

Supplemental Information for:

Sampling strategy optimization to increase statistical power in landscape genomics: a simulation-based approach

Oliver Selmoni, Elia Vajana, Annie Guillaume, Estelle Rochat, Stéphane Joost

Supplementary Tab. 1. List of environmental variables employed.

Name	Geographic resolution	Source
Annual Mean Temperature	2.5 minutes	Bioclim ¹ (BIO1)
Mean Diurnal Range	2.5 minutes	Bioclim ¹ (BIO2)
Temperature Seasonality	2.5 minutes	Bioclim ¹ (BIO4)
Mean Temperature of Wettest Quarter	2.5 minutes	Bioclim ¹ (BIO8)
Annual Precipitation	2.5 minutes	Bioclim ¹ (BIO12)
Precipitation Seasonality	2.5 minutes	Bloclim ¹ (BlO15)
Precipitation of Warmest Quarter	2.5 minutes	Bioclim ¹ (BIO18)
Altitude	100 m	Marine Geoscience Data System ²

1. WorldClim - Global Climate Data | Free climate data for ecological modeling and GIS. Available at: http://www.worldclim.org/. (Accessed: 26th September 2018)

2. MGDS. Global Multi-Resolution Topography Data Synthesis. Available at: http://www.marine-geo.org/portals/gmrt/. (Accessed: 22nd August 2017)

Supplementary Box 1. Computation of the genotype matrix. The vignettes describe how genotypes were computed during simulations. At each iteration, a new genotype matrix counting 1'000 loci was generated. Ten of them were set as adaptive and followed the respective pipeline, while the others were set as neutral and computed accordingly.

Supplementary Box 2. Formulae and parameters for genotype computations

The probability function for the allele A depending on a population membership coefficient is calculated as follows:

$$p(A|PS) = \left(\frac{1-2c}{\max(PS) - \min(PS)}\right)PS + c - \left(\frac{1-2c}{\max(PS) - \min(PS)}\right)\min(PS)$$

where *PS* is a population membership coefficient and *c* a parameter representing the strength of the relationship. This parameter can range between 0 (strongest relation, *i.e.* maximal and minimal *PS* returns p=1 and p=0, respectively) and 0.5 (no relation, any level of *PS* returns p=0.5).

Similarly, probability for the allele A depending on environmental selection is calculated as follows:

$$p(A|Env) = \left(\frac{1-2s_1}{\max(Env) - \min(Env)}\right)E + s_1 - \left(\frac{1-2s_1}{\max(Env) - \min(Env)}\right)\min(Env) + s_2$$

where *Env* are the values of the environmental variable and s_1 represents the strength of selection and behaves as the *c* in the previous equation. The additional parameter s_2 provides a baseline of allele frequency.

In our simulations, we set two scenarios employing the following parameters:

- panmictic population scenario (random neutral structure): c=0.5, s₁=Unif(0.3, 0.4), s₂=Unif(-0.2,0.1) - structured population scenario (strong population structure): c=Unif(0.2,0.4), s₁=0, s₂=Unif(-0.1,0.2)

Supplementary Figure 1. Environmental gradients and fitness constraint employed in the CDPOP validation run. Panel a) and b) show the distribution of the two environmental variables across the 10by-10 cells grid used for the CDPOP simulation. Plots in panels c) and d) show the fitness constraint set for the two environmental variables and how the respective adaptive genotypes modulate mortality.

Supplementary Table 2. CDPOP vs. our simulative approach comparison metrics. The tables show the rank of the simulative variants computed with our method (and defined by parameters *m*, *c* s_1 and s_2) that best matched the CDPOP replicates. In a) and b) are shown the metrics used to compare the neutral genetic structure with the CDPOP case of a panmictic population and a structured population, respectively. The three metrics employed are 1) the average random mean squared error (RMSE) when comparing the curves describing the differential of explained variation by the genetic principal components; 2) the Kullback-Leibler Divergence (KLD) used to compare the pairwise-Fst distributions; 3) the difference in the average mantel correlation (Δ mR), which describes the link between genetic and geographic distances. The ranking coefficient is the sum of the three scaled metrics. In c) and d) the comparison concerns the adaptive genotypes computed in panmictic structured scenario of CDPOP, respectively. Here the RMSE compares, for our simulation and CDPOP runs, the allelic frequency of the adaptive genotype as a function of the environmental variable causing adaptation

rank	m	C	RMSE (PCA)	KID (Est)	AmR	Ranking Coefficient
TUIK		с 0 г			0.000577	
1	1	0.5	0.000780575	7.33E-06	0.003577	-4.35661
2	25	0.4-0.5	0.000771722	7.70E-06	0.022455	-4.25828
3	10	0.4-0.5	0.000771901	7.93E-06	0.023357	-4.24377
4	20	0.4-0.5	0.000780659	8.58E-06	0.022308	-4.21677
5	5	0.4-0.5	0.000770043	7.46E-06	0.034877	-4.21321
6	15	0.4-0.5	0.000766353	9.31E-06	0.025071	-4.17643
7	5	0.4-0.4	0.000796873	1.15E-05	0.067273	-3.88113
8	10	0.4-0.4	0.000763216	1.12E-05	0.074199	-3.87217
9	25	0.4-0.4	0.000771422	1.27E-05	0.072328	-3.81237
10	20	0.4-0.4	0.000761967	1.38E-05	0.073625	-3.7593

a) Panmictic Scenario: Neutral structure metrics

c) Panmictic Scenario: adaptive genotypes metrics

Moderate Selection					
rank	S 1	S 2	RMSE (AF)		
1	0	-0.1	0.7417767		
2	0.1	-0.1	0.75108		
3	0.1	-0.2	0.7681983		
4	0	-0.2	0.78917		
5	0.2	-0.1	0.7946361		
Strong Selection					
rank	S 1	S 2	RMSE (AF)		
1	0	0.2	0.676855		
2	0.1	0.2	0.683247		
3	0.1	0	0.710474		
4	0	0.1	0.715619		
5	0.2	0.1	0.728321		

b) Structured Scenario: Neutral structure metrics

rank	m	с	RMSE (PCA)	KLD (Fst)	ΔmR	Ranking Coefficient
1	10	0.2-0.4	0.00290909	8.17E-06	0.320549	-3.63827
2	20	0.1-0.5	0.00266099	8.85E-06	0.339198	-3.63027
3	5	0.3	0.003023145	8.38E-06	0.312132	-3.45645
4	15	0.1-0.5	0.002793301	7.57E-06	0.37057	-3.43066
5	25	0.2-0.4	0.003250162	8.42E-06	0.314625	-3.31517
6	15	0.2-0.3	0.002468453	6.72E-06	0.422087	-3.31507
7	5	0.2-0.4	0.003092629	9.91E-06	0.329403	-3.27752
8	10	0.3	0.002819477	9.84E-06	0.295631	-3.26125
9	25	0.1-0.5	0.002947686	8.05E-06	0.373038	-3.23848
10	15	0.2-0.5	0.002799946	1.02E-05	0.280361	-3.09366

d) Structured Scenario: adaptive genotypes metrics

Moderate Selection					
rank	S 1	S 2	RMSE (AF)		
1	0.4	-0.2	0.6889893		
2	0.3	-0.2	0.6895106		
3	0.2	-0.2	0.7181186		
4	0.3	-0.1	0.7319583		
5	0.2	-0.1	0.7454251		
Strong Selection					
rank	S 1	S 2	RMSE (AF)		
1	0.3	0.1	0.624262		
2	0.4	0.1	0.6417665		
3	0.2	0.1	0.6484901		
4	0.3	0	0.6709922		
5	0.4	0	0.6831192		

Supplementary Figure 2. Interaction effects. The table displays different combination of the elements defining the sampling strategy and their effect on the average of the three diagnostic parameters (row 1: TPR, row 2: FDR, row 3: PPV). For every diagnostic parameter, the two demographic scenarios are represented (column 1,3 and 5: panmictic, 2,4 and 6: structured). In columns 1-2, the combined effects of sample size (x axis) and sampling design (colored lines) are observed. In columns 3-4, the combined effects of sample size (x axis) and number of sampling locations (colored lines) are observed. In columns 5-6, the combined effects of number of sampling locations (x axis) and sampling design (colored lines) are observed.

