it is required to have a clone of cells with more
than 64 stem cells in a crypt whose total size must be at least 108, and
with a total of 3 driver mutations over at least 2 different gene categories.
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2 Mathematical setting

2.1 Evolution of the number of crypts

The tissue is partitioned into crypts Ci, i ∈ {1, 2, 3, ..., N(t)}. The number of
crypts Nc(t) is a piecewise linear deterministic function of time. We start time
(t = 0) at conception, with a first growth period until birth, which occurs at
t = 36 weeks and that we define as time TB (B for birth). For simplicity we
make the approximation that after birth all tissues grow by scaling with the
height of the individual; thus, a tissue reaches its full size when the individual
reaches her/his final height, which we set at 20 years of age. The end of the
growth period occurs at time TH (H for homeostasis), with TH−TB = 20 years.
The growth rate is constant between these times, null after TH and three times
faster before TB than after this time. This faster rate is to fit the larger growth
rate of a tissue during the fetus development. Letting N0

c be the target number
of crypts, this leads to the following expression for the number of crypts at time
t.

Nc(t) =



⌊
1 + 3

N0
c − 1

2TB + TH
t

⌋
if 0 ≤ t ≤ TB⌊

2N0
c TB + TH

2TB + TH
+

N0
c − 1

2TB + TH
t

⌋
if TB ≤ t ≤ TH

N0
c otherwise,

(1)

where bxc denotes the integer part of x. During this growth phase, a crypt is
created by duplicating a randomly selected existing crypt, therefore with exactly
the same number of normal stem cells (which is fixed and equal to 10) and the
same number of mutant stem cells for each genotype (see below). The number
of normal stem cells in any crypt remains constant over time, even though
additional stem cells will develop when mutations occur.

2.2 Stem cell genotype

The “genotype” of a stem cell v is summarized by three integers that rep-
resent the number of pathways that have been hit by a mutation in each of
the three groups, CF, CS and GM, respectively, and we will write g(v) =
(ξ1(v), ξ2(v), ξ3(v)). For example, for a cell v, if CF has been hit in two dif-
ferent pathways, CS in one pathway and GM in zero, then g(v) = (2, 1, 0).
Normal cells have genotype (0, 0, 0). The genotype determines the cell’s fitness
advantage. We do not increase this advantage beyond two hits in a given group,
so that, for example, g(v) = (3, 1, 0) induces the same fitness as g(v) = (2, 1, 0).
As, a consequence, we stop counting the number of hits beyond two, so that
ξj(v) = 2 should be interpreted as the occurrence of two or more hits in different
pathways in group j. We denote by G the set of possible “reduced genotypes”
defined in this way, which, therefore, has 27 elements. We emphasize the fact
that our model implicitly allows for multiple hits in the same pathway, or hits in
more than two pathways, but our computation only keeps track of the reduced
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information as defined above (and our transition probabilities are adjusted ac-
cordingly as described in section 2.6).

2.3 Division rate

The division rate of a cell v depends on the time t, genotype and the size of the
crypt C(v) that contains it. It is therefore driven by a function τdiv : G × N→
R+, so that the division rate of v is τdiv (g(v), |C(v)|, t), |C(v)| being the total
number of cells in C(v). We first define a division rate for normal cells. We
introduce a constant Ncap and we introduce the function τdiv:

τdiv((0, 0, 0), N, t) =

M exp

− 1(
1− N

Ncap

)α
1N<Ncap

+ τcap

 a(t) (2)

where:

a(t) =


1 if 0 ≤ t ≤ TH

exp

(
− log(2)

t− TH
TF − TH

)
if t > TH

(3)

where TF is the final time of the simulation (75 years). The idea is that due to
aging, the division rate starts decreasing after TH , to attain half of the division
rate of age TH at time TF . The constants τcap and α will be later adjusted based
on constraints imposed on the model. As for the constant Ncap, we take it to be
109. Finally, the constant M is computed once all the other constants are fixed
by imposing that τdiv((0, 0, 0), N, 0) is equal to the known normal division rate of
the tissue. The division rate of a cell with genotype g(v) = (ξ1(v), ξ2(v), ξ3(v))
is then defined by

τdiv(g(v), |C(v)|, t) = cξ2(v)
app τdiv((0, 0, 0), |C(v)|, t), (4)

where capp is a constant driving the fitness advantage provided by mutations in
the CS group and will be adjusted to fit the constraints.

2.4 Probabilities of symmetric division, symmetric differ-
entiation and asymmetric division

For a given tissue, the probability of symmetric division psym, depends only on
the (reduced) genotype of v, g(v). More precisely, we define, for g = (ξ1, ξ2, ξ3)

psym(g) = p0
sym + ξ1δ, (5)

where δ is a constant driving the fitness advantage provided by mutations in the
CF group, and will be adjusted to fit the constraints. Similarly, the probability
of symmetric differentiation psymdiff(g) is defined as:

psymdiff(g) = p0
symdiff − ξ1δ. (6)
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Finally, the probability of asymmetric division does not depend on the geno-
type and is defined as:

pasym = 1− (p0
sym + p0

symdiff) (7)

2.5 Death rate

The death rate of a cell v, τdeath is taken to be a constant independent from the
genotype of the cell and the size of the crypt.

τdeath(t) = τdiv ((0, 0, 0), 10, t) (p0
sym − p0

symdiff). (8)

We require the equilibrium equation to yield a constant death rate that corre-
sponds to a death every 2 years. This requires (p0

sym − p0
symdiff) to be equal to

that death rate divided by τdiv ((0, 0, 0), 10, t), the normal division rate of the
tissue, which is known if we fix the tissue.

2.6 Mutation events

Recall that a mutation can occur when we have a cell division followed by a
symmetric division or an asymmetric division. We denote the probability that
one daughter cell from a cell v acquires a mutation after a symmetric division
by µ(g(v)), where µ(g) has the form:

µ(g) = (1 + ξ3cm)µ, (9)

where cm is a fixed constant. Denote by π1, π2 and π3 the fraction of driver
mutation loci in CF, CS and GM relative to the total number of such loci in
the three groups together.Then, the probability that one of the daughter cells
has a mutation of the corresponding type is πiµ(g(v)).

Recall that we do not increase fitness for cells having three or more mutations
in the same group, or two or more in the same pathway, and that we focus our
computation on “effective” mutations (those that confer an advantage) and
therefore do not track the others. We now describe how we compute transition
probabilities on the reduced genotype discussed in section 2.2.

For j = 1, 2, 3, let Kj denote the number of pathways that belong to group
j, and βj1, . . . , βjKj

the fraction of driver mutation loci in each pathway relative
to the total number of loci in the group. The probability of an efficient mutation
of type j is then, for g = (ξ1, ξ2, ξ3),

π̃j(g) =


πj if ξj = 0

πj

(
1−

Kj∑
k=1

β2
jk

)
if ξj = 1

0 if ξj = 2

To understand the second expression, note that the probability of an effective
second mutation in type j given that the first mutation was in pathway k is
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πj(1 − βjk). The probability that the first mutation of type j is in pathway
k given that there is one mutation of type j is βjk. This implies that the
probability of a second effective mutation in type j given the current genotype
is given by

πj

Kj∑
k=1

βjk(1− βjk) = πj

(
1−

Kj∑
k=1

β2
jk

)
.

Finally, letting π̃(g) = π̃1(g) + π̃2(g) + π̃3(g), we can define the effective
mutation rate associated to g by

µ′(g) = π̃(g)µ(g),

so that the probability for a mutation of type i given an effective mutation is
equal to π′i(g) = π̃i(g)/π̃(g).

When we have an asymmetric division, the probability that the daughter
cell acquires a mutation is simply defined as µ(g)/2, and the probability of an
effective mutation is µ′(g)/2. The definition of π′ remains unchanged.

In our simulations, we made the simplifying assumption that each group has

two pathways of equal sizes, resulting in the correction 1−
∑Kj

k=1 β
2
jk being equal

to 1/2.

3 Markov chain model for the evolution of the
tissue

3.1 Definition of the chain

Label the crypts at a given time by (Ci, i ∈ {1, 2, 3, ..., N(t)}). For each i and
g ∈ G, let N i

g(t) denote the number of stem cells in the crypt Ci that have
(reduced) genotype g. Recall that every progenitor cell divides in two identical
differentiated cells after every time interval ∆tprog, provided that its ancestor
stem cell did not differentiate more than Ndiff times. To keep track of this
process, we let Di(t) denote the age distribution of the differentiated cells in Ci,
which can be stored as a finite family of pairs (K,A) expressing that there are
K differentiated cells in Ci with age K. We will let X(t) denote the complete
configuration

X(t) =
(
N(t),

(
(N i

g(t), g ∈ G), Di(t), i = 1, . . . , N(t)
))

4 Exact evolution of the Markov chain

4.1 Generation of the jump times

The rules determining the Markov chain transitions for a single cell are visualized
in Figure 1, where possible transition types are represented as terminal nodes,

labeled 1 to 10. A rate τ
(j)
g(v) equal to the product of the weights of the edges in
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τdeath
1: Death

τdiv(g)

Division

psym(g) pasym

Sym. div. Asym. diff.

2: Sym. Diff.
psymdiff(g)

µ′(g)

Mut.

1− µ′(g)

3: No Mut.

µ′(g)
2

Mut.

1− µ′(g)
2

4: No Mut.

π′1(g) π′2(g) π′3(g)

5: CF 6: CS 7: GM

π′3(g)π′2(g)π′1(g)

8: CF 9: CS 10: GM

Figure 1: Visualization of the model’s transition rules as a tree. Each terminal
node of the graph represent a possible event, occurring with rate equal to the
product of rates along the path linking the node to the root.
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the path connecting a terminal node j with the tree root is attributed to each
such node. Let us denote by (Tk)k≥1 the stopping times when one of the stem
cells of the tissue enters a division/death cycle. Then the times between events,
Tk+1−Tk, are independent and have the same distribution as minj,v Uj,v where
the variables (Uj,v) are jointly independent and each Uj,v follows an exponential

distribution with rate τ
(j)
g(v). Furthermore, the transition occurring at that time

is that corresponding to the cell v and index j achieving the minimum. The
resulting change in the updated cell us described in Table 1.

Similarly, denote by (T ′k)k≥1 the sequence of times where one or more dif-
ferentiated cells divide or die, with T0 = T ′0 = 0 and the chain starting from
one crypt with 10 ”normal” stem cells and 64 differentiated cells. This process
is deterministic given the current state of the process at, say, time t, i.e., it is
the first time after t for which one of the differentiated cells will reach an age
equal to a multiple of ∆tprog. At such times, a cell whose age A is divisible by
∆tprog is duplicated if A/T ′k < Ndiff and removed if A/T ′k = Ndiff , updating the
distributions Di accordingly.

5 Approximation and simulation

An exact simulation of the Markov chain as described above is, however, com-
putationally intractable. Instead, we define a time step h and update the chain
at times jh where j is an integer. Since the states of different crypts are inde-
pendent, we focus on particular crypt Cl and describe how we update the chain
from time jh to time (j + 1)h.

The differentiated cells in Cl are first updated as follows. For an age a, let

ma =

⌊
a+ h

∆tprog

⌋
−
⌊

a

∆tprog

⌋
denote the number of progenitor divisions occurring between a and a + h. Let
Da
l (t) denote the number of progenitor cells in Cl with age a at time t. Because

differentiated cells are created at times multiple of h and die after Ndiff divisions,
we need to keep track of the family

(Dqh
l (jh), q = 0, . . . , kh)

where kh = bNdiff∆tprog/hc. This family can be updated using

D
(q+1)h
l ((j + 1)h) = 2maDqh

l (jh) if q + 1 ≤ kh.

The number of new progenitor cells, D0
l ((j + 1)h) is determined from the stem

cell evolution that we now describe.
Each event corresponding to terminal nodes i = 1, . . . , 10 in Figure 1 is

simulated in bulk. We approximate the number of cells with genotype g that
experience this transition between times jh and (j + 1)h by the realization of a

random variable Y
(i)
g that follows a Poisson distribution with rate hN l

g(jh)τ
(i)
g
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Node Transition

1 N i
g(v) → N i

g(v) − 1

2
N i
g(v) → N i

g(v) − 1 and two differentiated cells are created in Ci
with age 0

3 N i
g(v) → N i

g(v) + 1

4 One differentiated cell is created in Ci with age 0

5 N i
g′(v) → N i

g′(v) + 1 where g′(v) = (g1(v) + 1, g2(v), g3(v))

6 N i
g′(v) → N i

g′(v) + 1 where g′(v) = (g1(v), g3(v) + 1, g3(v))

7 N i
g′(v) → N i

g′(v) + 1 where g′(v) = (g1(v), g2(v), g3(v) + 1)

8

One differentiated cell is created in Ci with age 0, N i
g(v) →

N i
g(v) − 1 and N i

g′(v) → N i
g′(v) + 1 where g′(v) = (g1(v) +

1, g2(v), g3(v))

9

One differentiated cell is created in Ci with age 0, N i
g(v) →

N i
g(v) − 1 and N i

g′(v) → N i
g′(v) + 1 where g′(v) = (g1(v), g3(v) +

1, g3(v))

10

One differentiated cell is created in Ci with age 0, N i
g(v) →

N i
g(v) − 1 and N i

g′(v) → N i
g′(v) + 1 where g′(v) =

(g1(v), g2(v), g3(v) + 1)

Table 1: State transition in the Markov chain when cell v enters one of the 10
events associated with the terminal nodes in Figure 1.
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and update the population numbers according to the transition type. More
precisely, we let

N l
g((j + 1)h) =N l

g(jh)− Y (1)
g − Y (2)

g + Y (3)
g + Y

(5)
g′1

+ Y
(6)
g′1

+ Y
(7)
g′3

(10)

− Y (8)
g + Y

(8)
g′1
− Y (9)

g + Y
(9)
g′2
− Y (10)

g + Y
(10)
g′3

with the following notation: letting g = (ξ1, ξ2, ξ3), we set g′1 = (ξ1 − 1, ξ2, ξ3),

g′2 = (ξ1, ξ2−1, ξ3) and g′3 = (ξ1, ξ2, ξ3−1) and Y
(i)
g′ = 0 if one of the components

of g′ is negative. Moreover, if the right-hand side of (10) is negative, we set
N l
g((j + 1)h) = 0

6 Free parameters: Tuning the parameters to
fit constraints

6.1 Setting the goal

The parameters capp in equation 4 (which drives the fitness advantage given by
hitting the CS category), δ in equation 5 (which provides the fitness advantage
given by hitting the CF category), α in equation 2 (which controls how fast the
division rate decreases when the number of cells in a crypt augments) and τcap

in equation 2 (which defines the division rate for a normal cell when the size of
the containing crypt is larger than Ncap) are four free parameters in the model
and are adjusted in order that the model fits an identical number of constraints.

Denote θ = (capp, δ, α, τcap), that we want to calibrate using macroscopic
(population-level) data. Our constraints will take the form of known values
of incidence of events associated with cancer or its progression, such as, for
example, the risk of cancer occurring before a fixed age a in the population, or
the probability of existence of a large crypt before age a.

In our model, these constraints are described by expectations E(f) where f is
a binary variable (taking values in {0, 1}) that depends on the whole trajectory
of the Markov chain X between time 0 and some observation time, T . If we
have c unknown parameters (c = 4 in our case), we need, in principle, c such
functions, say f1, f2, . . . , fc, and we will tune θ so that, for i ∈ {1, 2, ..., c}, E(fi)
is equal to a known target, say γi.

We also enforce box constraints for θ in the form θ ∈ R =
∏c
i=1[ai, bi],

where the ai’s and bi’s correspond to bounds for each of the parameters. So our
calibration problem requires the solution of the system{

E (fi|θ) = γi, i ∈ {1, 2, ...c}
θ ∈ R

(11)

that we solve by minimizing

c∑
i=1

(E (fi|θ)− γi)
2

γi
(12)
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over θ ∈ R.

6.2 Gaussian process prior

Because an analytical computation of E (fi|θ) = P (fi = 1|θ) is intractable,
we take a Bayesian optimization approach to address the problem [2]. For
i ∈ {1, 2, ..., c}, we denote by φi(θ) the function such that:

P (fi = 1|θ) =
1

1 + exp (−φi(θ))
. (13)

For each i we assume a Gaussian Process (GP) prior distribution for φi(θ) with
mean 0 and a covariance kernel that we define below. More precisely:

φi(θ) ∼ GP (0,Kσ,ρ(., .)), (14)

where:

Kσ,ρ (θ1,θ2) = σ2

1 +

√√√√3

4∑
j=1

(θ1j − θ2j)
2

ρ2
j

 exp

√√√√3

4∑
j=1

(θ1j − θ2j)
2

ρ2
j


(15)

is a Matérn kernel with a fixed ν-parameter that is equal to 3/2.
The sample paths of such a Gaussian process are almost surely one-time dif-

ferentiable. We will solve problem (12) iteratively by sampling realization of the
Markov chain with suitably chosen parameters. More precisely, assume that,
after n steps, one has sampled n realizations of the Markov chain, with corre-
sponding parameters θ1,θ2, ...,θn. Denote by f li , i ∈ {1, 2, ..., c}, l ∈ {1, 2, ..., n}
the output (0 or 1) of the lth simulation (using the parameter θl) relative to
the ith constraint. Fix a constraint (say i) and use for short the notation

θ(n) = (θ1,θ2, ...,θn), φi(θ
(n)) = (φi(θ1), . . . , φi(θn)) and f

(n)
i = (f1

i , . . . , f
l
i ).

The joint likelihood

L(φi(θ
(n)), f

(n)
i |σ,ρ)

is: (
n∏
l=1

(
exp (−(1− f li )φi(θl))

1 + exp (−φi(θl))

))
N (φi(θ

(n))|0,Kσ,ρ(θ(n))) (16)

where Kσ,ρ(θ(n)) is the matrix with coefficients Kσ,ρ(θi,θj), i, j = 1, . . . , n. σ
and ρ are estimated for each constraint i independently from the other con-
straints.

The covariance parameters σ and ρ are estimated at each step in order to
maximize.

L(f
(n)
i |σ,ρ) =

∫
Rn

L(ψ1, . . . , ψn, f
(n)
i

∣∣σ,ρ) dψ1 . . . dψn. (17)

We use Laplace’s method to approximate this integral by

(2π)n/2
em
∗(σ,ρ)√

det(−H∗(σ,ρ))
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where m∗(σ,ρ) is the maximum value (with respect to ψ) of logL for fixed σ and

ρ and H∗(σ,ρ) is the Hessian of this function at the location ψ(n)(σ, ρ) ∈ Rn
where this maximum is achieved. Similarly, the posterior likelihood:

Lpost(φi(θ1), . . . , φi(θn)
∣∣ f (n)
i , σ,ρ) (18)

is approximated as a Gaussian distribution N (ψ(n)(σ, ρ),−H(σ,ρ)) (using the
just estimated σ and ρ).

For an arbitrary parameter θ, we can compute the likelihood

L(φi(θ)|f (n), σ, ρ) =∫
Rn

L(φi(θ)|φi(θ(n)) = (ψ1, . . . , ψn))Lpost(ψ1, . . . , ψn|f (n)
i )dψ1 · · · dψn ,

which has closed form when Lpost is approximated by a Gaussian. This com-
putation allows us to determine the best next value of θ to perform a new
simulation, by defining

Ψn,i(θ) = E
(

1

1 + exp (−φi(θ))

∣∣∣ f (n)
i , σ,ρ

)
(19)

and minimizing

min
θ∈R

4∑
i=1

(Ψn,i(θ)− γi)
2

γi
. (20)

with respect to θ ∈ R.
In fact, we use a solution of (20) as the value of θ(n+1) only when n is even.

When n is odd, we define θ(n+1) as a maximizer of

−
4∑
i=1

(Ψn,i(θ) log Ψn,i(θ) + (1−Ψn,i(θ)) log(1−Ψn,i(θ))) (21)

that measures the uncertainty of L(φi(θ)|f (n)
i , σ,ρ). This allows us to explore

new regions of the parameter space.

7 Description of parameters for each tissue

The complete set of parameters for colon is provided in table 2 (first column).
The value of pasym = 0.9 is justified in [5]. The values of p0

sym and p0
symdiff are

deduced from the homeostasis equation

τdivpsym = τdivpsymdiff + τapp (22)

and the constraint psym +psymdiff +pasym = 1. All other parameters except capp,
δ, α and τcap (which are estimated using the approach described in section 6)
are set based on biological information. In particular, the parameters π1, π2, π3
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describing the probabilities of mutation in groups CF, CS and GM are taken as
kµ10−3, where µ = 10−6 is the mutation rate over the whole genome and k is
the number of genes in each group, as described in [3] for colon, [4] for blood
and [1] for pancreas.

The parameters for FAP and Lynch syndrome are identical to those of the
colon, with the following additional assumptions. For FAP, the probability of
hitting CF for the first time is set to be 10−4 (instead of 10−6), reflecting the
loss of heterozygosity (rather than mutation) required for this event. For Lynch
syndrome, we use a random mutation rate µ = X × 10−6, where X ∼ N (10, 5)
is a Gaussian random variable with mean 10 and standard deviation 5. Also,
we stop Lynch simulations at 50 years old.

Because FAP simulations create a very large number of clonal expansions
that would be too computationally expensive to track over a large population,
we have adopted the following approximation scheme, which uses the fact that,
in our model, the 107 crypts of the tissue evolve independently. We simulate
only one individual over a large period of time (150 years) and partition the
tissue into 1,000 subsets of size 104 crypts. Denote by T1, T2, ..., T1000 the times
of cancer occurrence for each of the 1,000 subsets, so that T = mini Ti provides
the time of occurrence of cancer for the whole tissue. We can use our 1,000
simulations to estimate the distribution of Ti, which can be accurately modeled
as a Gamma distribution, with known cumulative distribution function (c.d.f.)
FΓ. The c.d.f. for cancer occurrence, FT is then given by

FT (t) = 1− (1− FΓ(t))
1000

and can be used to plot incidence curves.

For other tissues (blood and pancreas), for which pasym is not known a
priori, we determine psym, psymdiff and pasym based on (22) and the additional
assumption that psym/psymdiff is tissue independent, so that this ratio can be
deduced from that obtained in colon, which is ∼1.1 (and of course that these
three probabilities sum to 1). In addition, the parameter capp is estimated based
on simulations, in order to match the lifetime incidence rate for each cancer.
The corresponding parameters are listed in table 2.

8 Number of (passenger) mutations observed in
a cell lineage

8.1 Setting

We here justify the formula used in the estimation of the fitness advantage
arising from mutations observed in the CS group. This formula estimates the
advantage through the ratio of the number of mutations per cell observed in
cancel data to the number of mutations per cell that is expected in normal
tissues. We first justify the expression we used for the latter quantity.
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Parameters Colon Blood Pancreas

Duration of simulation 75 years 75 years 75 years

Detection size 1.25× 108 cells 1.25× 108 cells 1.25× 108 cells

N0
c (section 2.1) 107 107 2× 108

TB (section 2.1) 36 weeks 36 weeks 36 weeks

TH (section 2.1) 20 years 20 years 20 years

τdiv (section 2.3) 1.75 0.219 0.029

Ncap (section 2.3) 109 109 109

α (section 2.3) 0.468 (*) 0.468 0.468

τcap (section 2.3) 0.413 (*) 0.413 0.413

capp (section 2.3) 1.356 (*) 2 (*) 4.06 (*)

p0
sym (section 2.4) 0.0525 0.42 0.457

p0
symdiff (section 2.4) 0.0475 0.38 0.413

pasym (section 2.4) 0.9 0.2 0.13

δ (section 2.4) 1.863× 10−3 (*) 1.863× 10−3 1.863× 10−3

µ (section 2.6) 10−6 10−6 10−6

cm (section 2.6) 5 5 5

π1 (section 2.6) 4× 10−3 7× 10−3 3× 10−3

π2 (section 2.6) 7× 10−3 8× 10−3 11× 10−3

π3 (section 2.6) 7× 10−3 10−3 4× 10−3

Table 2: Parameters for colon, blood and pancreas. Values followed by (*) are
adjusted numerically in order to fit population statistics relative to the relevant
tissue. Others were either deduced from the literature or reproduced from values
estimated for colon.
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We focus on a single stem cell lineage and model the number of mutations
observed over time. We assume that the cell divides with rate τdiv, and dies
with rate τdeath. Cell division can be either symmetric (providing two stem
cells) with probability psym, asymmetric (one stem cell and one progenitor)
with probability pasym or provide two progenitor cells with probability psymdiff .
It terms of lineage, the first two cases corresponds to survival, and the third
one is equivalent to death. Finally, when a division leads to survival, it can lead
to a mutation, which occurs with probability µ (otherwise the chain remains
unchanged).

We assume that all acquired mutations are passengers in the sense that
they will not affect the parameters of the model. We will be interested in the
Markov Chain Nt providing the number of mutations at time t, with a special
value denoted ω for the extinction of the lineage. We assume that N0 = 0, and
the possible changes of states for this are:

• n→ ω for any integer n with rate τ− := τdeath + τdivpsymdiff

• n→ n+ 1 for any integer n with rate τ+ := τdiv(psym + pasym)µ

• ω is obviously a state from which the chain cannot escape.

We let Te denote the extinction time, i.e., Te = min{t : Nt = ω}. We also
define τ := τ− + τ+. With this notation, we now compute

E(Nt|t < Te).

8.2 Expected number mutations

First notice that P(t < Te) = e−τ−t. Let g(t) := E(Nt1t<Te) and denote by T0

the time of the first state change of chain. We have:

f(t) =E(Nt1t<Te)

=E(Nt1t<Te1T0>t) + E(Nt1t<Te1T0≤t)

Since N0 = 0, the first term of the last equality vanishes. Using the strong
Markov property and the fact that T0 is exponential with rate τ , we have that:

E(Nt1T0≤t<Te) =

∫ t

0

τe−τs
(τ+
τ

)
E((Nt−s + 1)1t−s<Te)ds

=

∫ t

0

τe−τs
(τ+
τ

)
E(Nt−s1t−s<Te)ds

+

∫ t

0

τe−τs
(τ+
τ

)
P(t− s < Te)ds

=

∫ t

0

τe−τs
(τ+
τ

)
f(t− s)ds+

∫ t

0

τe−τs
(τ+
τ

)
e−τ−(t−s)ds

= τ+e
−τt

∫ t

0

eτuf(u)ds+ τ+e
−τt

∫ t

0

e(τ−τ−)uds
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In summary f is a solution of the ODE

f(t) = τ+e
−τt

∫ t

0

eτuf(u)ds+ e−τt(eτ+t − 1),

which can be solved explicitly yielding

f(t) = τ+te
−τ−t

and
E(Nt|t < Te) = τ+t = tτdiv(psym + pasym)µ.

The formula used in the main paper is E(Nt|t < Te) = tτdivµ (or, adTµ when
ages and rates are measured in years), therefore neglecting, for simplification,
the factor psym + pasym. Note that this factor is not important when computing
the fitness advantage of mutations that only affect the division rate, since it
cancels in the resulting ratio, as described below.

Returning to our model, the presence of a driver mutation in the CS group
multiplies τdiv by capp while leaving the other parameters unchanged. If such a
mutation happens at t = 0, then the expected number of passenger mutations
would be multiplied by capp, so that this parameter represents, in our model,
the fitness advantage f = 1 + s provided by a mutation in CS. Still according
to our model, a double mutation in CS gives f = c2app.

It is quite interesting that the values obtained for capp in our model are
qualitatively similar to the empirical ones listed in Fig. 2 of the main paper.
Note, first, that the fitness advantages estimated from the observed number of
passenger mutations at a given age is a lower bound of the fitness provided by
the driver mutation, since the observed number of mutations includes a period
of time during which the tissue is normal. Similarly, a tissue with two CS drivers
mutations at a given age would have had a period of time with zero mutation,
then one, then two.

Now, our simulations indicate that, according to our model, a very large
majority of colon cancers involve a CS mutation occurring as a second driver,
typically at age 35, with cancer being detectable about 35 years later. With
capp − 1 ∼ 0.3, our model therefore predicts an empirical estimation of fitness
of about 0.15, which is consistent with the near zero value reported in Fig. 2 of
the main paper.

For blood, a first CS mutation is observed at roughly 15 years of age, with
cancer declared about 40 years later. With capp = 2, one would expect an
estimated value of s equal to 40/55 ∼ 0.7, a value consistent with what is
reported in the same Fig. 2.

Finally, for pancreas, the model requires two CS driver events, one roughly at
15, the second one 20 years later, with 30 more years before cancer is observed.
Using our estimated value capp ∼ 4, our model would predict an empirical value
of s equal to

s =
15 + 4× 20 + 16× 30

65
− 1 ∼ 7.8 .
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This is smaller than the value reported in the main paper, which is 12, but
definitely reflects a simlar trend compared to colon and blood cancers.

References

[1] Anirban Maitra and Ralph H Hruban. Pancreatic cancer. Annu. Rev. path-
mechdis. Mech. Dis., 3:157–188, 2008.

[2] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes
for machine learning, volume 2. MIT press Cambridge, MA, 2006.

[3] The Cancer Genome Atlas Network. Comprehensive molecular characteri-
zation of human colon and rectal cancer. Nature, 487(7407):330, 2012.

[4] The Cancer Genome Atlas Research Network. Genomic and epigenomic
landscapes of adult de novo acute myeloid leukemia. New England Journal
of Medicine, 368(22):2059–2074, 2013.

[5] Cristian Tomasetti and Doron Levy. Role of symmetric and asymmetric di-
vision of stem cells in developing drug resistance. Proceedings of the National
Academy of Sciences, 107(39):16766–16771, 2010.

17


