

Supporting Information

Copper-Catalyzed Triboration of Terminal Alkynes Using B₂**pin**₂**: Efficient Synthesis of 1,1,2-Triborylalkenes**

Xiaocui Liu, Wenbo Ming, Alexandra Friedrich, Florian Kerner, and Todd B. Marder*

anie_201908466_sm_miscellaneous_information.pdf

SUPPORTING INFORMATION

Table of Contents

I. General Information	2
II. Optimization of the Reaction Conditions	3
III. Substrate Scope	9
Experimental procedures	9
Characterization data for products	9
IV. Synthetic Applications of Triborylalkenes	20
Selective monoarylation of 2a yielding 6	20
Difluorination of 2d yielding 7a	21
Monobromination of 2d yielding 8a	22
Dibromination of 2d yielding 9a	22
Monobromination of 2 yielding 10	23
Dibromination of 2d yielding 11a	24
V. Investigations Concerning the Reaction Mechanism	25
Evidence for an alkynylboronate intermediate	25
Deuterium labeling studies	30
VI. NMR Spectra	32
VII. Single-crystal X-ray Diffraction	78
VIII. References	82

I. General Information

All reagents were purchased from Alfa-Aesar, Aldrich, ABCR or VWR, and were checked for purity by GC-MS and/or ¹H NMR spectroscopy and used as received. B₂pin₂ was kindly provided by AllyChem Co. Ltd. (Dalian, China). HPLC grade solvents were argon saturated, dried using an Innovative Technology Inc. Pure-Solv Solvent Purification System, and further deoxygenated by using the freeze-pump-thaw method. CDCl₃ was purchased from Cambridge Isotope Laboratories. All manipulations in this paper were performed in an argon-filled glove box.

Products were purified on silica gel columns using B(OH)₃-impregnated SiO₂ to suppress over-adsorption on the silica gel. Commercially available, precoated TLC plates (Polygram[®] Sil G/UV254) were purchased from Machery-Nagel. The removal of solvent was performed on a rotary evaporator *in vacuo* at a maximum temperature of 40 °C.

GC-MS analyses were performed using an Agilent 7890A gas chromatograph (column: HP-5MS 5% phenyl methyl siloxane, 30 m, \emptyset 0.25 mm, film 0.25 µm; injector: 250 °C; oven: 80 °C (2 min), 80 °C to 180 °C (20 °C min⁻¹), 180 °C to 280 °C (50 °C min⁻¹), 280 °C (5 min); carrier gas: He (1.2 mL min⁻¹)) equipped with an Agilent 5975C inert MSD with triple-axis detector operating in EI mode and an Agilent 7693A series auto sampler/injector. Elemental analysis was performed on a Leco CHNS-932 Elemental Analyzer. High-resolution mass spectra were recorded using a Thermo Fischer Scientific Exactive Plus Orbitrap MS system (ASAP, ESI or HESI probe).

All NMR spectra were recorded at ambient temperature using Bruker DRX-300 (¹H, 300 MHz; ¹³C{¹H}, 75 MHz; ¹¹B, 96 MHz), or Bruker Avance 500 NMR (¹H, 500 MHz; ¹³C{¹H}, 125 MHz; ¹¹B, 160 MHz; ¹⁹F, 471 MHz) spectrometers. ¹H NMR chemical shifts are reported relative to TMS and were referenced *via* residual proton resonance of the corresponding deuterated solvent (CDCl₃: 7.26 ppm) whereas $^{13}C{^{1}H}$ NMR spectra are reported relative to TMS *via* the carbon signal of the deuterated solvent (CDCl₃: 77.00 ppm). ¹¹B NMR chemical shifts are quoted relative to BF₃·Et₂O as the external standard. ¹⁹F NMR chemical shifts are quoted relative to CFCl₃ as the external standard.

S2

II. Optimization of the Reaction Conditions

Table 31 . Scieding of bases for the thould of or any hes	Table	S1 :	Screening	of k	bases	for the	triboration	of alk	ynes.
--	-------	-------------	-----------	------	-------	---------	-------------	--------	-------

Ρ	h	-H + B ₂ pin _{2 -}	Cu(OAc) ₂ (10 m P ⁿ Bu ₃ (20 mo	lol %) B %) → Ph	pin Bpin
	1a		toluene, 80 °	C	B́pin 2a
-	Entry	Base (1 e	quiv)	Product Yiel	d 2a ^b
-	1	4-picoli	ne	21%	
	2	N,N-dimethy	laniline	37%	
	3	DABC	0	33%	
	4	LDA		-	
	5	-		28% (16%	%)
	6	ⁱ Pr ₂ EtN		45% (38%)	
	7	2,6-lutidine		32% (15%	%)
	8	Et₃N		24%	
	9	ⁿ Pr₃N		29%	
	10	ⁱ Pr ₂ EtN + N,N-din	nethylaniline	36% (31%	%)
	11	NaOA	с	<10%	
	12	Na ₂ CC) ₃	<10%	
	13	Cs ₂ CC) ₃	0	
	14	NaOF	1	0	
	15	КОН		0	
	16	K₃PO	4	<10%	

^a Standard conditions: In an argon-filled glove box, **1a** (0.2 mmol, 1 equiv), Cu(OAc)₂ (10 mol %), P^{*n*}Bu₃ (20 mol %), base (1 equiv), B₂pin₂ (3 equiv), toluene (1 mL), at 80 °C for 24 h. ^{*b*} The product yield was determined by GC-MS using *n*-dodecane as the internal calibration standard. Isolated yields are given in parentheses. DABCO: 1,4-diazabicyclo[2.2.2]octane; LDA: lithium diisopropylamide.

Ph─────H 1a	+ B ₂ pin ₂	Cu-catalyst (10 mo P ⁿ Bu ₃ (20 mol % ⁱ Pr ₂ EtN toluene, 80 °C	l %) Bpin → Ph Bpin Bpin 2a
Entry	Cata	alyst (10 mol %)	Product Yield 2a ^b
1		CuBr ₂	0
2		Cu(OTf) ₂	0
3	С	u(NO ₃) ₂ .3H ₂ O	0
4		CuSO ₄	0
5		Cu(acac) ₂	0
6		CuCl ₂	0
7 ^c		CuCl ₂	42%
8 ^d		CuCl ₂	<10%
9		CuOAc	29% (31%)
10		Cul	0
11		CuCl	0
12		Cu ₂ O	0

Table S2: Screening of Cu-catalysts for the triboration of alkynes.^a

^a Standard conditions: In an argon-filled glove box, **1a** (0.2 mmol, 1 equiv), Cu-catalyst (10 mol %), P^{*n*}Bu₃ (20 mol %), DIPEA (1 equiv), B₂pin₂ (3 equiv), toluene (1 mL), at 80 °C for 24 h. ^{*b*} The product yield was determined by GC-MS using *n*-dodecane as the internal calibration standard. Isolated yields are given in parentheses. ^c 20 mol % of KOAc added. ^d 20 mol % of KOAc and 20 mol % of 18-Crown-6 added.

Ph─────H 1a	+ B ₂ pin ₂ - ⁱ Pr ₂ EtN toluene, 80 °C	Bpin Ph Bpin 2a
Entry	Ligand (20 mol %)	Product Yield 2a ^b
1	PPh ₃	18%
2	Phen	< 10%
3	BPY	0
4	TFP	25%
5	P(p-tolyl) ₃	14%
6	P(o-tolyl) ₃	0
7	P(1-naphthyl) ₃	0
8	P ^t Bu₃ (1M in toluene)	< 10%
9	DPPP	13%
10	Xantphos	0
11	DPPF	17%
12	TBP	0
13	Xphos	0
14	PCy ₃	33%

Table S3: Screening of ligands for the triboration of alkynes.^a

^a Standard conditions: In an argon-filled glove box, **1a** (0.2 mmol, 1 equiv), Cu(OAc)₂ (10 mol %), ligand (20 mol %), DIPEA (1 equiv), B₂pin₂ (3 equiv), toluene (1 mL), at 80 °C for 24 h. ^bThe product yield was determined by GC-MS using n-dodecane as the internal calibration standard. Phen: 1,10-BPY: TFP: tri(2-furyl)phosphine; DPPP: 1,3phenanthroline; 2,2'-bipyridine; bis(diphenylphosphinferrocene); bis(diphenylphosphino)propane; DPPF: 1,1'-TBP: tris(hydroxymethyl)propane bicyclic phosphite.

PhH + 1a	Cu(OAc) ₂ (10 mol % B ₂ pin ₂ <u>PⁿBu₃ (20 mol %)</u> ⁱ Pr ₂ EtN solvent, 80 °C) Bpin → Ph Bpin Bpin 2a
Entry	Solvent (1 mL)	Product Yield 2a ^b
1	ethyl acetate	15%
2	MeCN	< 10%
3	MTBE	35%
4	THF	10%
5	hexane	16%
6	1,2-dioxane	14%
7	diethyl ether	30%
8	acetone	0

Table S4: Screening of solvents for the triboration of alkynes.^a

^a Standard conditions: In an argon-filled glove box, **1a** (0.2 mmol, 1 equiv), Cu(OAc)₂ (10 mol %), P^{*n*}Bu₃ (20 mol %), DIPEA (1 equiv), B₂pin₂ (3 equiv), solvent (1 mL), at 80 °C for 24 h. ^{*b*} The product yield was determined by GC-MS using *n*-dodecane as the internal calibration standard. MTBE: methyl tert-butyl ether; THF: tetrahydrofuran

Table S5: Screening of temperatures for the triboration of alkynes.^a

Ph— — —H 1a	+ B ₂ pin ₂	Cu(OAc) ₂ (10 mol %) P ⁿ Bu ₃ (20 mol %) ⁱ Pr ₂ EtN toluene, temp.	Bpin Ph Bpin Bpin 2a	
Entry	T/ °C	Produc	t Yield 2a ^b	
1	40	< 10%		
2	60	14%		
3	90	3	51%	
4	100	3	51%	
5	110	2	6%	

^a Standard conditions: In an argon-filled glove box, **1a** (0.2 mmol, 1 equiv), $Cu(OAc)_2$ (10 mol %), P^nBu_3 (20 mol %), DIPEA (1 equiv), B_2pin_2 (3 equiv), toluene (1 mL), 24 h. ^{*b*} The product yield was determined by GC-MS using *n*-dodecane as the internal calibration standard.

^a Standard conditions: In an argon-filled glove box, **1a** (0.2 mmol, 1 equiv), Cu(OAc)₂ (10 mol %), P^{*n*}Bu₃ (20 mol %), B₂pin₂ (3 equiv), additives (1 equiv), toluene (1 mL), at 80 °C for 24 h. ^{*b*} The product yield was determined by GC-MS using *n*-dodecane as the internal calibration standard. Isolated yields are given in parentheses.

Scheme S1: Screening of additives for the triboration of alkynes.

			$Cu(OAc)_2$ (10 mol %)	Bpin	
	Ph	B ₂ pin ₂	acrylonitrile (1equiv)	Ph Bpir	١
	0.2 mmol	3 equiv	toluene, 80 °C	Bpin	
	1a			2a	
 Entry	Catalyst	Ligand	Time/ h	T/ °C	Product
					Yield 2a ^b
 1 ^c	Cu(OAc) ₂	P ⁿ Bu ₃	24	80	42% (37%)
2	Cu(OAc) ₂	P ⁿ Bu₃	14	80	49%
3	Cu(OAc) ₂	P ⁿ Bu₃	14	r.t	0
4	Cu(OAc) ₂	P ⁿ Bu₃	14	60	22%
5	Cu(OAc) ₂	P ⁿ Bu₃	12	80	47% (44%)
6	Cu(OAc) ₂	P^nBu_3	12	90	38%
7	Cu(OAc) ₂	P^nBu_3	12	100	42%
8	Cu(OAc) ₂		12	80	0
9		P^nBu_3	12	80	0
10	Cu(OAc) ₂	P^nBu_3	10	80	(60%)
11	Cu(OAc) ₂	P^nBu_3	8	80	(51%)
12	Cu(OAc) ₂	P^nBu_3	6	80	(52%)
13	Cu(OAc) ₂	P^nBu_3	5	80	(52%)
14	Cu(OAc) ₂	P ⁿ Bu ₃	4	80	78% (73%)
15	Cu(OAc) ₂	P ⁿ Bu ₃	3	80	(39%)
16	Cu(OAc) ₂	P ⁿ Bu ₃	2	80	(60%)
17 ^d	Cu(OAc) ₂	P ⁿ Bu ₃	4	80	(31%)
18 ^e	Cu(OAc) ₂	P ⁿ Bu ₃	4	80	67% (59%)

Table S6: Screening of other conditions for the triboration of alkynes.^a

^a Standard conditions: In an Ar-filled glove box, **1a** (0.2 mmol, 1 equiv), $Cu(OAc)_2$ (10 mol %), P^nBu_3 (20 mol %), B_2pin_2 (3 equiv), acrylonitrile (1 equiv), toluene (1 mL). ^{*b*}The product yield was determined by GC-MS using *n*-dodecane as the internal calibration standard. Isolated yields are given in parentheses. ^{c *i*}Pr₂EtN (1 equiv). ^d Without acrylonitrile. ^e P^{*n*}Bu₃ (10 mol %)

III. Substrate Scope

Experimental procedures

General procedure: In a glove box, to a 10 mL thick-walled reaction tube equipped with a magnetic stirring bar, Cu(OAc)₂ (10 mol %, 3.6 mg, 0.02 mmol), B₂pin₂ (3 equiv, 152.4 mg, 0.6 mmol) and toluene (1 mL) were added. Then, phenylacetylene **1a** (20.4 mg, 22 μ L, 0.2 mmol), acrylonitrile (10.6 mg, 13 μ L, 0.2 mmol) and P^{*n*}Bu₃ (8.1 mg, 9.9 μ L, 0.04 mmol) were added in that order and the tube was sealed with a crimped septum cap. The reaction was heated at 80 °C under argon for the indicated amount of time. The reaction mixture was then diluted with Et₂O (4 mL) and filtered through a plug of celite (Ø 3 mm × 8 mm) in air with copious washing (Et₂O). The solvents were removed *in vacuo*, and the residue was purified by column chromatography on silica gel (pentane: ethyl acetate = 25:1).

Characterization data for products

2,2',2"-(2-phenylethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2a)

Bpin Bpin Bpin

Isolated yield: 73%

White solid, m.p: 244.8 °C. Its spectroscopic data are consistent with a literature report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.29 – 7.26 (m, 2H), 7.24 – 7.20 (m, 2H), 7.19 – 7.15 (m, 1H), 1.30 (s, 12H), 1.27 (s, 12H), 1.08 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 145.2, 127.7, 127.6, 126.6, 83.8, 83.4, 83.1, 24.9, 24.8, 24.5. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.9.

HRMS (ASAP): m/z for $C_{26}H_{42}B_3O_6$ [M+H⁺] calcd: 483.3255, found: 483.3245

2,2',2"-(2-(p-tolyl)ethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2b)

Bpin Bpin Bpin

Isolated yield: 72%

White solid, m.p: 230.9 °C. Its spectroscopic data are consistent with a literature report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.18 (d, *J* = 8 Hz, 2H), 7.03 (d, *J* = 8 Hz, 2H), 2.29 (s, 3H), 1.30 (s, 12H), 1.27 (s, 12H), 1.10 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 142.3, 136.3, 128.3, 127.6, 83.8, 83.4, 83.1, 24.9, 24.8, 24.5, 21.2. The carbon atoms directly attached to boron were not detected,

likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.8.

HRMS (ASAP): m/z for $C_{27}H_{44}B_3O_6$ [M+H⁺] calcd: 497.3412, found: 497.3402

2,2',2"-(2-(m-tolyl)ethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2c)

Isolated yield: 58%

White solid, m.p: 230.6 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.1 – 7.1 (m, 1H), 7.1 – 7.1 (m, 2H), 7.0 – 7.0 (m, 1H), 2.28 (s, 3H), 1.30 (s, 12H), 1.27 (s, 12H), 1.09 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 145.1, 136.8, 128.5, 127.5, 127.5, 124.7, 83.8, 83.4, 83.1, 24.9, 24.8, 24.5, 21.4. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.6.

HRMS (ASAP): m/z for $C_{27}H_{44}B_3O_6$ [M+H⁺] calcd: 497.3412, found: 497.3414.

Anal. Calcd for C₂₇H₄₃B₃O₇: C, 65.37; H, 8.74; Found: C, 65.28; H, 8.54.

2,2',2"-(2-(4-methoxyphenyl)ethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (2d)

Isolated yield: 70%

White solid, m.p: 137.1 °C. Its spectroscopic data are consistent with a literature report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.23 (d, *J* = 9 Hz, 2H), 6.78 (d, *J* = 9 Hz, 2H), 3.77 (s, 3H), 1.30 (s, 12H), 1.27 (s, 12H), 1.11 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.7, 137.9, 129.0, 113.1, 83.8, 83.3, 83.1, 55.2, 24.9, 24.8, 24.6. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.4.

HRMS (ASAP): m/z for $C_{27}H_{44}B_3O_7$ [M+H⁺] calcd: 513.3361, found: 513.3353.

2,2',2"-(2-(3-methoxyphenyl)ethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (2e)

Isolated yield: 58%

White solid, m.p: 217.5 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.2 – 7.1 (m, 1H), 6.9 (ddd, J = 8, 2, 1 Hz, 1H), 6.8 (dd, J = 3, 2 Hz, 1H), 6.7 (ddd, J = 8, 3, 1 Hz, 1H), 3.77 (s, 3H), 1.30 (s, 12H), 1.27 (s, 12H), 1.08 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.9, 146.7, 128.6, 120.1, 113.0, 112.7, 83.8, 83.4, 83.2, 55.0, 24.9, 24.8, 24.5. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.7.

HRMS (ASAP): m/z for $C_{27}H_{44}B_3O_7$ [M+H⁺] calcd: 513.3361, found: 513.3362.

Anal. Calcd for C₂₇H₄₃B₃O₇: C, 63.33; H, 8.46; Found: C, 63.45; H, 8.71.

2,2',2"-(2-(2-methoxyphenyl)ethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (2f)

Isolated yield: 49%

White solid, m.p: 166.2 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.17 – 7.09 (m, 2H), 6.80 (apparent td, *J* = 7, 1 Hz, 1H), 6.75 (dd, *J* = 8, 1 Hz, 1H), 3.73 (s, 3H), 1.31 (s, 12H), 1.25 (s, 12H), 1.06 (s, 12H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 156.4, 135.2, 129.8, 128.1, 120.3, 109.8, 83.5, 83.3, 83.0, 55.1, 24.9, 24.7, 24.5. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 31.0.

HRMS (ASAP): m/z for $C_{27}H_{44}B_3O_7$ [M+H⁺] calcd: 513.3361, found: 513.3357.

Anal. Calcd for C₂₇H₄₃B₃O₇: C, 63.33; H, 8.46; Found: C, 63.05; H, 8.56.

N,N-dimethyl-4-(1,2,2-tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)vinyl)aniline (2g)

Isolated yield: 35%

White solid, m.p: 220.3 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, J = 9 Hz, 2H), 6.62 (d, J = 9 Hz, 2H), 2.91 (s, 6H), 1.29 (s, 12H), 1.28 (s, 12H), 1.14 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 149.8, 134.0, 128.7, 112.0, 83.6, 83.1, 82.9, 40.7, 24.9 (2C), 24.6. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.4.

HRMS (ASAP): m/z for $C_{28}H_{47}B_3NO_6$ [M+H⁺] calcd: 526.3677, found: 526.3672.

Anal. Calcd for C₂₈H₄₆B₃NO₆: C, 64.05; H, 8.83; N, 2.67; Found: C, 63.91; H, 9.03; N, 2.63.

2,2',2"-(2-(4-fluorophenyl)ethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (2j)

Isolated yield: 72%

White solid, m.p: 235.6 °C.

¹H NMR (500 MHz, CDCl₃) δ 7.26-7.21 (m, 2H), 6.95-6.88 (m, 2H), 1.30 (s, 12H), 1.26 (s, 12H), 1.09 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 162.0 (d, *J* = 245 Hz), 141.2 (d, *J* = 4 Hz), 129.4 (d, *J* = 8 Hz), 114.3 (d, *J* = 21 Hz), 84.0, 83.5, 83.2, 24.9, 24.8, 24.5. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening. ¹¹B NMR (160 MHz, CDCl₃) δ 30.7.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -116.7 (tt, *J* = 9, 6 Hz).

HRMS (ASAP): m/z for $C_{26}H_{41}B_3F_1O_6$ [M+H⁺] calcd: 501.3161, found: 501.3156.

Anal. Calcd for $C_{26}H_{40}B_3F_1O_6$: C, 62.45; H, 8.06; Found: C, 62.96; H, 8.19.

2,2',2"-(2-(3-fluorophenyl)ethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (2k)

Isolated yield: 59%

White solid, m.p: 196.0 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.19 (td, *J* = 8, 6 Hz, 1H), 7.04 (ddd, *J* = 8, 2, 1 Hz, 1H), 6.99 (ddd, *J* = 10, 3, 2 Hz, 1H), 6.87 (dddd, *J* = 9, 8, 3, 1 Hz, 1H), 1.31 (s, 12H), 1.27 (s, 12H), 1.10 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 162.3 (d, *J* = 245 Hz), 147.4 (d, *J* = 7 Hz), 129.0 (d, *J* = 8 Hz), 123.5 (d, *J* = 3 Hz), 114.7 (d, *J* = 21 Hz), 113.4 (d, *J* = 21 Hz), 84.0, 83.5, 83.3, 24.9, 24.8, 24.5. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.7.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -114.6 (dddd, *J* = 10, 9, 6, 1 Hz).

HRMS (ASAP): m/z for $C_{26}H_{41}B_3FO_6$ [M+H⁺] calcd: 501.3161, found: 501.3162.

Anal. Calcd for C₂₆H₄₀B₃FO₆: C, 62.45; H, 8.06; Found: C, 62.80; H, 8.37.

2,2',2"-(2-(3-chlorophenyl)ethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (2l)

Isolated yield: 56%

White solid, m.p: 186.2 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.27 – 7.26 (m, 1H), 7.17 – 7.14 (m, 3H), 1.31 (s, 12H), 1.27 (s, 12H), 1.10 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 146.9, 133.4, 128.8, 127.9, 126.6, 125.9, 84.0, 83.6, 83.4, 24.9, 24.8, 24.5. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.6.

HRMS (ASAP): m/z for $C_{26}H_{41}B_3CI_1O_6$ [M+H⁺] calcd: 517.2865, found: 517.2870. **Anal. Calcd** for $C_{26}H_{40}B_3CIO_6$: C, 60.46; H, 7.81; Found: C, 60.48; H, 7.95.

2,2',2"-(2-(4-(trifluoromethyl)phenyl)ethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2m)

Isolated yield: 47%

White solid, m.p: 201.0 °C. Its spectroscopic data are consistent with a literature report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.49 (d, *J* = 8 Hz, 2H), 7.35 (d, *J* = 8 Hz, 2H), 1.32 (s, 12H), 1.27 (s, 12H), 1.06 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 148.9, 128.5 (q, *J* = 32 Hz), 128.0, 124.5 (q, *J* = 272 Hz), 124.5 (q, *J* = 4 Hz), 84.1, 83.7, 83.4, 24.9, 24.7, 24.4. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening. ¹¹B NMR (160 MHz, CDCl₃) δ 30.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -62.3.

HRMS (ASAP): m/z for $C_{27}H_{41}B_3F_3O_6$ [M+H⁺] calcd: 551,3129, found: 551.3124. **Anal. Calcd** for $C_{27}H_{40}B_3F_3O_6$: C, 58.96; H, 7.33; Found: C, 59.31; H, 7.64.

2,2',2"-(2-(6-methoxynaphthalen-2-yl)ethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2n)

Isolated yield: 49%

White solid, m.p: 190.3 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.69 – 7.59 (m, 3H), 7.43 (dd, *J* = 8, 2 Hz, 1H), 7.11 – 7.04 (m, 2H), 3.90 (s, 3H), 1.32 (s, 12H), 1.29 (s, 12H), 1.02 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.2, 141.0, 133.6, 129.6, 128.7, 127.0, 126.2, 125.9, 118.3, 105.6, 83.9, 83.4, 83.1, 55.2, 24.9, 24.8, 24.5. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening. ¹¹B NMR (160 MHz, CDCl₃) δ 30.7.

HRMS (ASAP): m/z for $C_{31}H_{46}B_3O_7$ [M+H⁺] calcd: 563.3517, found: 563.3514. **Anal. Calcd** for $C_{31}H_{45}B_3O_7$: C, 66.24; H, 8.07; Found: C, 66.46; H, 8.11.

2,2',2"-(2-(thiophen-3-yl)ethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (20)

Bpin Bpin **B**pin

Isolated yield: 61%

White solid, m.p: 170.4 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.22 (dd, *J* = 3, 1 Hz, 1H), 7.15 (dd, *J* = 5, 3 Hz, 1H), 7.10 (dd, *J* = 5, 1 Hz, 1H), 1.29 (s, 12H), 1.27 (s, 12H), 1.15 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 146.2, 128.2, 124.2, 122.1, 83.8, 83.4, 83.3, 24.9, 24.8, 24.6. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.7.

HRMS (ASAP): m/z for $C_{24}H_{40}B_3O_6S_1$ [M+H⁺] calcd: 489.2819, found: 489.2811.

Anal. Calcd for C₂₄H₃₉B₃O₆S: C, 59.06; H, 8.05; S, 6.57; Found: C, 59.27; H, 8.36; S, 6.01.

2,2',2"-(3-phenylprop-1-ene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (2p)

Isolated yield: 69%

White solid, m.p: 167.2 °C. Its spectroscopic data are consistent with a literature report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.32 – 7.29 (m, 2H), 7.21 – 7.16 (m, 2H), 7.12 – 7.07 (m, 1H), 3.76 (s, 2H), 1.29 (s, 12H), 1.25 (s, 12H), 1.07 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 140.8, 129.7, 127.8, 125.4, 83.5, 83.3, 83.1, 43.6, 24.9, 24.8, 24.6. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.7.

HRMS (ASAP): m/z for $C_{27}H_{44}B_3O_7$ [M+H⁺] calcd: 497.3412, found: 497.3412.

2,2',2"-(4-phenylbut-1-ene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2q)

Isolated yield: 74%

White solid, m.p: 226.8 °C. Its spectroscopic data are consistent with a literature report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 7.26 (d, *J* = 1 Hz, 2H), 7.25 (s, 2H), 7.17 – 7.12 (m, 1H), 2.66 (s, 4H), 1.31 (s, 12H), 1.27 (s, 12H), 1.25 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 143.5, 128.5, 128.1, 125.3, 83.7, 83.3, 83.0, 40.2, 37.2, 24.9, 24.9, 24.8. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.6.

HRMS (ASAP): m/z for $C_{28}H_{46}B_3O_6$ [M+H⁺] calcd: 511.3568, found: 511.3571.

2,2',2"-(hex-1-ene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2r)

Isolated yield: 58%

White solid, m.p: 216.2 °C. Its spectroscopic data are consistent with a literature report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 2.36 (t, *J* = 7 Hz, 2H), 1.38 – 1.29 (m, 4H), 1.28 (s, 12H), 1.24 (s, 12H), 1.23 (s, 12H), 0.86 (t, *J* = 7 Hz, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 83.5, 83.1, 82.8, 37.5, 32.7, 24.9, 24.8, 24.7, 22.8,

14.1. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.8.

HRMS (ASAP): m/z for $C_{24}H_{46}B_3O_6$ [M+H⁺] calcd: 463.3568, found: 463.3569.

2,2',2"-(2-cyclohexylethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2-

dioxaborolane) (2s)

Isolated yield: 71%

White solid, m.p: 278.6 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 2.32 (tt, *J* = 12, 4 Hz, 1H), 1.76 – 1.58 (m, 6H), 1.48 – 1.34 (m, 2H), 1.27 (s, 12H), 1.25 (s, 12H), 1.23 (s, 12H), 1.22 – 1.06 (m, 2H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 83.3, 83.0, 82.9, 49.9, 32.2, 26.6, 26.1, 25.1, 24.9, 24.7. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.7.

HRMS (ASAP): m/z for $C_{26}H_{48}B_3O_6$ [M+H⁺] calcd: 489.3725, found: 489.3726.

Anal. Calcd for C₂₆H₄₇B₃O₆: C, 63.98; H, 9.71; Found: C, 64.38; H, 9.90.

2,2',2"-(2-cyclopentylethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (2t)

Isolated yield: 64%

White solid, m.p: 278.6 °C. Its spectroscopic data are consistent with a literature report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 2.87 – 2.75 (apparent quintet, *J* = 9 Hz,1H), 1.77 – 1.44 (m, 8H), 1.26 (s, 12H), 1.24 (s, 12H), 1.23 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 83.3, 83.0, 82.9, 50.6, 32.6, 26.1, 25.1, 24.9, 24.7. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.6.

HRMS (ASAP): m/z for $C_{26}H_{46}B_3O_6$ [M+H⁺] calcd: 487.3568, found: 487.3565.

2,2',2"-(2-cyclopropylethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (2u)

Bpin Bpin **b**pin

Isolated yield: 54%

White solid, m.p: 233.4 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 1.94 (tt, *J* = 8, 5 Hz, 1H), 1.24 (s, 12H), 1.24 (s, 24H), 0.77 (m, 2H), 0.71 – 0.63 (m, 2H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 83.4, 82.9, 82.8, 25.0, 24.9, 24.7, 20.2, 7.5. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.6.

HRMS (ASAP): m/z for $C_{23}H_{42}B_3O_6$ [M+H⁺] calcd: 447.3255, found: 447.3258.

Anal. Calcd for C₂₃H₄₁B₃O₆: C, 61.94; H, 9.27; Found: C, 62.12; H, 9.42.

2,2',2"-(2-(cyclohex-1-en-1-yl)ethene-1,1,2-triyl)tris(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (2v)

Isolated yield: 52%

White solid, m.p: 235 °C. Its spectroscopic data are consistent with a literature report.^[1]

¹**H NMR** (500 MHz, CDCl₃) δ 5.48 (tt, *J* = 4, 2 Hz, 1H), 2.10 (m, 2H), 2.05 – 1.97 (m, 2H), 1.65 – 1.56 (m, 2H), 1.53 (m, 2H), 1.25 (s, 12H), 1.25 (s, 12H), 1.20 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 145.4, 122.4, 83.5, 83.1, 82.8, 28.0, 25.4, 24.9, 24.8, 24.7, 22.6, 22.1. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.7.

HRMS (ASAP): m/z for $C_{26}H_{46}B_3O_6$ [M+H⁺] calcd: 487.3568, found: 487.3565.

IV. Synthetic Applications of Triborylalkenes

Selective monoarylation of 2a yielding 6

In a glove box, a tube (20 mL) containing Pd(PPh₃)₄ (30 mg, 0.026 mol), **2a** (129 mg, 0.26 mmol), and 4-iodoanisole (61 mg, 0.26 mmol) was capped with a septum, and the system was evacuated and purged with argon three times. Dried THF (3 mL) and degassed aqueous K_3PO_4 (520 µL, 1.5 M, 0.78 mmol) were transferred to the system via syringes, and the mixture was stirred at 70 °C for 24 h. After cooling to room temperature, the mixture was filtered through a pad of Celite and washed through with Et₂O (25 mL). The filtrate was concentrated under vacuum, the residue was purified by flash column chromatography (ethyl acetate: hexanes = 1:10) to yield a white solid.

(*E*)-2,2'-(1-phenyl-2-(p-tolyl)ethene-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (6a)

Isolated yield: 78%; White solid, m.p: 137.4 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.31 – 7.19 (m, 5H), 7.12 – 7.06 (m, 2H), 2.33 (s, 3H), 1.10 (s, 12H), 1.08 (s, 12H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 143.4, 140.2, 136.2, 128.6, 128.1, 128.0, 127.9, 126.5, 83.5, 24.6, 21.2. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (96 MHz, CDCl₃) δ 30.3.

HRMS (ASAP): m/z for $C_{27}H_{37}B_2O_4$ [M+H⁺] calcd: 447.2872, found: 447.2866 **Anal. Calcd** for $C_{27}H_{37}B_2O_4$: C, 72.68; H, 8.73; Found: C, 72.52; H, 8.15.

(*E*)-2,2'-(1-(4-methoxyphenyl)-2-phenylethene-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (6b)

Isolated yield: 68%, White solid, m.p: 179.0 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.36 – 7.32 (m, 2H), 7.31 – 7.25 (m, 4H), 7.23 – 7.17 (m, 1H), 6.87 – 6.80 (m, 2H), 3.80 (s, 3H), 1.11 (s, 12H), 1.08 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.7, 143.4, 135.9, 129.3, 128.1, 127.9, 126.5, 113.4, 83.5, 83.5, 55.3, 24.6, 24.6. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.8.

HRMS (ASAP): m/z for $C_{27}H_{37}B_2O_5$ [M+H⁺] calcd: 463.2822, found: 463.2812

Difluorination of 2d yielding 7a

To a solution of **2d** (102.4 mg, 0.2 mmol) in MeCN (2 mL), under argon, Selectfluor (212.6 mg, 3 equiv) and NaHCO₃ (38.2 mg, 2.2 equiv) were added and the reaction mixture was stirred at r.t. for 7 h. The mixture was filtered through a pad of celite and washed through with CH_2CI_2 (25 mL). Then the solvent was removed under reduced pressure at room temperature. The residue was purified by column chromatography on silica gel (*n*-pentane: ethyl acetate = 100:1) to yield 55 mg (93%) of a colorless liquid **7a**.

¹**H NMR** (500 MHz, CDCl₃) δ 7.22 (m, 2H), 6.87 (m, 2H), 3.80 (s, 3H), 1.31 (s, 12H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 159.5 (dd, *J* = 306, 299 Hz), 158.3, 130.6 (t, *J* = 3 Hz), 124.7 (dd, *J* = 8, 1 Hz), 113.7, 83.9, 55.2, 24.7. The carbon atom directly attached to boron was not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 30.6.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -70.0 (s, br), -72.0 (d, J = 5 Hz). **HRMS** (ASAP): m/z for C₁₅H₂₀B₁F₂O₃ [M+H⁺] calcd: 297.1468, found: 297.1457

Monochlorination of 2d yielding 8a

To a solution of **2d** (102.4 mg, 0.2 mmol) in MeCN (1 mL) under argon and protected from light was added NCS (35 mg, 1.3 equiv). The reaction mixture was stirred at 60 °C for 12 h. The mixture was filtered through a pad of celite and washed through with CH_2Cl_2 (25 mL). Then the solvent was removed under reduced pressure at room temperature. The residue was purified quickly by column chromatography on silica gel (*n*-pentane: ethyl acetate = 50:1) to give the product **8a** as a white solid (59 mg, 70%).

White solid, m.p: 157.4 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.17 (d, *J* = 9 Hz, 2H), 6.81 (d, *J* = 9 Hz, 2H), 3.79 (s, 3H), 1.31 (s, 12H), 1.17 (s, 12H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 159.2, 131.8, 129.2, 113.5, 84.3, 84.3, 55.2, 24.7, 24.4. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (96 MHz, CDCl₃) δ 28.2.

HRMS (ASAP): m/z for $C_{21}H_{32}B_2CI_1O_5$ [M+H⁺] calcd: 421.2119, found: 421.2112 **Anal. Calcd** for $C_{21}H_{32}B_2CI_1O_5$: C, 59.98; H, 7.43; Found: C, 59.67; H, 7.58.

Dibromination of 2d yielding 9a

Bpin Cl ĊΙ MeO

To a solution of **2d** (102.4 mg, 0.2 mmol) in MeCN (1 mL) under argon and protected from light was added NCS (53.4 mg, 2 equiv). The reaction mixture was stirred at 60 °C for 48 h. The mixture was filtered through a pad of celite and washed through with CH_2CI_2 (25 mL). Then the solvent was removed under reduced pressure at room temperature. The residue was purified quickly by column chromatography on silica gel (*n*-pentane: diethyl ether = 100:1) to yield 34 mg (53%) of a colorless liquid **9a**.

¹**H NMR** (300 MHz, CDCl₃) δ 7.24 (d, *J* = 9 Hz, 2H), 6.88 (d, *J* = 9 Hz, 2H), 3.81 (s, 3H), 1.30 (s, 12H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 158.9, 129.6, 129.5, 125.2, 113.7, 84.6, 55.2, 24.6. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (96 MHz, CDCl₃) δ 29.4.

HRMS (ASAP): m/z for $C_{15}H_{20}B_1Cl_2O_3$ [M+H⁺] calcd: 329.0877, found: 329.0867.

Monobromination of 2 yielding 10

To a solution of **2** (0.2 mmol) in MeCN (1 mL) under argon and protected from light was added N-bromosuccinimide (46.3 mg, 1.3 equiv). The reaction mixture was stirred at r.t. for 72 h, and then washed with a saturated solution of $Na_2S_2O_3$ (10 mL). The organic phase was extracted with CH_2Cl_2 (3 x 10 mL), dried over MgSO₄ and filtered. The solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (*n*-pentane: ethyl acetate = 50:1) to give the product **10a** as a white solid (67 mg, 75%).

(*E*)-2,2'-(1-bromo-2-(p-tolyl)ethene-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2dioxaborolane) (10a)

Bpin Br . Bpin

Isolated yield: 75%; White solid, m.p: 200.7 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.14 (d, *J* = 8 Hz, 2H), 7.07 (d, *J* = 8 Hz, 2H), 2.31 (s, 3H), 1.32 (s, 12H), 1.16 (s, 12H).

¹³C{¹H} NMR (75 MHz, CDCl₃) δ 137.8, 137.2, 128.8, 127.4, 84.3, 84.3, 24.7, 24.3, 21.2. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (96 MHz, CDCl₃) δ 28.5.

HRMS (ASAP): m/z for $C_{21}H_{32}B_2Br_1O_4$ [M+H⁺] calcd: 449.1665, found: 449.1661 **Anal. Calcd** for $C_{21}H_{31}B_2BrO_4$: C,56.18; H, 6.96; Found: C, 56.83; H, 7.13.

(E)-2,2'-(1-bromo-2-(4-methoxyphenyl)ethene-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (10b)

Reaction time: 2 h; Isolated yield: 70%; White solid, m.p: 249.0 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.19 (d, *J* = 9 Hz, 2H), 6.80 (d, *J* = 9 Hz, 2H), 3.78 (s, 3H), 1.32 (s, 12H), 1.17 (s, 12H).

¹³C{¹H} NMR (126 MHz, CDCl₃) δ 159.2, 133.3, 128.8, 113.6, 84.3, 84.3, 55.2, 24.8, 24.3. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (160 MHz, CDCl₃) δ 28.1.

HRMS (ASAP): m/z for $C_{21}H_{32}B_2Br_1O_5$ [M+H⁺] calcd: 465.1614, found: 465.1613 **Anal. Calcd** for $C_{21}H_{31}B_2BrO_5$: C, 54.24; H, 6.72; Found: C, 54.87; H, 6.79.

Dibromination of 2d yielding 11a

Bpin Br . Br MeO

To a solution of **2d** (102.4 mg, 0.2 mmol) in MeCN (1 mL) under argon and protected from light was added N-bromosuccinimide (71.2 mg, 2 equiv). The reaction mixture was stirred at r.t. for 72 h. The mixture was filtered through a pad of celite and washed through with CH_2Cl_2 (25 mL). Then the solvent was removed under reduced pressure at room temperature. The residue was purified quickly by column chromatography on silica gel (*n*-pentane: diethyl ether = 20:1) to yield 74 mg (86%) of a colorless liquid **11a**.

¹**H NMR** (300 MHz, CDCl₃) δ 7.22 (m, 2H), 6.88 (m, 2H), 3.81 (s, 3H), 1.29 (s, 12H). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 158.9, 132.1, 129.0, 113.8, 94.2, 84.7, 55.2, 24.6. The carbon atoms directly attached to boron were not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (96 MHz, CDCl₃) δ 29.6.

HRMS (ASAP): m/z for $C_{15}H_{20}B_1Br_2O_3$ [M+H⁺] calcd: 418.9846, found: 418.9841.

V. Investigations Concerning the Reaction Mechanism

Evidence for an alkynylboronate intermediate

Synthesis of 4,4,5,5-tetramethyl-2-(phenylethynyl)-1,3,2-dioxaborolane (4a):^[2] A solution of phenylacetylene (1.32 mL, 12 mmol) in THF (30 mL) in a 50 mL of Schlenk tube was cooled to -78 °C and, under an argon atmosphere ^{*n*}BuLi (7.5 mL, 1.6 M hexane solution, 12 mmol) was added dropwise. The reaction mixture was stirred for 1 h at -78 °C. The resulting reaction mixture was then added to a solution of 4,4,5,5-tetramethyl-2-(isopropoxy)-1,3,2-dioxaborolane (2.04 mL, 10 mmol) in THF (30 mL) at -78 °C. After being stirred for 2 h at -78 °C, the reaction mixture was quenched with 1.0 M HCl/Et₂O (12.6 mL, 12.6 mmol), and the mixture was warmed to room temperature with additional stirring for 1 h. Filtration and evaporation afforded a pale yellow oil. Bulb to bulb distillation (160 °C/2 Torr) gave **4a** (1.98 g, 8.7 mmol, 87% yield) as a white solid.

¹H NMR (300 MHz, CDCl₃) δ 7.63 – 7.46 (m, 2H), 7.39 – 7.28 (m, 3H), 1.32 (s, 12H).
¹³C{¹H} NMR (75 MHz, CDCl₃) δ 132.5, 129.4, 128.3, 121.8, 84.4, 24.7.
¹¹B NMR (96 MHz, CDCl₃) δ 24.2.

Its spectroscopic data are consistent with a literature report.^[2]

Scheme S2: Diboration of alkynylboronate.

In a 10 mL thick-walled reaction tube equipped with a magnetic stirring bar, $Cu(OAc)_2$ (10 mol %, 3.6 mg, 0.02 mmol), B_2pin_2 (3 equiv, 152.4 mg, 0.6 mmol) and toluene (1 mL) were added. Then, 1-alkynyldioxaborolane **4a** (45.6 mg, 0.2 mmol), acrylonitrile

(10.6 mg, 13 µL, 0.2 mmol) (or without acrylonitrile) and P^{*n*}Bu₃ (8.1 mg, 9.9 µL, 0.04 mmol) were added in this order. The reaction was heated at 80 °C under argon for 4 h, and then diluted with Et₂O (4 mL) and filtered through a plug of celite (\emptyset 3 mm × 8 mm) with copious washing (Et₂O). The solvents were removed *in vacuo*, and the residue was purified by column chromatography on silica gel (pentane: ethyl acetate = 25:1).

Evidence for the formation of $R-C_6H_4-C\equiv C-Bpin$ (4j, R = F) as a reaction intermediate

In a Young's tap NMR tube, $Cu(OAc)_2$ (10 mol %, 1.8 mg, 0.01 mmol), B_2pin_2 (3 equiv, 76.2 mg, 0.3 mmol) and toluene (0.7 mL) were added. Then, alkyne **1j** (12 mg, 0.1 mmol), acrylonitrile (5.3 mg, 6.5 µL, 0.1 mmol) and P^nBu_3 (4 mg, 4.5 µL, 0.02 mmol) were added in this order. The mixture was kept under argon at 80 °C. The formation of **4j** was detected by *in situ* ¹⁹F NMR spectroscopy and GC/MS (Figure S1).

Figure S1 (a). Reaction progress monitored by *in situ* ¹⁹F NMR spectroscopy (471 MHz)

Figure S1 (b). GC/MS of an authentic sample of **4j** (m/z for $C_{14}H_{16}BFO_2$ [M]⁺ calcd: 246, found: 246) prepared using the method described in: E. A. Romero, R. Jazzar, G. Bertrand, *Chem. Sci.* **2017**, *8*, 165-168.

-108.99 -109.00 -109.01 -109.01 -109.01 -109.02 -109.02 -109.02 -109.03 -109.03

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -17

Figure S1 (c). ¹⁹F NMR (471 MHz, toluene) spectrum of authentic **4j** (δ -109.0; td, *J* = 9, 5 Hz).

Deuterium labeling studies

Deuterium labeling studies were conducted using 1-deutero-2-phenylethyne **1a**-*d* as the substrate (the level of deuterium content was 90%, as shown below in **Figure S2**) under the standard reaction conditions.^[3] The reaction gave **3a**-*d*₁, **3a**-*d*₂, **3a**-*d*₃, and **3a** in a 2:1:5:2 ratio (see NMR spectrum in **Figure S3**). HRMS analysis indicated the formation of **5**-*d* (see **Figure S4**).

Figure S2. ¹H NMR spectrum of **1a**-*d*. ¹H NMR (200 MHz, CDCl₃) δ 7.6 – 7.4 (m, 2H), 7.4 – 7.3 (m, 3H), 3.1 (s, 0.1H).

Figure S3. ¹H NMR spectrum of 3a (300 MHz, CDCl₃).

Figure S4. **HRMS** (ASAP) of **5**-*d*: m/z for C₉H₁₅DBNO₂ [M⁺] calcd: 182.1331, found: 182.1346.

VI. NMR Spectra

S33

¹¹B NMR spectrum (160 MHz, CDCl₃) of **2d**

- 30.42

S41

^{68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4}

68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4

¹⁹F NMR spectrum (470 MHz, CDCl₃) of **2k**

-88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142

CI

. Bpin 21

Bpin

¹H NMR spectrum (500 MHz, CDCl₃) of 2m

 $^{19}\mathsf{F}$ NMR spectrum (470 MHz, CDCl₃) of 2m

S52

S54

¹H NMR spectrum (500 MHz, CDCl₃) of **2r**

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5

¹H NMR spectrum (500 MHz, CDCl₃) of **2u**

¹H NMR spectrum (500 MHz, CDCl₃) of **2v**

¹H NMR spectrum (500 MHz, CDCl₃) of **6b**

68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4

¹H NMR spectrum (300 MHz, CDCl₃) of **4a**

VII. Single-crystal X-ray Diffraction

Crystal structure determination Crystals suitable for single-crystal X-ray diffraction were selected, coated in perfluoropolyether oil, and mounted on MiTeGen sample holders. Diffraction data were collected on Bruker X8 Apex II 4-circle diffractometers with CCD area detectors using Mo-Ka radiation monochromated by graphite (6b, **10b**) or multi-layer focusing mirrors (**2a**). The crystals were cooled using an Oxford Cryostreams or Bruker Kryoflex II low-temperature device. Data were collected at 100 K. The images were processed and corrected for Lorentz-polarization effects and absorption as implemented in the Bruker software packages. The structures were solved using the intrinsic phasing method (SHELXT)^[4] and Fourier expansion technique. All non-hydrogen atoms were refined in anisotropic approximation, with hydrogen atoms 'riding' in idealized positions, by full-matrix least squares against F^2 of all data, using SHELXL^[5] software and the SHELXLE graphical user interface.^[6] The crystal structure of **2a** was solved in space group $P2_1$ and transformed to higher symmetry (space group $P2_1/c$) using the PLATON program.^[7] The PLATON program^[7] was also used for the determination of the occurrence of twinning. The crystal structure of 2a was refined as a twin applying the twin matrix (-1 0 0, 0 -1 0, 0 0 1). The twin component was refined to 47.5%. The crystal structure of 10b was refined as a twin applying the twin matrix (0 2 0, 0.5 0 0, 0 0 -1). The twin component was refined to 1.9%. Diamond^[8] software was used for graphical representation. Crystal data and experimental details are listed in Table S7; full structural information has been deposited with Cambridge Crystallographic Data Centre. CCDC-1918365 (2a), 1918366 (6b), and 1918367 (10b).

Table S7: Single-crystal X-ray diffraction data and structure refinements of **2a**, **6b**,and **10b**.

Data	2a	6b	10b
CCDC number	1918365	1918366	1918367
Empirical formula	$C_{26}H_{41}B_3O_6$	$C_{27}H_{36}B_2O_5$	$C_{21}H_{31}B_2BrO_5$
Formula weight /	482.02	462.18	464.99
g⋅mol ^{−1}			
Т/К	100(2)	100(2)	100(2)
λ / Å, radiation	ΜοΚα 0.71073	ΜοΚα 0.71073	ΜοΚα 0.71073
Crystal size / mm ³	0.15×0.30×0.40	0.21×0.32×0.70	0.19×0.30×0.34
Crystal color, habit	colorless block	colorless block	colorless block
μ / mm ⁻¹	0.077	0.079	1.841
Crystal system	Monoclinic	Triclinic	Orthorhombic
Space group	P2 ₁ /c	Pī	$P2_{1}2_{1}2_{1}$
a/Å	13.084(7)	9.492(3)	18.711(5)
b/Å	11.994(5)	11.493(7)	9.336(2)
c/Å	17.812(7)	13.055(3)	12.982(3)
α/°	90	72.7910(10)	90
β/°	90.124(12)	74.7050(10)	90
γ/°	90	74.3700(10)	90
Volume / Å ³	2795(2)	1283.7(9)	2267.6(9)
Z	4	2	4
$ ho_{calc}$ / g·cm $^{-3}$	1.145	1.196	1.362
F(000)	1040	496	968
heta range / °	1.556 - 26.053	1.667 - 26.022	1.088 - 30.039
Reflections collected	20326	23816	76146
Unique reflections	5512	5067	6647
Parameters / restraints	329 / 0	393 / 0	458 / 625
GooF on F ²	1.027	1.023	1.246
R ₁ [l>2σ(l)]	0.0465	0.0387	0.0466
wR ² (all data)	0.1091	0.0982	0.1049
Max. / min. residual electron density / e·Å ⁻³	0.591 /0.239	0.273 / -0.233	0.543 / -1.387

Figure S5. Molecular structure of **2a** in the solid state at 100 K. Atomic displacement ellipsoids are drawn at the 50% probability level, and H atoms are omitted for clarity.

Figure S6. Molecular structure of **6b** in the solid state at 100 K. Atomic displacement ellipsoids are drawn at the 50% probability level, and H atoms are omitted for clarity. One of the Bpin moieties is disordered and only the part with 88% occupancy is shown.

Figure S7. Molecular structure of **10b** in the solid state at 100 K. Atomic displacement ellipsoids are drawn at the 50% probability level, and H atoms are omitted for clarity. The molecule is disordered except for one Bpin moiety and only the part with 85.5% occupancy is shown.

VIII. References

- [1] C. I. Lee, W. C. Shih, J. Zhou, J. H. Reibenspies, O. V. Ozerov, Angew. Chem. Int. Ed. 2015, 54, 14003-14007; Angew. Chem. 2015, 127, 14209-14213.
- [2] Y. Nishihara, M. Miyasaka, M. Okamoto, H. Takahashi, E. Inoue, K. Tanemura, K. Takagi, *J. Am. Chem. Soc.* **2007**, *129*, 12634-12635.
- [3] J. J. Eisch, W. Liu, L. Zhu, A. L. Rheingold, Eur. J. Org. Chem. 2015, 2015, 7384-7394.
- [4] G. Sheldrick, Acta Crystallogr. 2015, A71, 3-8.
- [5] G. Sheldrick, Acta Crystallogr. 2008, A64, 112-122.
- [6] C. B. Hubschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281-1284.
- [7] A. Spek, Acta Crystallogr. 2009, D65, 148-155.
- [8] Brandenburg, K. Diamond (version 4.4.0), Crystal and Molecular Structure Visualization, Crystal Impact, H. Putz & K. Brandenburg GbR, Bonn (Germany), **2017**