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Extended Methods  

 
Tomato accessions 
Tomato accessions were obtained from the Tomato Genetics Resource 

Center. Five tomato genotypes were used: Solanum lycopersicum money 

maker disease susceptible (TGRC 2706); S. lycopersicum money maker 

disease resistant (TGRC 3472); S. lycopersicum Rio Grande disease 

susceptible control for TGRC 3342 (TGRC 3343); S. lycopersicum Rio Grande 

disease resistant (TGRC 3342); and S. pimpinellifolium wild ancestor (2934). 

During the 2016 growing season, seeds for these experiments were generated 

by growing tomatoes in sunshine mix soil in the Jane Gray Greenhouse at UC 

Berkeley. Sunshine Mix #1 soil was used. Upon flowering, plants were 

manually pollinated by flicking flowers. Care was taken to switch gloves 

between plants of different genotypes. Fruits were collected and placed in 

plastic Ziploc bags, manually crushed, and allowed to ferment at 21°C for 2-3 

weeks. After the fermentation process was complete, seeds were strained from 

remaining fruit material, rinsed with DI water, and allowed to dry on filter paper. 

Seeds were stored in the dark at 21°C until use. All genotypes were used for 

passages one, two, three, and p4-combined. Genotype 2934 was not used in 

passage four, as that genotype succumbed to fungal disease in the third 

generation. The community coalescence competition experiment included 

genotypes 2706, 3472, and 2934.  

 

Tomato germination and growth 

Seeds were surface sterilized using TGRC recommendations as follows: seeds 

were soaked in 2.7% bleach (sodium hypochlorite) solution for 20 minutes. 

Sterilized seeds were then washed with sterile ddH2O three times to remove any 

excess bleach. Sterilized seeds were then transferred onto 1% water agar plates 

and placed in the dark at 21°C until emergence of the hypocotyl. At that point, 

seedling plates were moved into a growth chamber and allowed to continue 

germination for 1 week. Growth chamber conditions were 25°C, 65% humidity 
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and 16 h daylight per day. After approximately one week, seedlings were planted 

in sunshine mix #1 soil in seedling trays. After approximately one more week of 

growth, seedlings were transplanted into 8” diameter pots, making the plants 

approximately 2.5-3 weeks old at the first time of microbial inoculation. Age of 

inoculation varied slightly from experiment to experiment but was kept identical 

amongst genotypes within an experiment.  

 

Inoculation preparation, first passage 
Microbial inoculum for the first passage of the experiment was generated from 

field-grown tomato plants from the UC Davis Student Organic Farm collected in 

September and October of 2016. One-gallon Ziploc bags were filled with leaf, 

stem, and some flower material from tomato plants. One bag was collected 

from each of nine different sites, spread through four different fields. Plant 

material was collected from various genotypes of tomatoes. Other plant types, 

such as lettuce, eggplant, corn, and oak trees, surrounded the tomato fields. 

During the October collection, soil was also collected at each site. The top 

~2cm of soil was brushed away, and a 50mL conical was pushed directly into 

the soil at the base of a plant which was in the middle of each collection site. 

Plant material and soil were transferred to the lab on ice and stored at 4°C 

briefly until processing. Sterile phosphate freezing buffer was added to the 

bags of leaves, and the entire bags were placed in a Branson M5800 

sonicating water bath. Material was sonicated for 10 minutes. This gentle 

sonication washes microbes from the surfaces of the leaves but does not 

damage cells.  The resulting leaf wash from each site was pooled. From the 

September collection, leaf wash was pelleted for 10 mins at 4000 x G, re-

suspended in glycerol freezing buffer, and stored at -80 for approximately one 

month. This was then thawed, re-spun to remove the freezing buffer, and 

combined with the October leaf wash. At that point, the starting inoculum was 

divided into 6 aliquots and stored in glycerol freezing buffer. For each 

inoculation in the first passage, an aliquot was thawed and cells pelleted for 10 

mins at 4000 X G. Cells were re-suspended in 200mL 10mM MgCl2 buffer.  Of 



 
 

4 
 

this, 40mL were and heat killed in an autoclave for a 30 minutes at 121°C. 

Inoculum was plated, and an absence of growth confirmed that the heat-kill 

was effective. To get initial concentration of inoculum, dilution plating was 

performed on Kings Broth agar plates (1.1 X 10 ^6 CFU/mL). Soil from each 

site, which had been stored at -20°C, was combined in a sterile Nalgene 

bucket and thoroughly mixed before inoculation.  

 

Inoculation procedure 
 Soil inoculation: The top layer of every pot was supplemented with 40 grams 

of UC Davis Farm Soil. Soil inoculation was only performed once and only for 

the first passage of plants. Spray inoculation: Each plant was sprayed, using 

misting spray tops placed in 15mL conicals, with approximately 4.5mL of 

inocula. Control plants from passage 1 were inoculated with the heat-killed 

inocula. Control plants from subsequent experiments were inoculated with 

sterile 10mM MgCl2. Immediately after inoculation, plants were placed in a 

random order in a high-humidity misting chamber for 24 hours. After 24 hours, 

the plants were moved to a greenhouse bench. Plants were inoculated once 

per week in the same manner and were placed in the misting chamber for 24 

hours after every inoculation.  

 

Plant sampling and inoculation preparation for passaging lines 
Ten days after the final spray inoculation, plants were sampled. With the 

exception of the P4-Combined experiment, all plants were cut off at the base 

and immediately placed into sterile 1L bottles individually. By the end of P4-

Combined, the plants had grown too large to sample the entire plant, and 

instead, roughly 2/3 of the plant material was sampled from each plant, with 

care taken to sample the same age of branches from every plant. After 

collection, plant material was weighed, and 200mL of sterile 10mM MgCl2 were 

added to each bottle containing the plant material. The bottles were 

submerged in a sonicating water bath, sonicated for 5 minutes, vortexed, and 

sonicated for another 5 minutes. Half of the volume from each plant was 
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pelleted for 10 mins at 4200 X G, re-suspended in ~1mL of 1:1 KB Broth 

Glycerol, divided into aliquots, and stored at -80°C for inoculation of the 

subsequent passage. The other half of the volume was pelleted in the same 

manner and then stored as a pellet at -20°C for DNA extractions. To prepare 

inoculation of the next passage, microbiome glycerol stocks were thawed, 

briefly pelleted to remove glycerol, and re-suspended in sterile 10mM MgCl2. 

Volume of re-suspension depended slightly on the size of the plants, but in 

general ranged from 5-10mL. Microbiomes were never pooled.  
 
Inoculation preparation, combination of P4 microbiomes (Figure S7) 
Frozen microbiomes from all plants from the end of passage four were thawed, 

and half the volume was removed from each aliquot. These aliquots were 

combined into one pooled meta-inoculum. This was divided into six aliquots. 

One was used immediately, and the rest of the aliquots were stored at -20°C in 

KB Glycerol and thawed by aliquot for each week of inoculation, as above.  

 
P1, P4 coalescence experiment (Figure 5) 
Genotypes 2706, 3472, and 2934 were used for this experiment, and four 

plants of each genotype received each treatment (P1, P4, and Mix). One 

control plant of each genotype was spray inoculated with MgCl2.  To prepare 

the inoculum, microbiomes from the end of passage one and the end of 

passage four were used. All aliquots (one from each plant, except for plant 4 

which had exhibited disease symptoms) were thawed and combined. The 

same was done for all of the individual microbiomes that came off of passage 4 

plants. To remove the glycerol, the samples were spun down and resuspended 

in 10mM MgCl2. In order to generate the 50/50 mix of P1 and P4 microbiomes, 

live/dead PCR with PMA treatment was used, adapted from the following 

method [1]. Briefly, serial dilutions of P1 and P4 were performed in MgCl2. 

Each sample then received PMA at a final concentration of 100uM and 

vortexed. Samples were incubated in the dark at room temp for 5 minutes. 

Then they were placed in ice on a tray exactly 10cm away from a 700 watt 
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halogen lamp. The light was turned on for 30 seconds, and turned off for 30 

seconds. During the 30 seconds without light, the samples were all vortexed. 

This was repeated three more times. Samples were then pelleted for 10 

minutes at 5000 X G. The supernatant including the excess PMA was 

removed, and cells were re-suspended in sterile 10mM MgCl2. Droplet Digital 

PCR (as described below) was then utilized to quantify bacteria from each 

sample, and concentration was matched to 7.7 x 10^6 cells/mL. P1 and P4 

were aliquotted separately and then re-combined for the mixed inoculum so 

that each plant received ~9 x 104 bacteria each week that they were 

inoculated. Plants were inoculated for three weeks and harvested 10 days after 

the final inoculation as described previously.  

 

Bacterial quantification using ddPCR 

The BioRad QX200 system was used for culture independent quantification of 

bacteria. Complete ddPCR methods are described elsewhere [2]. Bacterial 

abundance was measured directly after microbes were sonicated off plant 

surfaces into sterile buffer. For consistency, the same region of the 16S gene 

used below for amplicon sequencing was used for bacterial quantification. 

PNAs, were used as well to limit any background amplification of plant 

mitochondrial or chloroplast DNA. Five ul of sample were used in every 

reaction. All data were normalized to weight, in grams, and concentrations are 

reported as 16S copy number/gram.  

 

DNA extractions 
DNA was extracted from microbial pellets using the Qiagen PowerSoil DNA 

extraction kit. A buffer control extraction was included for every set of extractions 

in order to identify and exclude taxa present in the dataset due to buffer 

contamination.  

 

 
16S Libraries 
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The 16S rRNA gene was amplified using dual-indexed primers designed for the 

V3- V4 region [3] using the following primers: 341F (5 -

CCTACGGGNBGCASCAG-3) and 785R (5 -GACTACNVGGGTATCTAATCC-3) 

[4]. Additionally, we also used peptide nucleic acids, PNAs [5] to decrease 

amplification of plant mitochondrial and chloroplast DNA. Negative buffer controls 

and PCR controls were sequenced along with experimental samples. Reaction 

conditions were 94°C for 3 min, 94°C for 45 s, 78°C for 10 s, 50°C for 1 min, 

72°C for 1.5 min, repeat steps 2–5 30 times and 72°C for 10 min. PCR mixtures 

were randomized in order, run in duplicate for each sample, pooled and 

quantified using Qubit. Amplicons from each sample were pooled in equimolar 

concentrations, cleaned using an AMpure bead clean-up kit. Libraries were 

prepared for paired 300-nucleotide reads in Illumina’s MiSeq V3 platform 

(Illumina) at The California Institute for Quantitative Biosciences (QB3) at UC 

Berkeley. 

 
ITS Libraries 
Using the same DNA as above, the ITS2 region was amplified using ITS9-F: 

GAACGCAGCRAAIIGYGA and ITS4-R: TCCTCCGCTTATTGATATGC 

following a protocol published online by the Joint Genome Institute. A second 

PCR was performed (7 cycles) in order to anneal MiSeq Illumunia adapters 

and barcodes onto the amplicons. PCRs were carried out in duplicate and 

pooled before they were prepared for sequencing by the QB3 sequencing 

facility as described above.  

 

Sequence Processing and Analysis 
MiSeq sequencing files were demultiplexed by QB3 sequencing facility. Fastq 

Files are deposited in the NCBI BioProject database (BioProject ID: 

PRJNA578761). Reads were combined into contigs using VSearch [6], and the 

remainder of the analysis was carried out in Mothur [7] following their MiSeq SOP 

[8]. Data were quality-filtered, and chimeras were removed using UChime [9]. 

Singletons were removed using the split.abund command in Mothur after pre-
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clustering of similar sequences. We used a 97% similarity cut-off for defining 

OTUs. The Silva reference database [10] was used for sequence alignment and 

taxonomic assignment. Archaeal, chloroplast, mitochondrial and unknown 

domain DNA sequences were removed. To account for reagent contaminants, 

we also sequenced two DNA extraction kit controls and PCR controls along with 

our samples. Contaminant OTUs from control samples that were at a similar or 

higher relative abundance in control samples compared to experimental samples 

were removed from the full OTU table. Bacterial were rarified to 8,000 reads per 

sample. For the fungal community, an OTU table was generated from the fungal 

community sequencing data using QIIME 2. Trimmed, paired reads were first 

denoised, without read trimming, using the DADA2 plug-in [11]. Chimeric 

sequences were then filtered using the uchime-denovo command of the Vsearch 

plug-in [12]. Reads were then clustered into OTUs at 97% identity using the 

cluster-features-closed-reference command in the VSEARCH plug-in and the 

2017 version of the UNITE database [13]. In order to assign taxonomy to the 

clustered OTUs, a Naïve-Bayes classifier was first trained using the UNITE 

database and the feature-classifier plug-in [14]. The classify-sklearn command of 

the feature-classifier plug-in was finally used to assign taxonomy to the clustered 

OTUs. Fungal reads were rarified to 415 reads/sample. Once bacterial and 

fungal OTU tables were generated in Mothur and QIIME, the remainder of the 

analysis was performed in R using the following packages: Phyloseq [15], vegan 

[16], ampvis2 [17], and MicrobiomeSeq (Alfred Ssekagiri, William T. Sloan, Umer 

Zeeshan Ijaz). Occupancy abundance plots were generated using R code from 

the following source: http://rstudio-pubs-

static.s3.amazonaws.com/266780_cac4994322494658904507a7606b1dd8.html. 

Goodness of fit for linear and quadratic models of Bray-Curtis dissimilarity to P1 

communities was based on both R2 values and calculating Akaike information 

criterion values. For determining the effects of specific variables on Bray-Curtis 

dissimilarities between samples, PERMANOVA tests were run using Vegan’s 

Adonis and adonis2 functions.  
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Genotype PERMANOVAs in P1 and P2 
For the genotype effect observed in P1 and P2, the data were also analyzed with 

the removal of the primary outlying line in P1, which was a diseased plant. The 

significance does not change (30% of dissimilarity explained, p=0.002). That 

same line had too low read depth to be analyzed at P2, and thus was excluded 

from this analysis at the rarefaction step. By P3, this line was included, as it did 

not fall outside of the 95% confidence intervals for P3 clustering. Additionally, 

replicate lines from accession 2934 were lost after passage 3 due to a fungal 

pathogen present in the original inoculum that seemingly only infected this 

genotype. To ensure that this genotype alone was not driving the effect of 

genotype on community composition, we excluded it from the dataset and re-ran 

statistical tests. There remains a significant overall genotype effect when all 

passages are analyzed together (PERMANOVA, F3, 79= 1.9723, p= 0.034). We 

then subsetted the data, again ran univariate PERMANOVAs at each passage, 

and  we found that genotype remains a significant factor explaining Bray-Curtis 

dissimilarity at P1 and P2, but not P3 nor P4.  (P1: R2=0.25, p=0.017; P2: 

R2=0.31, p=0.009; P3: R2=0.16, p=0.228; P4: R2=0.10, p=0.943).  

 

Incorporation of repeated measures into statistical models: In the serial 

passaging experiment, each microbiome line was independently passaged 

across four cohorts of tomato plants, and each microbiome line was sampled at 

the end of each passage. Although the microbiomes were never sampled 

multiple times from the same tomato plant, the data structure is similar to what 

one would find in time series experiment. Thus, wherever possible, “Line ID” was 

incorporated into models to take this into account. The following linear mixed 

effects model was utilized for determining significant changes in diversity over 

time: lmer(Values ~ Passage + (1|LineID). In the case of PERMANOVA tests, 

the strata term was used to limit permutations within Line IDs to test for the main 

effect of Passage. Furthermore, the strata term cannot be utilized when 

determining significance of terms by=”margin” (Type III tests). Instead, 

significance is assigned to each term sequentially from first to last. Thus, order of 
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terms in the model may impact significance. In the data presented in this 

manuscript, all iterations of term order were tested in each model. Statistics are 

presented using the following models with the use of strata: adonis(bray.matrix ~ 

Passage + Genotype, permutations=999, strata= LineID). Importantly, although 

changing the order of terms sometimes slightly impacted the R2 values, none of 

the differences had any impact on a variable’s significance level. Changing the 

order of terms did not impact the interpretation of the importance of any variable 

tested in this dataset. The adonis2 test with the by=”margin” term was used 

whenever the strata term was not included in the model. The following model 

was utilized in these cases: adonis(bray.matrix ~ Passage + SampleType, 

by=”margin”, permutations=999).  

 

Community Cohesion Metrics 
The estimations of positive and negative cohesion values follows the cohesion 

metrics approach proposed by Herren et al. [18]. Herren et al. multiplied the 

connectedness metrics determined by relative abundance profile by the same 

relative abundance profile to estimate cohesion values. We modified their 

method to estimate cohesion values by using two relative abundance profiles of a 

training set and test set. Relative abundance profile of the training set was 

obtained by randomly selecting half of the samples in each microbiome passage. 

The test set consists of the other half of the samples. Using the training set and 

following the same procedure as Herren et al., connectedness metrics were 

calculated. The estimated connectedness metrics subtracts a null model. The 

objective of the null model was to calculate the strength of pairwise correlations 

that would be observed if there were no true relationship between OTUs. The 

obtained connectedness metrics are multiplied by relative abundance profile of 

test set to estimate positive and negative cohesion values. Two hundred 

iterations of sampling randomization in each microbiome passage were carried 

out at OTU level to obtain training set and test set for P1, P2, P3, and P4.  
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Neutral model 
The neutral model was proposed by Sloan et al. to describe both microbial 

diversity and taxa-abundance distribution of a community [19]. Burns et al. [20] 

have developed a R package based on Sloan’s neutral model to determine the 

potential importance of neutral process to a community assembly. In brief, the 

neutral model creates a potential neutral community by a single free parameter 

describing the migration rate, m, based on two sets of abundance profiles – a 

local community and metacommunities. The local community describes the 

observed relative abundance of OTUs, while the metacommunity is estimated by 

the mean relative abundance across all local communities. The estimated 

migration rate is the probability of OTU dispersal from the metacommunity to 

replace a randomly lost individual in the local community. The migration rate can 

be interpreted as dispersal limitation. In each microbiome passage, half of the 

samples were randomly selected and the relative abundance profile at the OTU 

level was used. The neutral model fit and migration rate were estimated in the 

resolution results of 200 iterations for P1, P2, P3, P4, and P4 Combined.  

 
Null model predictions 
We applied a null model approach on the serial passaging data P1-P4 to 

characterize the changes of stochastic process driving the assembly of plant 

microbiome over time. Lines that had high quality sequencing data at every time 

point (thirteen in total), were used for this analysis. The null scenario for each line 

at each passage was generated using the data for that same line at the previous 

passage. The null scenario of P1 was generated using the original field inoculum 

sample. The null model approach was based on community pairwise dissimilarity 

proposed by Chase and Myers (Chase and Myers 2011) and extended by 

Stegen et al. to incorporate species abundance (Stegen, Lin et al. 2013). Chase 

and Myers proposed a degree of species turnover by a randomization procedure 

where species probabilistically occur at each local community until observed 

local richness is reached. However, the estimated degree of turnover does not 

include species abundance. To take full advantage of our dataset, we also 
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incorporated species relative abundance into the procedure proposed by Stegen 

et al.  Zinger et al. has developed R code for the null model and applied the null 

model approach on the soil microbiome [21]. This approach does not require a 

priori knowledge of the local community condition and determines if each plant 

microbiome at the current passage deviates from a null scenario generated by 

that same microbiome at the previous passage. In brief, the null scenario of each 

was generated by random resampling of OTUs and remained the same richness 

and number of reads with the original sample. Total OTUs observed in the 

sample and the corresponding relative abundance were used as probabilities of 

selecting an OTU and its associated number of reads, respectively. The Bray-

Curtis metric is used to calculate dissimilarities across null communities with 

1,000 permutations. The average of dissimilarities among permutations 

represents null expectations of community dissimilarities. The null deviation 

shows the differences between average null expectation and the observed 

microbiome of the same line.  
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Fig. S1. Bacterial community differences between sample type and passage number 

A PCoA plot of Bray-Curtis dissimilarity amongst samples illustrates a significant effect 
(determined by a multivariate PERMANOVA test) of both passage (colors) and sample type 
(shapes).  
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Fig. S2. Changing relative abundance of top 100 non-inoculum OTUs 

Only OTUs that were not identifiable in the spray inoculum sample were included in this analysis. 
Relative abundance top 100 non-inoculum OTUs are plotted as a heatmap. Each OTU is shown 
with its Genus-level taxonomic identification. Importantly, some OTUs classified as “non-
inoculum” may have in fact been present in the initial spray inoculum but at too low of a relative 
abundance to recover sufficient high-quality sequences. 
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Fig. S3. Serial passaging of the phyllosphere microbiome: Inoculum only taxa 

The dataset was subsampled to only contain OTUs that were present in the initial spray inoculum. 
A PCoA plot of Bray-Curtis dissimilarity of experimental plants shows a significant effect of 
passage (colors) and genotype (shapes) (a). Richness (b) and Shannon’s alpha diversity index 
(c) of each experimental plant are plotted at each passage and show a significant decrease over 
time. Corrected p values from multiple pairwise comparisons are illustrated on the graph * p≤0.05; 
** p≤0.01; *** p≤0.001.  
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Fig. S4. Climatic variables 

Although all experiments were performed in the greenhouse, outside climatic variables varied for 
the duration of the six experiments. Humidity, high temp, and low temp are plotted (a). The date 
at which the plants were first inoculated and the date at which they were harvested are shown (b).   
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Fig. S5. Bray-Curtis dissimilarity within lines over time 

Bray-Curtis dissimilarities between (n) and (n-1) are displayed for each passaged microbiome 
line. There is no observable significant effect of “comparison” on Bray-Curtis dissimilarity, but we 
did uncover a moderately significant effect of “Line ID” (ANOVA: see main text for statistical 
values).  
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Fig. S6. Modeling bacterial community dynamics  

We applied community cohesion metrics on our dataset to describe microbial dynamics in P1, P2, 
P3, and P4 (a). We calculated both positive and negative cohesion values and found a mild but 
significant increase in positive and negative cohesion values from P1 to P4 (values indicated on 
graph). We next compared Bray-Curtis dissimilarities between a predicted null model from the (n-
1) passage with observed communities from passage n over 1,000 iterations and we found a mild 
but significant increase in deviation from the null prediction from P1 to P4 (b). 
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Fig. S7. Combination of passaged lines and re-inoculation   

Passaged microbiomes from the end of P4 were pooled and then sprayed onto tomato plants (six 
replicates of five genotypes) (a). P4 plants, inoculum generated from P4 plants, P4-Combined, 
and controls are plotted on a PCoA plot of Bray-Curtis dissimilarities, and P4-Combined plants 
cluster apart from P4 plants (b). We compared the observations of community structure and 
predicted community composition by a neutral model for P1 and P4-Combined (c), and in 200 
iteratively predictions, the fit of the neutral model is significantly higher in P1 than P4-Combined 
(Student’s t-test, p-value < 0.01). Visualized on a PCoA plot (d), relative abundance of OTU0003 
can be seen driving Bray-Curtis dissimilarity amongst plants, both experimental and control. 
Occupancy-Abundance curves for P1 and P4-combined are shown side-by-side (e). 
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Fig. S8. The fungal community  

A PCoA plot of Bray-Curtis dissimilarity amongst samples shows a significant change in the 
community from P1 to P4, as determined by a PERMANOVA test (a). There is no effect of 
genotype (shapes) on the fungal community at either passage (b). Ellipses indicate 95% 
confidence around the clustering. Both richness (c) and Shannon’s alpha diversity (d) significantly 
decrease between P1 and P4. Relative abundance of the top five fungal taxa is plotted for the 
original inoculum, P1 and P4 (e). Corrected p values from multiple pairwise comparisons are 
illustrated on the graph * p≤0.05; ** p≤0.01.   
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Fig. S9. Differentially abundant taxa in community coalescence experiment 

We performed a Kruskal-Wallis test on log-relative transformed OTU abundance at different 
passages using the MicrobiomeSeq package (a). This is a non-parametric method, and it tests 
whether samples originate from the same distribution. P-values are corrected for multiple testing 
using family wise error rates. Significant OTU rankings 1-5 are assigned importance using 
random forest classifier. Taxonomies of OTUs are displayed as well (b).  
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Table S1. Top 100 OTU taxonomic assignments 

 OTU Phylum Class Order Family Genus 

0001 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Pantoea 

0002 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Unclassified 

0003 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Unclassified 

0004 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

0005 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 

0006 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Xanthomonas 

0008 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

0009 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified 

0010 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

0011 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified 

0012 Firmicutes Bacilli Bacillales Family_XII Exiguobacterium 

0013 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Massilia 

0014 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified 

0015 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas 

0016 Firmicutes Bacilli Bacillales Bacillaceae Bacillus 

0017 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Novosphingobium 

0018 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Massilia 

0019 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Rahnella 

0020 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter 

0021 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

0022 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Stenotrophomonas 

0023 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Stenotrophomonas 

0024 Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Curtobacterium 

0025 Firmicutes Bacilli Bacillales Bacillaceae Bacillus 

0026 Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Unclassified 

0027 Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae Methylobacterium 

0028 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified 

0029 Proteobacteria Betaproteobacteria Burkhoderiales Oxalobacteraceae Massilia 

0032 Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae Methylobacterium 

0033 Actinobacteria Actinobacteria Micrococcales Sanguibacteraceae Sanguibacter 

0034 Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Unclassified 

0035 Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae Methylobacterium 

0036 Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Ralstonia 

0037 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Pantoea 

0038 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified 

0039 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae Sediminibacterium 

0040 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter 

0041 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter 

0042 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Duganella 
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0043 Firmicutes Bacilli Bacillales Bacillaceae Bacillus 

0045 Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus 

0046 Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae Streptomyces 

0047 Firmicutes Bacilli Bacillales Family_XII Exiguobacterium 

0048 Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium 

0049 Chloroflexi Ktedonobacteria Ktedonobacterales Unclassified Unclassified 

0050 Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae Streptomyces 

0052 Proteobacteria Alphaproteobacteria Sphingomonadales Unclassified Unclassified 

0053 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified 

0055 Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae Methylobacterium 

0056 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

0057 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium 

0059 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified 

0061 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Unclassified 

0062 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Chryseobacterium 

0065 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Unclassified 

0066 Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus 

0068 Actinobacteria Actinobacteria Micrococcales Micrococcaceae Pseudarthrobacter 

0069 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

0070 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified 

0071 Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus 

0073 Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bradyrhizobium 

0074 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Caulobacter 

0076 Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Rathayibacter 

0077 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified 

0079 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 

0081 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter 

0082 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Koukoulia 

0083 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Sphingobacterium 

0085 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified 

0086 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 

0088 Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Roseomonas 

0089 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified 

0093 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

0094 Proteobacteria Betaproteobacteria Unclassified Unclassified Unclassified 

0096 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter 

0097 Firmicutes Bacilli Bacillales Paenibacillaceae Saccharibacillus 

0098 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas 

0106 Actinobacteria Actinobacteria Streptosporangiales Thermomonosporaceae Actinoallomurus 

0115 Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Curtobacterium 

0116 Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Verticia 
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0118 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Stenotrophomonas 

0123 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified 

0126 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Unclassified 

0130 Actinobacteria Actinobacteria Micrococcales Micrococcaceae Paenarthrobacter 

0134 Proteobacteria Alphaproteobacteria Rhodospirillales Incertae Sedis Reyranella 

0136 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

0150 Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae Methylobacterium 

0167 Actinobacteria Actinobacteria Micrococcales Micrococcaceae Arthrobacter 

0169 Actinobacteria Actinobacteria Frankiales Sporichthyaceae Unclassified 

0174 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax 

0189 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Unclassified 

0190 Armatimonadetes Fimbriimonadia Fimbriimonadales Fimbriimonadaceae Unclassified 

0208 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae Heliimonas 

0213 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Epilithonimonas 

0215 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter 

0222 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae Vibrionimonas 

0223 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter 

0293 Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae Unclassified 

0323 Bacteroidetes Sphingobacteriia Sphingobacteriales Chitinophagaceae Sediminibacterium 
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