Supplementary Material to the article

Radiation-induced alterations in immunogenicity of a murine pancreatic ductal adenocarcinoma cell line

Philipp Schröter^{1,2,3,4}, Laura Hartmann^{1,5}, Wolfram Osen¹, Daniel Baumann^{6,7}, Rienk Offringa^{6,7}, David Eisel^{1,5,8}, Jürgen Debus^{2,3,4}, Stefan B. Eichmüller^{1*} and Stefan Rieken^{2,3,4*}

- ¹ German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- ² University Hospital Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany
- ³ Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- ⁴ Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, D-69120 Heidelberg, Germany
- ⁵ Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
- ⁶ German Cancer Research Center (DKFZ), Molecular Oncology of Gastrointestinal Tumors, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- ⁷ University Hospital Heidelberg, Department of Surgery, Im Neuenheimer Feld 110, D-69120 Heidelberg, Germany
- ⁸ present address: Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
- * SBE and SR contributed equally

Correspondence and requests for material should be addressed to SBE (<u>s.eichmueller@dkfz.de</u>)

Supplementary Methods

RNA isolation and quantitative PCR:

Cells were seeded in T25 flasks at 14 h prior to treatment. Twelve and 36 h after treatment with 1, 3, 5 or 10 Gy, cells were harvested, pelleted and shock-frosted with liquid nitrogen. RNA was isolated using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to manufacturer's instructions and subjected to reverse transcription using Transcriptor First Strand cDNA Synthesis Kit (Hoffmann-La Roche, Basel, Switzerland). Gene expression was quantified using quantitative PCR. Therefore, 2 X Power SYBR® Green PCR Master Mix (Thermo Fisher), 10 ng cDNA, 400 nM of each primer pair (200 nM each) and nuclease-free water were mixed to a total volume of 20 µl. The selected genes were amplified using the ABI 7300 Real-time PCR System (Applied Biosystems, Foster City, USA) and subsequently quantified by normalization to RpI19. Primers used for quantitative PCR are depicted in Supplementary Table S2.

Western blotting:

For the preparation of whole cell protein samples, cells were harvested, counted and resuspended in an appropriate amount of Cell Lysis Buffer (2.5 x 10⁴ cells per µl) supplemented with 1 mM Phenylmethylsulfonylfluorid (PMSF). The samples were stored on ice for 10 min and subsequently centrifuged at 4 °C and 14,000 x g for 20 min. Supernatants were transferred into fresh tubes, mixed with 5 X protein loading buffer and heat denatured at 95 °C for 10 minutes. Whole cell protein samples were separated on a 12 % polyacrylamide gel (20 min at 80 V followed by 1.5 h at 120 V) and proteins were electro-transferred onto nitrocellulose membranes using the Trans-Blot Turbo Transfer System. The membranes were blocked with 5 % of non-fat milk in Tris-buffered saline containing 0.05 % Tween (Blocking buffer) for 1 h. Subsequently, the membranes were incubated overnight at 4 °C with an OVA specific antibody diluted 1:1000 in blocking buffer. Next, membranes were incubated at RT for 1 h with a horseradish peroxidase (HRP) conjugated secondary antibody diluted 1:5000 in blocking buffer. Protein signals were detected by adding ECL Prime Western Blotting Detection Reagent directly on the membrane and exposing blots to a charge-coupled device (CCD)-camera. Afterwards the membranes were incubated at RT for 1 h with an actin specific antibody diluted 1:10000 in blocking buffer. Subsequently, the membranes were incubated a second time at RT for 1 h with a HRP conjugated antibody diluted 1:5000 in blocking solution and analysed using the ChemiDoc™ XRS+ System after adding detection reagent. Antibodies used for Western blotting are depicted in Supplementary Table S3. Data were analysed using the Image Lab Software.

Supplementary Tables

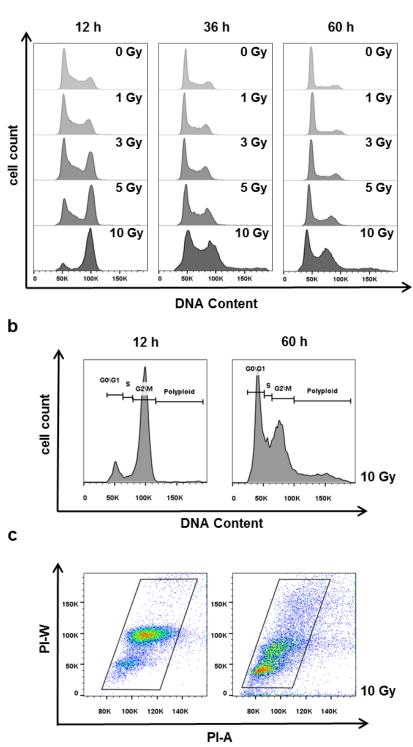
Supplementary Table S1: Monoclonal antibodies used for immunofluorescence staining and flow cytometry

Specificity	Conjugate	Cat. No. Manufacturer		Clone	
H2-D⁵	PerCP/Cy5.5	111517	Biolegend	KH95	
I-A ^b	APC	107613	Biolegend	M5/114.15.2	
CD274 / PD-L1	Brilliant Violet 785	124331	Biolegend	10F.9G2	
CD73	APC/Fire 750	127221	Biolegend	TY/11.8	
CD184 / CXCR4	APC	146507	Biolegend	L276F12	
CD8	PE/Cy7	100721	Biolegend	53-6.7	
CD279 / PD-1	APC	135209	Biolegend	29F.1A12	

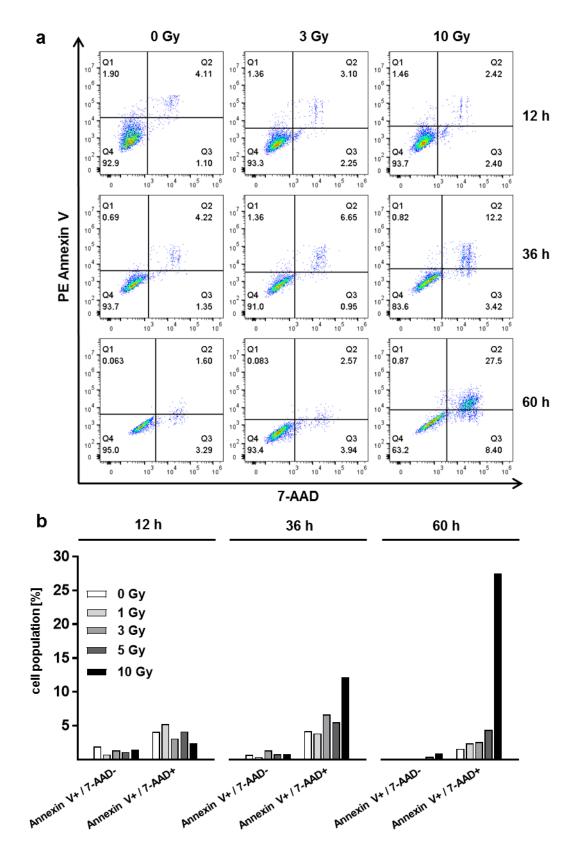
Isotype controls

Specificity	Conjugate	Cat. No.	Manufacturer	Clone	
Isotype Ctrl.	PerCP/Cy5.5	400337	Biolegend	MPC-11	
Isotype Ctrl.	APC	400611	Biolegend	RTK4530	
Isotype Ctrl.	Brilliant Violet 785	400647	Biolegend	RTK4530	
Isotype Ctrl.	APC/Fire 750	400455	Biolegend	RTK2071	
Isotype Ctrl.	APC	400611	Biolegend	RTK4530	

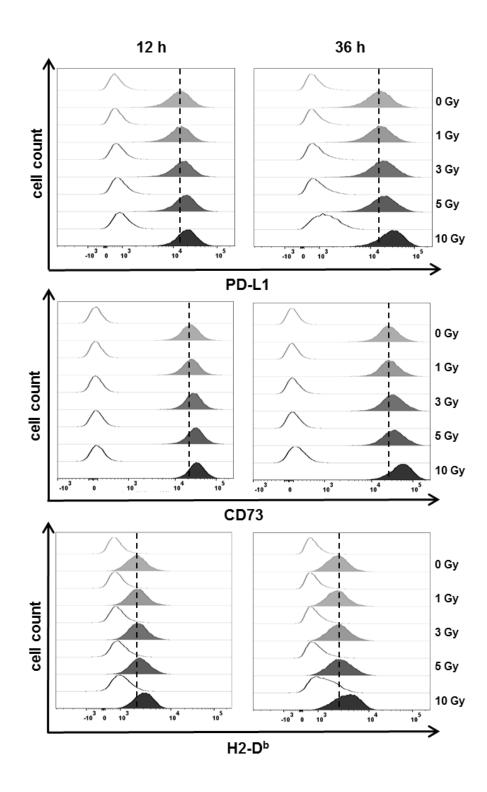
Supplementary Table S2: Primers used for quantitative PCR

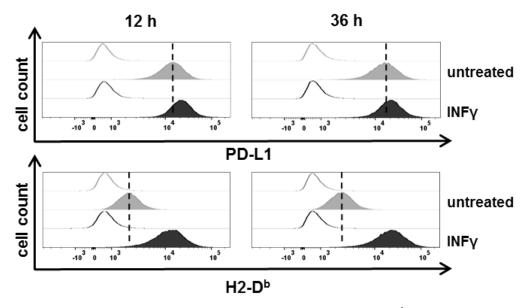

Target	Primer	Sequence (5'-3')	Product size [bp]	Efficiency ^(*)	Source
Rpl19	Rpl19_fw69	TACCGGGAATCCAAGAAGATTGA	89	98.1	PrimerBank ID 226958656c3
	Rpl19_rev70	AGGATGCGCTTGTTTTTGAAC	09		
00274	PD-L1_fwd	TCGCCTGCAGATAGTTCCC	133	94.6	this paper
CD274	PD-L1_rev	TGACGTTGCTGCCATACTCC	133		
CD73	NT5E_fwd	GCATTCCTGAAGATGCGACC	91	100.7	this paper
CD73	NT5E_rev	ATCGTTCTCCCGAGTTCCTG	91	100.7	
MHC-I (H2-D1)	H2-D1_fwd	GTGCTGCAGAGCATTACAAGG	110	91.6	this paper
	H2-D1_rev	TGCCTTTGGGGAATCTGTGC		91.0	

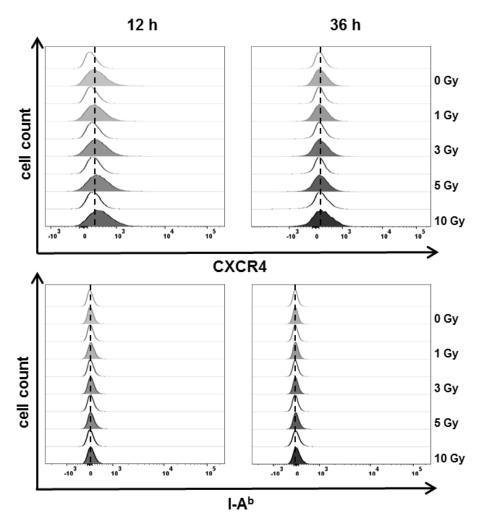
^(*)All primers used for qPCR were tested for their amplification efficiency using a standard curve that is based on a dilution series of a cDNA sample. The efficiency was calculated using the slope of the standard curve and the following formula: Efficiency = (10(-1/slope)-1)*100

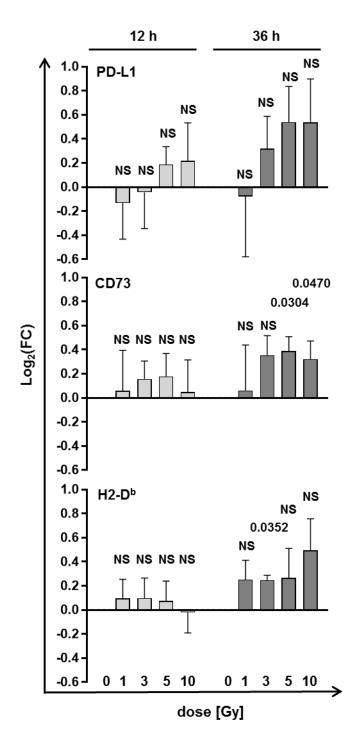

Supplementary Table S3: Antibodies used for Western blotting

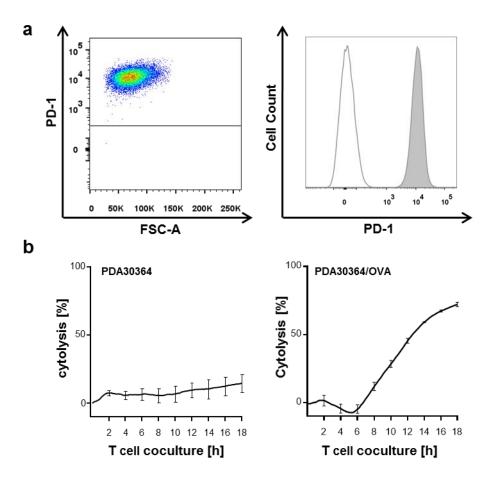
Antigen	Reactivity	Coupled	Dilution	Cat. No.	Manufacturer	Clone	lsotype	Organism
Actin	mouse	-	10000	691001	MP Biomedicals	C4	lgG1	mouse
IgG	mouse	HRP	5000	sc-2005	Santa Cruz Biotechnology	polyclonal	-	goat
Ovalbumin	chicken	-	1000	sc-65984	Santa Cruz Biotechnology	3G2E1D9	lgG1	mouse


а

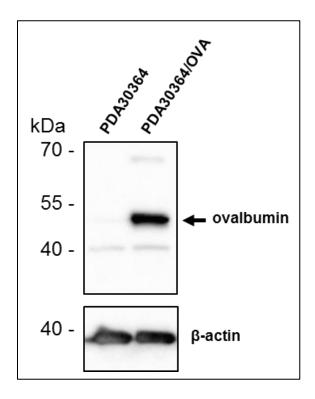

Supplementary Figure S1. Cell cycle analysis of PDA30364/OVA cells after photon irradiation. (a) DNA Quantification of PDA30364/OVA cells 12, 36 and 60 h after irradiation with single doses of 1, 3, 5 or 10 Gy by propidium iodide staining and consecutive flow cytometric analysis. (b, c) Analysis of irradiated PDA30364/OVA cells 12 h (left) and 60 h (right) after irradiation with 10 Gy. (b) Definition of cell cycle phases based on cellular DNA content. (c) Induction of polyploidy. Gating strategy: cells (FSC-A vs SSC-A) \rightarrow single cells (PI-A vs. PI-W) \rightarrow marker vs. count.


Supplementary Figure S2. Early and late apoptosis/necrosis induction in PD30364/OVA cells after photon irradiation. (a) Exemplary of PE Annexin V/7-AAD stained PDA30364/OVA cells 12, 36 and 60 h following irradiation with single doses of 1, 3 or 10 Gy. (b) Quantification of early apoptosis (Annexin V+ / 7-AAD-) and late apoptosis/necrosis (Annexin V+ / 7-AAD+) for all treatment conditions and time points. Gating strategy: cells (FSC-A vs SSC-A) \rightarrow single cells (FSC-A vs FSC-H) \rightarrow 7-AAD-A vs PE Annexin V-A.


Supplementary Figure S3. Analysis of PD-L1, CD73 and MHC-I (H2-D^b) surface expression by PDA30364/OVA cells after photon irradiation. Flow cytometric analysis of PD-L1, CD73 and MHC-I (H2-D^b) surface expression 12 and 36 h after irradiation with single doses of 1, 3, 5 or 10 Gy. Gating strategy: cells (FSC-A vs SSC-A) \rightarrow single cells (FSC-A vs. FSC-H) \rightarrow living cells (Zombie Violet DCM vs. SSC-A) \rightarrow marker vs. count. Empty histograms show combined FMO and isotype controls, filled histograms represent the stained sample.


Supplementary Figure S4. Analysis of PD-L1 and MHC-I (H2-D^b) surface expression by PDA30364/OVA cells after treatment with murine IFN γ . Flow cytometric analysis of PD-L1 and MHC-I (H2-D^b) surface expression after treatment with murine IFN γ for 36 h prior to flow cytometric analysis to control for inducibility of expression. Gating strategy: cells (FSC-A vs SSC-A) \rightarrow single cells (FSC-A vs. FSC-H) \rightarrow living cells (Zombie Violet DCM vs. SSC-A) \rightarrow marker vs. count. Empty histograms show combined FMO and isotype controls, filled histograms represent the stained sample.

Supplementary Figure S5. Analysis of CXCR4 and MHC-II (I-A^b) surface expression by PDA30364/OVA cells after photon irradiation. Flow cytometric analysis of CXCR4 and MHC-II (I-A^b) surface expression 12 and 36 h after irradiation with single doses of 1, 3, 5 or 10 Gy. Gating strategy: cells (FSC-A vs SSC-A) \rightarrow single cells (FSC-A vs. FSC-H) \rightarrow living cells (Zombie Violet DCM vs. SSC-A) \rightarrow marker vs. count. Empty histograms show isotype controls, filled histograms represent the stained sample.



Supplementary Figure S6. Analysis of PD-L1, CD73 and MHC-I (H2-D^b) gene expression by PDA30364/OVA cells after photon irradiation. Quantitative PCR analysis of PD-L1, CD73 and MHC-I (H2-D^b) gene expression 12 and 36 h after irradiation with single doses of 1, 3, 5 or 10 Gy. Changes in target gene expression were normalized to the housekeeping gene RpI19 and fold changes of target gene expression over control (0 Gy) were log₂-transformed. Mean values \pm SD of 3 (H2-D^b) or 4 (PD-L1 and CD73) independent experiments each performed in technical triplicates are shown. The Log₂(FC) of target gene expression for each treatment and time point was tested against the hypothetical value of 0 using a two-tailed one-sample *t* test and correction of P values for multiple testing was done by Holm-Bonferroni method. Multiplicity adjusted P values are shown, $\alpha = 0.05$.

Supplementary Figure S7. Characterization of the OVA specific CTL line. (a) OVA-specific CTLs are PD-1 positive (left). Gating of positive cells was based on FMO control. Empty histogram shows FMO control, filled histogram represents the stained sample (right). Gating strategy: living cells (FSC-A vs. Zombie Violet DCM) \rightarrow CD8a+ cells (FSC-A vs. CD8a) \rightarrow PD-1+ cells (FSC-A vs. PD-1). (b) OVA-specific CTLs kill ovalbumin expressing PDA30364/OVA cells, but not parental PDA30364 cells.

11

Supplementary Figure S8. Detection of ovalbumin expression in PDA30364/OVA cells. Protein extracts of the PDA30364/OVA transfectant clone and of parental PDA30364 cells were analysed by Western blotting. Molecular weight of OVA including 3X FLAG tags comprises 45.83 kDa.