The proton electrochemical gradient induces a kinetic

asymmetry in the symport cycle of LacY

Xiaoxu Jiang^{1a}, Natalia Ermolova¹, John Lim^{1b}, Seo Woo Choi^{1c} and H. Ronald Kaback^{1,2,3*}

¹Department of Physiology and ²Department of Microbiology, Immunology & Molecular Genetics, ³Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095

^aPresent address: Department of Chemistry and Physical Sciences, Nicholls State University, Thibodaux, LA 70310

^bPresent address: Department of Nutritional Science and Toxicology. University

of California Berkeley, Berkeley, CA 94720

^cPresent address: College of Dentistry, New York University, E24th St., New York,

NY 10010

Key words: membranes | transport | permease | membrane proteins | efflux | counterflow | electrochemical H⁺ gradient

*Corresponding author: E-mail: rkaback@mednet.ucla.edu. Phone: (310) 206-5053. Fax: (310) 206-8623.

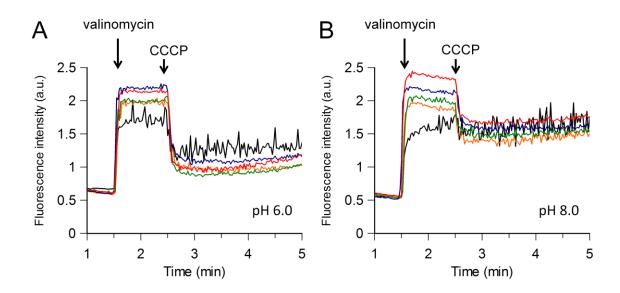


Fig. S1. Assessment of imposed membrane potential (*interior positive*) by potential-sensitive oxonal dye DiBAC4(3). RSO membrane vesicles at a protein concentration of 2 mg/mL in 100 mM NaPi at pH 6.0 (A) or pH 8.0 (B) were incubated with 4 μ M DiBAC4(3) at 25 °C for 30 min, then 50 μ L of RSO membrane vesicles were diluted into 2 mL of 100 mM phosphate buffer at a given ratio of Na⁺/K⁺ at the same pH (black: no potassium, orange: 25% potassium, green: 50% potassium, blue: 75% potassium and red: 100% potassium). Fluorescence emission of DiBAC4(3) was monitored at 516 nm with excitation at 490 nm. Where indicated by the arrows, valinomycin or CCCP was added to a final concentration of 25 μ M, respectively. Based on the percentage of fluorescence change at each tested pH, a membrane potential of at least +75 mV was estimated upon dilution into pure KP_i.

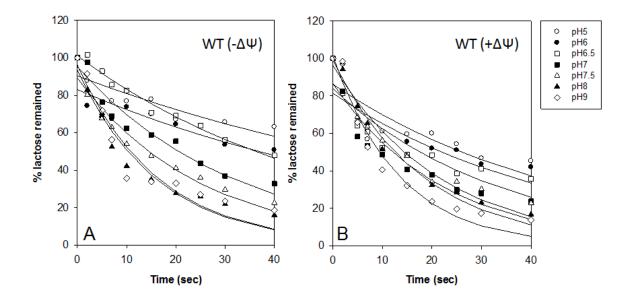


Fig. S2. Efflux by RSO vesicles with WT LacY in the absence (A) or presence (B) of $\Delta\Psi$ (*interior positive*) at different pHs. Efflux experiments were performed as described in *Materials and Methods* and data are plotted as an exponential fit.

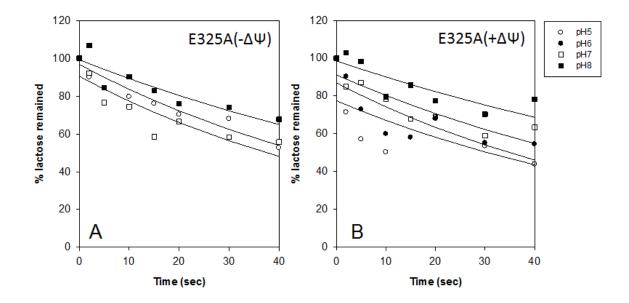


Fig. S3. Efflux by RSO vesicles with mutant E325A LacY in the absence (A) or presence (B) of $\Delta\Psi$ (*interior positive*) at different pHs. Efflux experiments were performed as described in *Materials and Methods* and data are plotted as an exponential fit.

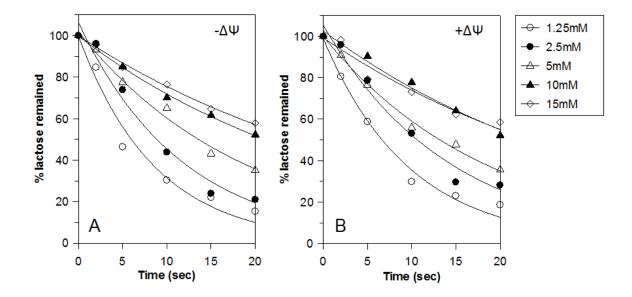


Fig. S4. Efflux by RSO vesicles with WT LacY equilibrated with different concentrations of [¹⁴C]lactose in the absence (A) or presence (B) of $\Delta\Psi$ (*interior positive*) at pH7.5. Efflux experiments were performed as described in *Materials and Methods* and data are plotted as an exponential fit.

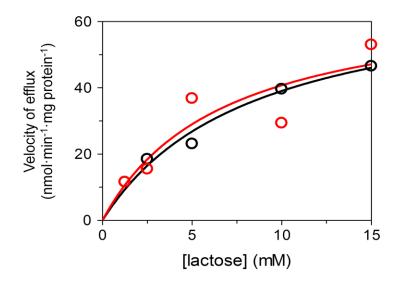


Fig. S5. Effect of imposed $\Delta\Psi$ (*interior positive*) on the kinetics of lactose efflux. RSO membrane vesicles were equilibrated with [¹⁴C]lactose at given concentrations overnight at 4°C, then efflux experiments in the absence (black) and presence of $\Delta\Psi$ (*interior positive*) (red) were performed at pH 7.5 as described in *Materials and Methods*. K_m and V_{max} were obtained by plotting the amount of lactose effluxed in the first 10s as a function of lactose concentration with Michaelis–Menten equation.