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S.1 Individual deployment metrics  

Table S1.  Individual southern elephant seal pup IDs alongside sex, tag deployment date, weight at departure (kg), departure date, estimated departure 

weight (kg), the last date the DSA tag transmitted, the last date the SPOT tag transmitted, the absolute difference between the last transmission dates of 

the DSA and SPOT tags (in hours), survival outcome (yes = lived, no = died), the length of the first trip in days (till death or return to Kerguelen 

Islands), and the total number of dives transmitted during this first trip.  All dates are show in a dd/mm/yy format.   
 

Pup ID Sex 

(F/M) 

Deployment 

date 

Deployment 

weight (kg) 

Departure 

date 

Departure 

weight (kg) 

DSA end 

date  

SPOT end 

date 

Abs.  diff.  end 

dates (hrs)  

Survival Length of 

first trip 

Total no.  

dives 

140059 F 03/12/14 88.0 21/12/14  76.1 20/08/15 26/11/15 2358.0 Yes 176.2 1086 

140060 M 03/12/14 85.0 12/12/14  79.4 14/06/15 26/11/15 3959.2 Yes 184.1 1192 

140061 M 03/12/14 97.0 22/12/14  83.7 23/02/15 23/02/15 18.1 No 63.9 373 

140062 F 04/12/14 61.6 08/12/14  59.8 09/09/15 25/11/15 1833.1 Yes 149.6 602 

140063 F 04/12/14 78.0 08/12/14  76.0 05/06/15 09/11/15 3788.4 Yes 154.0 798 

140064 M 04/12/14 73.4 04/12/14  73.4 13/01/15 12/01/15 3.4 No 39.8 165 

140065 M 04/12/14 83.4 07/12/14  82.0 24/12/14 24/12/14 0.4 No 17.6 102 

140066 M 26/11/14 64.0 05/12/14  59.2 04/11/15 26/11/15 534.6 Yes 176.1 1023 

140067 F 05/12/14 60.6 08/12/14  59.4 04/03/15 04/03/15 4.0 No 85.9 533 

140068 F 05/12/14 88.6 16/12/14  81.5 13/10/15 26/11/15 1055.9 Yes 187.7 1206 

140069 F 05/12/14 64.8 20/12/14  56.5 19/09/15 11/11/15 1259.8 Yes 202.2 1098 

140070 M 05/12/14 98.4 18/12/14  89.3 26/12/14 26/12/14 0.5 No 8.6 61 

140071 M 05/12/14 92.4 18/12/14  83.0 09/04/15 09/04/15 1.7 No 111.8 683 

140072 M 06/12/14 78.8 14/12/14  74.1 07/09/15 26/11/15 1929.6 Yes 147.9 980 

140073 F 05/12/14 74.2 18/12/14  66.5 31/05/15 22/07/15 1244.3 Yes 163.8 952 

140074 M 06/12/14 47.2 12/12/14  44.6 09/01/15 09/01/15 5.1 No 28.5 109 

140075 F 06/12/14 59.4 11/12/14  57.1 24/09/15 26/11/15 1520.4 Yes 138.2 974 

140076 M 06/12/14 116.4 01/01/15  96.1 03/03/15 02/03/15 28.1 No 61.7 356 

140077 F 06/12/14 109.4 27/12/14  93.6 22/08/15 13/11/15 2002.6 Yes 184.9 836 

140078 F 06/12/14 76.6 21/12/14  67.5 28/02/15 26/02/15 26.1 No 68.6 365 
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S.2 Processing of Argos location data 

Argos location filtering 

Argos location data were not equally positioned in time and were or varying quality (specified location 

class errors; www.argos-system.com).  As such, all data were processed through a hierarchical first 

difference correlated random walk state-space model (SSM), via the R package ‘bsam’ (Jonsen et al., 

2005, 2017; Jonsen, 2016).  Two Monte Carlo Markov chains of 150000 iterations, with a burn in of 

150000 samples and thinning of 100 (to reduce within chain auto-correlation), were run to obtain 

filtered location estimates at a temporal resolution of one hour.  The quality of the fit of the SSM for 

each individual was assessed visually (through plots of observed Argos and SSM estimated locations), 

whilst convergence of the Markov chain Mote Carlo algorithm was confirmed via visual observation of 

traceplots alongside the Gelman and Rubin’s shrink factor plot (Brooks and Gelman, 1998). 

Current corrections 

Because interactions with oceanic currents can distort the observed trajectories of an individual (Gaspar 

et al., 2006), prior to the generation of movement metrics, at-sea horizontal swimming behaviours were 

corrected to remove the influence of ocean currents.  Sea surface current velocities were taken from the 

delayed time all-sat-merged Global Ocean Gridded Absolute Geostrophic Velocities Anomalies L4 

product of AVISO (www.aviso.altimetry.fr) on a daily basis at a spatial resolution of 0.25
o
.  Real 

juvenile swim directions and speeds were then calculated by decomposing each hourly step of a track 

into its observed velocity components, 𝑢𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (east-west) and 𝑣𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (north-south).  The closest 

spatially time matched current velocity components, 𝑢𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡, were then subtracted from 

this to give 𝑢𝑟𝑒𝑎𝑙 and 𝑣𝑟𝑒𝑎𝑙.  A new heading was calculated as atan2(𝑢𝑟𝑒𝑎𝑙, 𝑣𝑟𝑒𝑎𝑙) × 180/π, whilst speed 

was taken for the hourly segment as √𝑢𝑟𝑒𝑎𝑙
2 + 𝑣𝑟𝑒𝑎𝑙

2 (Gaspar et al., 2006; Cotté et al., 2007). 
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S.3 Drift segment/dive identification and estimation of daily drift rates  

Southern elephant seals regularly perform resting dives where individuals cease active movement and 

“drift” in the water column (Biuw et al., 2003; Mitani et al., 2010; Gordine et al., 2015).  Vertical 

movement during these inactive periods can be used to make inferences on an individual’s buoyancy, 

which in turn reflects body composition (ratio of high-density lean to low-density lipid tissue; Biuw et 

al.  2003), and so body condition.  Animals that are positively buoyant should be in ‘better’ condition 

than those that are negatively buoyant (due to increased fat reserves). During their first trip at sea, 

juvenile elephant seals are still developing and growing, and as such, changes in buoyancy could also 

reflect the acquisition of lean muscle in addition to changes in fat reserves (Biuw et al., 2003; Orgeret 

et al., 2019).  Drift segment/dive identification was performed using a modified step-wise filtering 

process similar to that described in Biuw et al., (2003) and Gordine et al., (2015), but which also 

incorporated information from accelerometer transmissions on prey catch attempt (PrCA) behaviours 

and swimming effort.  First, the first and last broken-stick segments of each dive were removed.  

Second, all segments within which PrCA behaviours were recorded were removed.  Third, histograms 

of the average swimming efforts of dive segments (scaled by duration) were constructed.  From this, a 

bimodal distribution was evident (Figure S1), and so the break between the two modes at 4ms
-3 

was 

selected as a threshold above which segments were not retained in drift identification (drift dives 

should have low levels of active movement and thus reduced swimming efforts).   

 

Figure S1.  Histogram of average dive segment swimming efforts (scaled by segment duration).  A bimodal 

distribution is noted.  A break between the two peaks occurs at around 4ms
-3

 (marked by the vertical red line), 

suggesting the presence of two discrete behavioural groups.  Drift segments were associated with the group of 

lower swimming efforts (< 4ms
-3

). 



5 
 

Fourth, the dive zone index (DZI) of each dive was estimated following Photopoulou et al., (2015).  

The DZI describes how well a broken-stick model (BSM; Fedak et al., 2001) representation of a dive 

fits its true profile.  High values suggest a profile of more complex trajectory and vertical movement, 

whilst low values would suggest a dive with a smooth trajectory, such as a drift dive.  We constructed a 

histogram of the DZI’s of all dives and cut those segments associated with dives with DZIs above 0.2, 

which represented the upper limit of the normal distribution of dives thus far retained (Figure S2). 

 

Figure S2.  The dive zone indexes (DZI’s) of all dives thus far retained (at step four of the step-wise filtering 

process).  Dive segments associated with dives with DZIs greater than 0.2 (vertical red line) were discarded. 

Fifth, we constructed histograms of the proportion of a total dive time a segment represented (as drift 

dives segments should be of extended lengths), and also plotted these values against the absolute 

vertical speed (depth(t) – depth(t+1) where t is time in seconds) of the segment.  We found that shorter 

segment proportions were associated with unrealistic absolute vertical drift rates (sometimes in excess 

of 1.5ms
-1

; Biuw et al., 2003; Gordine et al., 2015), and so we discarded all segments with dive 

proportions of less than 0.15 (which was also the natural break in the histogram of all segment dive 

proportions; Figure S3).  Sixth, we calculated the total proportion of a dive that was comprised of drift 

segments (totalling the durations of multiple drift segments).  This extends upon the last step by 

considering the entire dive, rather than individual segments, and allows for instances where the drift 

phase may have been cut in two by the BSM.  Again, dives where all candidate drift segments 

composed less than 40% of the total dive time (proportion less than 0.4) were associated with more 

variable and unrealistic drift rates, and so were discarded (Figure S4).  Seventh, a histogram of 

estimated vertical speeds from thus far retained dive segments was constructed and used to identify 

outlier, unrealistic values.  Dive segments with vertical speeds greater than -0.5ms
-1

 and less than 
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0.3ms
-1

 were retained (Figure S5), which reflects values reported previously by Biuw et al., (2003) and 

Gordine et al., (2015).  Dive segments with vertical speeds of exactly 0ms
-1

 were also discarded as 

these were thought to represent periods when an individual was resting against the oceans floor (Figure 

S6; Biuw et al., 2003).  Indeed, such estimates generally occurred as outliers when individuals were 

within shelf-sea waters (i.e.  the Kerguelen plateau).  For a couple of individuals, this behaviour was 

verified through inspection of retrieved high resolution archival data (see Cox et al., 2018).  Finally, for 

each individual, all candidate segment drift rates were plotted through time.  Outliers were manually 

examined, and generally excluded.  For individuals from whom tags were retrieved, this again included 

an inspection of the high resolution archival data.  Typically, outliers occurred because the BSM failed 

to adequately capture the correct shape of a drift dive (e.g. in some drift dives with positive vertical 

speeds, individuals float towards the surface and periodically reposition themselves in the water 

column, which sometimes looks like a drift dive from a negatively buoyant individual as the BSM 

captures the end of one drift phase and another, and doesn’t filter out the repositioning in the middle).
 

 

Figure S3.  Segment lengths as a proportion of the total dive time in (a) a histogram and (b) a plot against 

corresponding absolute vertical speeds.  Note higher variability in vertical speeds at lower dive segment 

proportions.  Segments with lengths less than 0.15 (vertical red line) of the total dive length were discarded in 

the step-wise filtering process. 
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Figure S4.  The total length of all candidate drift segments within a dive as a proportion of the total time of a 

dive as (a) a histogram and (b) a plot against corresponding absolute vertical speeds.  Note much higher 

variability in vertical speeds at lower dive segments proportions.  Those segments associated with dives where 

the total proportion of candidate drift segments was less than 0.4 (vertical red line) of the total dive length were 

discarded in the step-wise filtering process. 
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Figure S5.  Histogram of segment vertical speeds.  Those below -0.5ms
-1

 or above 0.3ms
-1

 (indicated by the 

vertical red lines) were discarded in the step-wise filtering process. 

 

 

Figure S6.  Histogram of absolute segment vertical speeds.  Those of exactly 0ms
-1

 were discarded in the step-

wise filtering process.  These values represent a peak out-with the expected range of absolute vertical speeds 

following a normal distribution. 
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Following this step-wise filtering process, we then used functional data analysis to obtain daily drift 

rate estimates.  During the beginning of their first trip at-sea, juvenile southern elephant seals are 

constrained in their ability to make deep dives (Biuw et al., 2003; Orgeret et al., in prep), and so initial 

drift rates are often obtained from relatively shallow depths.  However, residual air in the lungs can 

bias these measurements (Kooyman and Ponganis, 1998; Biuw et al., 2003).  Rather than excluding 

such estimates (and loosing information on an individual’s condition at the beginning of a trip), all 

filtered drift segments were retained, and instead we weighted the measurement error of our functional 

data analysis by the minimum depth recorded during a drift dive segment.  Exploratory plots of drift 

rates with dive depth did not suggest the presence of any large bias in our dataset (Figure S7).  

Smoothed estimates from the functional data analysis were then used to obtain daily drift rate 

estimates.  These are shown in Figure S8.  Full modelling details are as follows: 

For each pup equipped with a tag, data on drift rates were available.  These data were used to build a 

hierarchical model and predict daily drift rates during the period when tags were transmitting.  The 

model thus assumes that for each day, there is a ‘true’ drift rate value, which reflects the (unobservable) 

body condition of the pup.  For some days, one or several measurements of this true value may be 

available, while for days when no drift dive was performed, there are no such measurements.  We 

assumed that pup body condition was correlated across consecutive days, but that this correlation was 

in effect negligible after some sufficiently long timespan.  Specifically, we assumed a Màtern 

correlation of order 3/2 and fixed the range parameter to the value 50/2.738, meaning that the 

correlation between two measurements taken 50 days apart is approximately 0.05.  Drift rates were 

envisioned as a continuous curve over the period a tag was emitting, and we used functional data 

analysis with Gaussian processes for non-parametric modelling of these curves (Yang et al., 2016) to 

obtain smoothed estimates of daily drift rate.  Specifically, each curve was modelled as a realization 

from a Gaussian Process (Yang et al., 2016).  Let 𝑦𝑖𝑝𝑡 denotes the ith measurement of drift rates 

available for pup p on day t, and 𝑇𝑝 denotes the length of time during which tag was emitting for pup p: 

𝑦𝑖𝑝𝑡 ~ 𝑁(𝑑𝑝𝑡, 𝜎𝑖𝑝𝑡
error)        

where 𝑑𝑝𝑡 is the ‘true’ drift rate value at time t for pup p, and 𝜎𝑖𝑝𝑡
error is a scale parameter quantifying 

measurement error.  Measurement error was dependent on the minimum depth recorded during a drift 

dive segment: 

log(𝜎𝑖𝑝𝑡
𝑒𝑟𝑟𝑜𝑟) =  𝛼1 +  𝛼2 × Depth𝑖𝑝𝑡  

The vector of ‘true’ daily drift rates 𝒅𝒑 (of length 𝑇𝑝) is modelled as: 

 𝒅𝒑 ~ 𝑀𝑉𝑁(𝟏𝜇𝑝, 𝜎𝑝𝜴)        

where 𝑀𝑉𝑁() is the Multivariate Normal distribution 𝜇𝑝 is the mean drift value of pup p, and 𝜎𝑝 is a 

scale parameter quantifying the process variation (volatility) for pup p.  𝜳 is a covariance matrix of 

dimension 𝑇𝑝 × 𝑇𝑝.  We used a stationary correlation structure for 𝜳 with the Màtern parameterization:  



10 
 

 𝛹(𝑡1, 𝑡2) = (1 + 
|𝑡1 − 𝑡2|√3

𝜌⁄ ) 𝑒
−|𝑡1−𝑡2|√3

𝜌⁄
     

where |𝑡1 − 𝑡2| is the distance between days 𝑡1 and 𝑡2, and 𝜌 is a range parameter controlling 

correlation decay between days 𝑡1 and 𝑡2.  The value for 𝜌 was chosen so that: 

 𝛹(𝑡, 𝑡 + 50) ≈ 0.05        

Finally, the parameters (𝜇𝑝, 𝜎𝑝) were modelled hierarchically to allow borrowing strength across pups: 

 𝜇𝑝 ~ 𝑁(𝜇, 𝜎pup,1)        

 log(𝜎𝑝) ~ 𝑁(𝜂, 𝜎pup,2)       

where 𝜎pup,1 and 𝜎pup,2 are scale parameters quantifying between pup variation in mean drift rate 

values and drift rate volatility.  This model was implemented in Stan (Carpenter et al., 2017) with 

weakly informative priors.  The Stan code is given below: 

data { 

 int<lower = 1> n_ind; // number of pups 

 int<lower = 1> n_day; // number of days during which tags were emitting 

 int<lower = 1> n_obs_tot; // total sample size 

 real Y[n_obs_tot]; // drift rate data 

 int<lower = 1, upper = n_ind> ID[n_obs_tot]; // identifier for pup 

 int<lower = 1, upper = n_day> DAY[n_obs_tot]; // identifier for day 

 vector[n_obs_tot] DEPTH; // dive depth 

 real<lower = 0> prior_rate; 

 matrix[n_day, n_day] PSI; // Matern covariance matrix 

 vector[2] prior_scale_inter; 

 vector[2] prior_scale_alpha; 

} 

transformed data { 

 matrix[n_day, n_day] chol_PSI; // Cholesky decomposition of PSI 

 chol_PSI = cholesky_decompose(PSI); 

} 

parameters { 

 real mu; 

 real eta; 

 vector[2] alpha; 

 vector[2] alpha; 

 vector[n_ind] mu_pup; 

 vector[n_ind] eta_pup; 

 vector[n_day] z[n_ind]; 

 vector<lower=0>[2] tau; 

 vector<lower=0>[2] sigma2; 

} 

transformed parameters { 

 vector[2] sigma_ind; 

 vector[n_day] drift_rate[n_ind]; 

 vector[n_obs_tot] sigma_error; 

 for(k in 1:2){ 

  sigma_ind[k] = sqrt(sigma2[k]); 
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 } 

 for (i in 1:n_ind) { 

  drift_rate[i] = rep_vector(mu + mu_pup[i], n_day) + chol_PSI * z[i]; 

 } 

sigma_error = exp(alpha[1] + alpha[2]*DEPTH); 

} 

model { 

 mu ~ normal(0.0, prior_scale_inter); 

 alpha ~ normal(0.0, prior_scale_alpha); 

 mu_pup ~ normal(0.0, sigma_pup[1]); 

 eta_pup ~ normal(0.0, sigma_pup[2]); 

 tau ~ gamma(2.0, 1.0); 

 sigma2 ~ gamma(1.0, prior_rate*tau); 

 for (i in 1:n_ind) { 

  z[i] ~ normal(0.0, exp(eta + eta_pup[i])); 

 } 

 for(i in 1:n_obs_tot){ 

  Y[i] ~ normal(drift_rate[ID[i], DAY[i]], sigma_error[i]); 

 } 

} 

In effect, this model provides simultaneous smoothing of all drift rate curves (Yang et al., 2016).  We 

tried other approaches, included splines (Crainiceanu et al., 2005) and Hidden Markov Models, but 

obtained similar results (not shown).  We chose functional data analysis using the method of (Yang et 

al., 2016) because this model is easy to implement and fast to estimate with Stan. 
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Figure S7.  Vertical speeds of retained drift rates after the full step-wise filtering process, plotted in 

relation to (a) the initial depth of a segment, and (b) the final depth of a segment. 
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Figure S8.  Predicted daily drift rates (blue line) with associated 95% confidence intervals (shaded blue) with 

day since departure for each of the juvenile southern elephant seals.  Raw drift rates are indicated in red. 
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S.4 Investigations into potential sampling biases 

Not all dives recorded by the DSA devices were transmitted (Cox et al., 2018), and the number of dives 

received per day from an individual may vary with behaviour (e.g. surfacing intervals).  As such, to 

assess potential sources of bias in our dataset that may impact any inferences made, we checked for 

differences in sampling rates both between surviving and dying individuals and through time using 

linear mixed effects model from the R package nlme (Pinheiro and Bates, 2014).  Because eight out of 

nine of the individuals that died did so during the outward portion of their first trip at sea, all data were 

filtered to retain only samples taken before the distal point of the first trip of each individual.  Models 

were fitted with a random intercept for each individual, and model selection was performed using AIC 

values via maximum likelihood estimation (Zuur et al., 2009).  To obtain parameter estimates, the final 

model was refitted using restricted maximum likelihood (REML).   

We found no effect of survival outcome on daily sampling rates, or in an interaction with day since 

departure.  However, an increase in sampling rate was observed with day since departure (p < 0.001, 

ΔAIC > 2; Figure S9).  The effect of this was small (parameter estimate = 0.009, marginal r
2
 = 0.01; 

Nakagawa and Schielzeth 2013), such that at the two extremes of the analytical period (day 0 and day 

110), the number of samples obtained per day would have varied by less than 1 dive (i.e.  day 1 = 5.21 

dives, day 110 = 6.20 dives).  Individual variability in sampling rates was apparent but low (Figures S9, 

S10 & S11).  The standard deviation around the random intercept was less than 1 dive per day, and 

accounted for 15.8% of variation in the number of samples obtained per day (assessed by calculating 

the difference in conditional and marginal r
2
 values from the MuMin package in R; Nakagawa and 

Schielzeth 2013; Barton 2015). 
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Figure S9.  Summary plots of the daily number of dives sampled.  From top to bottom: (a) with days since 

departure (red solid lines show bootstrapped means from a fitted linear mixed effects models with 95% 

confidence intervals shown by dashed red lines), (b) with survival outcome (0 = died, 1 = survived) and (c) 

averages by individual. 
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Figure S10.  The daily number of dives sampled per individual that died (for plots of individuals that survived 

see Figure S11).   
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Figure S11.  The daily number of dives sampled per individual that survived (for plots of individuals that died 

see Figure S10).   
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S.5 Broad scale spatial distributions of surviving and non-surviving individuals 

Broad-scale spatial patterns in the distributions of the two (dead and surviving) groups were 

investigated to ensure comparability of behavioural indices and assess large scale patterns in space use.  

The 25%, 50%, 75% and 90% utilisation distributions (UDs) of the filtered SSM hourly locations were 

estimated using kernel density analysis via the R package ‘adehabitatHR’ (Calenge, 2014).  Overlap 

between the spatial extents of the two groups was then estimated via Bhattacharyya’s affinity (BA; 

Bhattacharyya 1943; Fieberg and Kochanny 2005).  A randomisation technique was used to test the 

null hypothesis that there was no difference in the spatial distribution of those individuals that died and 

those that survived.  If the null hypothesis is true, overlap magnitude between the two groups at each 

kernel level should not substantially differ from that calculated as if survival outcome were randomly 

assigned.  As such, survival outcome for each individual was randomly assigned keeping the same ratio 

as that observed across the sample (i.e.  nine mortalities and 11 survivals).  A null distribution of BA 

values was then generated from 1000 randomisations of the dataset.  Because the amount of data 

collected from the surviving group was much greater than that from the dead group, at each 

randomisation, these data were filtered to exclude all locations obtained after the time since departure 

at which a randomly matched dead individual died (with all dead individuals being matched at least 

once, and two twice).  The observed distributions of the two groups were considered different if the 

maximum observed overlap (BA value) between the two was smaller than all 1000 randomly generated 

overlaps (Breed et al., 2006). 

Spatial overlap between the broad scale distributions of the two groups was strong (Figure 12).  For all 

randomisation tests, at the four UD levels (25%, 505, 75% and 95%), the observed overlap was never 

less than that generated by random assignment of survival outcome (Figure 12). 

 

Figure 12.  Distributions of Bhattacharyya’s affinity (BA) for observed (red) and randomized (blue) datasets.  

Substantial overlap in the observed and randomized distributions at each level indicates no spatial segregation 

between the two groups (died and survived).  Note that due to the scaling of BA values, comparisons should not 

be made between levels (e.g. 25% kernel utilisation density (KUD) values are not comparable to those from 75% 

KUDs). 
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S.6 Survival analysis with a regularized horseshoe prior 

We analysed survival data on juvenile southern elephant seals with time-to-event methods.  These 

methods rely on the modelling of the time until an event may happen or not, and they can use all the 

information in the data by including individuals for which survival times are censored (i.e. individuals 

that were still alive at the end of the study and whose time of death is thus unknown). 

Parametric time-to-event modelling focuses on estimating hazards (i.e. the instantaneous probabilities 

of death over a specified period of time).  For juvenile southern elephant seals, we modelled survival 

time (on a log scale) with a normal distribution.  This choice equates to a non-monotonic hazard, which 

is plausible, as after leaving Kerguelen Islands, mortality hazard can be expected to increase after 

weaning (as energy capital from maternal provisioning depletes), and then decrease as pups learn to 

forage.  𝑇𝑖 denotes the survival time of pup 𝑖: 

𝑙𝑜𝑔(𝑇𝑖) 𝑁(𝜆𝑖, 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) 

𝜆𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

 

where 𝑝 denotes the number of covariates (features) thought to influence survival time.  The regression 

coefficients 𝛽𝑗 (excluding the intercept 𝛽0) were modelled with a regularized horseshoe prior (Piironen 

and Vehtari, 2017).  This prior belongs to the class of global-local shrinkage priors (Polson and Scott, 

2010). 

𝛽𝑗 ∨, 𝜎𝑔𝑙𝑜𝑏𝑎𝑙 , 𝜎𝑗
𝑙𝑜𝑐𝑎𝑙 𝑁(0, 𝜎𝑗

𝑙𝑜𝑐𝑎𝑙) 

The overall global scale parameter 𝜎𝑔𝑙𝑜𝑏𝑎𝑙 shrinks, a priori, all coefficients 𝛽𝑗 to 0, while the local scale 

parameters 𝜎𝑗
𝑙𝑜𝑐𝑎𝑙 allow individual coefficients to escape this pull towards 0 when there is a signal in 

the data indicating the corresponding 𝛽𝑗 is non-zero.  To induce a horseshoe prior (Carvalho et al., 

2010), half-Cauchy priors are put on global and local scales: 

+(0, 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)

𝜎𝑔𝑙𝑜𝑏𝑎𝑙  𝐶 𝑓𝑜𝑟𝑎𝑙𝑙𝑗 ∈ [1: 𝑝], 𝜎𝑗
𝑙𝑜𝑐𝑎𝑙  𝐶+(0,𝜎𝑔𝑙𝑜𝑏𝑎𝑙) 

Global-local shrinkage priors translate an assumption of sparsity, where most regression coefficients 

are expected to be zero, and only a few ones may be non-zero.  In the words of Polson and Scott 

(2010), “strong global shrinkage handles the noise, the local 𝜎𝑗
𝑙𝑜𝑐𝑎𝑙’s act to detect the signals [...].” 

Shrinkage priors thus perform variable selection by simultaneously identifying and estimating non-zero 

𝛽𝑗′s.  Carvalho et al., (2010) further showed that the posterior means of 𝛽𝑗, obtained from a horseshoe 

prior, were akin to model-averaged estimates in linear models.  Piironen and Vehtari (2017) discussed 

shortcomings of the horseshoe prior, including the choice of the global scale to control the a priori 

number of non-zero coefficients.  They proposed a regularized horseshoe prior that addresses these 
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shortcomings, and allows the specification, a priori, of the number of expected non-zero regression 

coefficients, which we set to 10. 

We fitted this model with Stan v.2.17.3 (Carpenter et al.  2017) using weakly informative priors on all 

parameters save the regression coefficients 𝛽𝑗, for which we used a regularized horseshoe prior.  We 

ran four chains with a warmup of 1,000 iterations, and 1,000 more iterations for inference.  All 

parameters appeared to have converged, as assessed by the Gelman-Brook-Rubin statistics (all 𝑅 <

1.1).  The Stan code is given below: 

/*  Variable naming:  

  n_ind     = number of individuals  

  n_cov    = number of covariates  

  sigma    = residual scale parameter  

  X           = covariates, including sex (standardized) 

  TIME    = time to event data (log scale) 

  SURVIVAL  = survival indicator 

 */  

 data {  

   int<lower = 0> n_ind;   

   vector<lower = 0>[n_ind] TIME;  

   int<lower = 0, upper = 1> SURVIVAL[n_ind]; 

   int<lower = 0> n_cov;  

   matrix[n_ind, n_cov] X_obs; 

   real<lower = 1> nu_global;             // degrees of freedom for the half -t priors for global scale 

   real<lower = 1> nu_local;              // degrees of freedom for the half -t priors for local scales 

   real<lower = 0> prior_scale_for_mu;    // depends on log TIME scale 

   real<lower = 0> prior_scale_for_sigma; // depends on log TIME scale 

   real<lower = 0> prior_scale_for_global;// depends on how many features a priori 

}  

   

 parameters {  

   real log_sigma; 

   vector[n_cov] unscaled_beta; 

   real unscaled_mu;  

   vector<lower=0>[n_cov] local_sq; 

   vector<lower=0>[n_cov] aux_local; 

   real<lower=0> aux_global; 

   real<lower=0> global_sq; 

 }  

 

 transformed parameters {  

   real mu; 

   real sigma;  

   real global;  

   vector[n_cov] beta; 

   vector[n_cov] local; 

   vector[n_ind] lambda; 

   // intercept 

   mu = unscaled_mu * prior_scale_for_mu; 

   // residual std.  dev. 

   sigma = exp(log_sigma) * prior_scale_for_sigma;  

   // hierarchical horseshoe (Piironen & Vehtari 2017) 

   global = aux_global * sqrt(global_sq) * prior_scale_for_global * sigma; 

   local = aux_local .* sqrt(local_sq); 

   // regression coefficients 

   beta = unscaled_beta .* local * global; 
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   // linear predictors 

   lambda = rep_vector(mu, n_ind) + X_obs * beta; 

 }  

  

 model { 

   // normal regression of log TIME: hazard function is non-monotonic 

   for (i in 1:n_ind) { 

     if(SURVIVAL[i] == 0) { // observed 

      target += normal_lpdf(TIME[i]| lambda[i], sigma); 

     } 

     else { // censored 

       target += normal_lccdf(TIME[i]| lambda[i], sigma); 

     } 

   } 

 

   // priors 

   log_sigma ~ normal(0.0, 1.0); 

   unscaled_beta ~ normal(0.0, 1.0);  

   unscaled_mu ~ normal(0.0, 1.0);  

   // horseshoe: scale mixture of normal distributions 

   aux_local ~ normal(0.0, 1.0); 

   local_sq ~ inv_gamma(0.5 * nu_local, 0.5 * nu_local); 

   aux_global ~ normal(0.0, 1.0); 

   global_sq ~ inv_gamma(0.5 * nu_global, 0.5 * nu_global); 

 }  

 

 generated quantities{ 

   vector[n_ind] y_rep; 

   real rmse; 

   for(i in 1:n_ind) { 

     y_rep[i] = normal_rng(lambda[i], sigma); 

   } 

   rmse = sum(square(TIME - y_rep)); 

 } 

We assessed model fit by plotting the Kaplan-Meier survival estimates against the survival curve 

predicted from the fitted model (Figure S13). 
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Figure S13.  Assessing survival model fit, survival rate is plotted against time in days.  The survival curve 

predicted by the model is in black and the 80% credible interval in light blue.  Kaplan-Meier estimates are in 

dark blue.  Model fit was deemed acceptable. 
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S.7 Retrospective power analysis of the survival analysis using a regularized horseshoe prior 

We conducted a retrospective power analysis to investigate the true positive (TPR) and false positive 

(FPR) rates of the survival model with regularized horseshoe prior (the third applied method (and 

second shrinkage method) of the study; Piironen and Vehtari, 2017).  TPR is the long-term expected 

frequency with which the method picks true signals, and the FPR is the long-term expected frequency 

with which the method wrongly selects a null effect. 

The simulation setting was the following: sample size was set to 20 individuals, the number of 

candidate covariates (features) was set to 50, and the number of non-zero effects (true signals) varied 

between 0 and 15 by increment of 5.  The regularized horseshoe prior was calibrated for an expected 

numbers of 10 active features.  The effect size of true signals was generated from a normal 

distribution 𝒩(log(1.1) , 0.02).  We thereby assumed that the average effect size was an increase (or 

decrease) of 10% in average longevity, with a prior range between 5% and 15%.  This figure roughly 

matches the estimated effect sizes in the actual analysis of the true longevity data from elephant seal 

pups.  We then simulated data according to the following processes: 

The (log) duration (in days) of a pup’s first trip at sea 𝑧 was generated from a normal distribution 

𝑧 ~ 𝒩(𝜇trip, 𝜎trip) with parameters (𝜇trip, 𝜎trip) generated from a multivariate normal distribution: 

[
𝜇trip

𝜎𝑡𝑟𝑖𝑝
] ~ ℳ𝒩𝒱([

5.13
0.15

] , [0.05² 0.00
0.00 0.04²

])      

The hyperparameter values were taken from the estimated values of the true data on elephant seal pups.  

The (log) longevity (in days) of a pup 𝑦 was generated from a normal distribution 𝑦 ~ 𝒩(𝜇φ, 𝜎φ) with 

parameters (𝜇φ, 𝜎φ) generated from a multivariate normal distribution:  

[
𝜇𝜑

𝜎𝜑
] ~ ℳ𝒩𝒱([

5.22
1.49

] , [ 0.50² 0.55 × 0.50 × 0.51
0.55 × 0.50 × 0.51 0.51²

])   

The hyperparameter values were taken from the estimated values of the true data on elephant seal pups. 

The observed data for a pup was the minimum of (𝑦, 𝑧): if 𝑦 >  𝑧, the pup survived its first trip at sea, 

and if 𝑦 <  𝑧 it died during its first trip at sea.  The modelling of both longevity and trip duration is 

needed to mimic the censoring mechanism that is assumed in our analysis of the true data. 

We simulated 100 datasets for each scenario and analysed each simulated data with the same model 

that was used for the true data.  All analysed were carried out with software Stan (Carpenter et al., 

2017).  Results are summarized in Figure S14. 
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Figure S14.  False positive rates (left panel) and true positive rates (right panel) of the model with a regularized 

horseshoe prior. 

For all scenarios, results were similar: FPR and TPR were roughly equal and around 2.5%.  In other 

words, the probability for a feature picked up by the regularized horseshoe prior to be a true signal was 

50%.  Although this is low, this retrospective power analysis nevertheless shows how conservative our 

analysis was.  It is extremely unlikely to pick up false signals, and it is also extremely unlikely to pick 

true ones among 50 candidates with the regularized horseshoe and a sample size of 20 data points.  

Thus this analysis is efficient in discarding irrelevant features, and for the few ones that survived the 

selective filter of the regularized horseshoe, the probability that they are true signals is 50%. 

Applying these results to the true data means that this analysis is effective in discarding most of the 

candidate covariates as irrelevant, and the ones that are picked up are good candidates for further 

investigation.  Hence our focus on a descriptive but robust analysis on the correlates of early life 

longevity in elephant seal pups from Kerguelen Islands.   
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R code snippet to simulate data: 

sim_data <- function(n_obs, p = 0, n_cov = 50) { 

# generate parameters 

 theta_surv = mvtnorm::rmvnorm(1, c(5.22, 1.49), matrix(c(0.50*0.50, 0.55*0.50*0.51, 0.55*0.50*0.51, 0.51*0.51), nrow = 2, byrow = TRUE)) 

 theta_cens = mvtnorm::rmvnorm(1, c(5.13, 0.15), matrix(c(0.05*0.05, 0, 0, 0.04*0.04), nrow = 2, byrow = TRUE))  

# features 

 X_obs <- cbind(rep(1, n_obs), replicate(n_cov, rnorm(n_obs))) 

 if(p != 0) { 

# effect size is 10% increase/decrease compared to baseline with std.  dev chosen so that prior 99% CI  is 1.04:1.15 

  beta = c(theta_surv[1, 1], (-1)^rbinom(p, 1, prob = 0.5)*rnorm(p, log(1.1), 0.05/qnorm(0.995)), rep(0, n_cov - p)) 

 } 

 else { beta <- c(theta_surv[1, 1], rep(0, n_cov)) } 

 linpred <- as.numeric(X_obs %*% beta) 

 # lifetime 

 y <- exp(rnorm(n = n_obs, linpred, theta_surv[1, 2])) 

 # trip duration 

 z <- exp(rnorm(n = n_obs, theta_cens[1, 1], theta_cens[1, 2])) 

 data <- data.frame(surv_days = y, 

           cens_days = z, 

           censored = ifelse(y > z, 1, 0), 

           event = ifelse(y > z, 0, 1), 

           stringsAsFactors = FALSE 

           ) %>% 

  dplyr::mutate(status = ifelse(censored == 0, 'DECEASED', 'LIVING'), t = ifelse(y > z, z, y) )  

 return(list(Y = data, X = X_obs[, -1], beta = beta[-1], theta = as.numeric(cbind(theta_surv, theta_cens)))) 

} 

 



26 
 

S.8 Visual comparisons of behaviours and encountered environmental conditions of non-

surviving pups to those of grouped survivors 

 

 

Figure S15.  Time series plots of the daily maximum corrected speeds for each individual that died (for plots of 

individuals that survived see Figure S16).  Large light grey bands represent the 2.5% to 97.5% quantiles of the 

survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The red line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S16.  Time series plots of the daily maximum corrected speeds of each individual that survived (for plots 

of individuals that died see Figure S15).  Large light grey bands represent the 2.5% to 97.5% quantiles of the 

survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The blue line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S17.  Time series plots of daily corrected distances swam by each individual that died (for plots of 

individuals that survived see Figure S18).  Large light grey bands represent the 2.5% to 97.5% quantiles of the 

survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The red line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S18.  Time series plots of daily corrected distances swam by each individual that survived (for plots of 

individuals that died see Figure S17).  Large light grey bands represent the 2.5% to 97.5% quantiles of the 

survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The blue line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S19.  Time series plots of daily mean deviations from ocean currents by each individual that died (for 

plots of individuals that survived see Figure S20).  Large light grey bands represent the 2.5% to 97.5% quantiles 

of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The red line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S20.  Time series plots of daily mean deviations from ocean currents by each individual that survived (for 

plots of individuals that died see Figure S19).  Large light grey bands represent the 2.5% to 97.5% quantiles of 

the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The blue line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S21.  Time series plots of daily maximum dive depths for each individual that died (for plots of 

individuals that survived see Figure S22).  Large light grey bands represent the 2.5% to 97.5% quantiles of the 

survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The red line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S22.  Time series plots of daily maximum dive depths for each individual that survived (for plots of 

individuals that died see Figure S21).  Large light grey bands represent the 2.5% to 97.5% quantiles of the 

survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The blue line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S23.  Time series plots of daily maximum dive durations for each individual that died (for plots of 

individuals that survived see Figure S24).  Large light grey bands represent the 2.5% to 97.5% quantiles of the 

survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The red line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S24.  Time series plots of daily maximum dive durations for each individual that survived (for plots of 

individuals that died see Figure S23).  Large light grey bands represent the 2.5% to 97.5% quantiles of the 

survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The blue line indicates the daily values of the individual 

identified in the top right-hand corner. 



36 
 

 

 

Figure S25.  Time series plots of daily mean surface intervals (logged) for each individual that died (for plots of 

individuals that survived see Figure S26).  Large light grey bands represent the 2.5% to 97.5% quantiles of the 

survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The red line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S26.  Time series plots of daily mean surface intervals (logged) for each individual that survived (for 

plots of individuals that died see Figure S25).  Large light grey bands represent the 2.5% to 97.5% quantiles of 

the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The blue line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S27.  Time series plots of mean daily prey catch attempt (PrCA) rates for each individual that died (for 

plots of individuals that survived see Figure S28).  Large light grey bands represent the 2.5% to 97.5% quantiles 

of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The red line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S28.  Time series plots of mean daily prey catch attempt (PrCA) rates for each individual that survived 

(for plots of individuals that died see Figure S27).  Large light grey bands represent the 2.5% to 97.5% quantiles 

of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The blue line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S29.  Time series plots of daily mean scaled bottom times (by dive duration) for each individual that died 

(for plots of individuals that survived see Figure S30).  Large light grey bands represent the 2.5% to 97.5% 

quantiles of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily 

median of the survival data is represented by a dark grey line.  The red line indicates the daily values of the 

individual identified in the top right-hand corner. 
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Figure S30.  Time series plots of daily mean scaled bottom times (by dive duration) for each individual that 

survived (for plots of individuals that died see Figure S29).  Large light grey bands represent the 2.5% to 97.5% 

quantiles of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily 

median of the survival data is represented by a dark grey line.  The blue line indicates the daily values of the 

individual identified in the top right-hand corner. 
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Figure S31.  Time series plots of daily mean total ascent and descent swimming efforts for each individual that 

died (for plots of individuals that survived see Figure S32).  Large light grey bands represent the 2.5% to 97.5% 

quantiles of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily 

median of the survival data is represented by a dark grey line.  The red line indicates the daily values of the 

individual identified in the top right-hand corner. 
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Figure S32.  Time series plots of daily mean total ascent and descent swimming efforts for each individual that 

survived (for plots of individuals that died see Figure S31).  Large light grey bands represent the 2.5% to 97.5% 

quantiles of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily 

median of the survival data is represented by a dark grey line.  The blue line indicates the daily values of the 

individual identified in the top right-hand corner. 
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Figure S33.  Time series plots of daily changes in drift rate by each individual that died (for plots of individuals 

that survived see Figure S34).  Large light grey bands represent the 2.5% to 97.5% quantiles of the survival 

datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the survival data is 

represented by a dark grey line.  The red line indicates the daily values of the individual identified in the top 

right-hand corner. 



45 
 

 

 

Figure S34.  Time series plots of daily changes in drift rate by each individual that survived (for plots of 

individuals that died see Figure S33).  Large light grey bands represent the 2.5% to 97.5% quantiles of the 

survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The blue line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S35.  Time series plots of maximum daily wind conditions experienced by each individual that died (for 

plots of individuals that survived see Figure S36).  Large light grey bands represent the 2.5% to 97.5% quantiles 

of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The red line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S36.  Time series plots of maximum daily wind conditions experienced by each individual that survived 

(for plots of individuals that died see Figure S35).  Large light grey bands represent the 2.5% to 97.5% quantiles 

of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The blue line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S37.  Time series plots of maximum daily wave heights experienced by each individual that died (for 

plots of individuals that survived see Figure S38).  Large light grey bands represent the 2.5% to 97.5% quantiles 

of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The red line indicates the daily values of the individual 

identified in the top right-hand corner. 



49 
 

 

 

Figure S38.  Time series plots of maximum daily wave heights experienced by each individual that survived (for 

plots of individuals that died see Figure S37).  Large light grey bands represent the 2.5% to 97.5% quantiles of 

the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the 

survival data is represented by a dark grey line.  The blue line indicates the daily values of the individual 

identified in the top right-hand corner. 
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Figure S39.  Time series plots of daily mean sea surface temperature (SST) experienced by each individual that 

died (for plots of individuals that survived see Figure S40).  Large light grey bands represent the 2.5% to 97.5% 

quantiles of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily 

median of the survival data is represented by a dark grey line.  The red line indicates the daily values of the 

individual identified in the top right-hand corner. 
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Figure S40.  Time series plots of daily mean sea surface temperature (SST) experienced by each individual that 

survived (for plots of individuals that died see Figure S39).  Large light grey bands represent the 2.5% to 97.5% 

quantiles of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  The daily 

median of the survival data is represented by a dark grey line.  The blue line indicates the daily values of the 

individual identified in the top right-hand corner. 



52 
 

 

 

Figure S41.  Time series plots of daily maximum total (eddy) kinetic energy (TKE; logged) experienced by each 

individual that died (for plots of individuals that survived see Figure S42).  Large light grey bands represent the 

2.5% to 97.5% quantiles of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  

The daily median of the survival data is represented by a dark grey line.  The red line indicates the daily values 

of the individual identified in the top right-hand corner. 
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Figure S42.  Time series plots of daily maximum total (eddy) kinetic energy (TKE; logged) experienced by each 

individual that survived (for plots of individuals that died see Figure S41).  Large light grey bands represent the 

2.5% to 97.5% quantiles of the survival datasets.  Nested within this in darker grey are the 25 to 75% quantiles.  

The daily median of the survival data is represented by a dark grey line.  The blue line indicates the daily values 

of the individual identified in the top right-hand corner. 
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Figure S43.  Time series plots of daily drift rates for each individual that died (for plots of individuals that 

survived see Figure S44).  Large light grey bands represent the 2.5% to 97.5% quantiles of the survival datasets.  

Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the survival data is 

represented by a dark grey line.  The red line indicates the daily values of the individual identified in the top 

right-hand corner. 
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Figure S44.  Time series plots of daily drift rates for each individual that survived (for plots of individuals that 

died see Figure S43).  Large light grey bands represent the 2.5% to 97.5% quantiles of the survival datasets.  

Nested within this in darker grey are the 25 to 75% quantiles.  The daily median of the survival data is 

represented by a dark grey line.  The blue line indicates the daily values of the individual identified in the top 

right-hand corner. 
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S.9 Comparisons between survivors and non-survivors of maximum total (eddy) kinetic energy 

(TKE) values of waters visited 

 

Figure S45.  Logged maximum total (eddy) kinetic energy (TKE) values of the waters visited by the group of 

individuals that survived versus those that died.  On the left (a), is a time series plot for four individuals (140061, 

140065, 140071 and 140076; coloured lines) that appeared to visit waters of reduced maximum logged TKE 

values.  Here, the large light grey bands represent the 2.5% to 97.5% quantiles of survival datasets, whilst the 

darker grey band nested within this is the 25 to 75% quantiles.  The daily median of the survival data is 

represented by a dark grey line.  Individual plots for all tracked pups are in supplementary information S.8.  On 

the right (b), is a histogram of the maximum logged TKE values measured by surviving pups (blue) and dying 

pups (red), during the first portion (up until distal point or death) of a trip. 
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S.10 Variable selection within the horseshoe survival analysis 

 

Figure S46.  Absolute estimated covariate parameters plotted against shrinkage values from the horseshoe 

analysis.  Covariates with an absolute parameter estimate of at least 0.05 (dashed horizontal red line) and a 

shrinkage value less than 0.855 (dashed vertical blue line) were considered to impact juvenile survival, whilst 

those with parameter estimates below 0.05 or shrinkage values above 0.855 were not.   
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S.11 Departure weights and conditions 

 

Figure S47.  From top to bottom: (a) boxplot of weights at departure for survivors (left) and non-survivors 

(right), (b) boxplot of drift rates at departure for survivors (left) and non-survivors (right) and (c) departure drift 

rates in relation to departure weight.  In all plots, red markers indicate females and blue, males.   
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S.12 Prey catch attempt (PrCA) rates and maximum total (eddy) kinetic energy (TKE) 

 

Figure S48.  Mean daily PrCA rates in relation to logged daily maximum total (eddy) kinetic energy (TKE).  

Observations from surviving and non-surviving individuals are indicated in blue and red respectively.  In black 

is the line of best fit from linear mixed effects models (with a random intercept of individual ID; nlme package 

in R - Pinheiro & Bates 2014).  95% confidence intervals are indicated by the dashed lines.   
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S.13 Spatial distributions of juvenile southern elephant seals in relation to sea surface temperatures (SST) and surface currents for 

four days during the austral summer 

 

Figure S49.  Trajectories of non-surviving pups on four days of the austral summer of 2015: (a) 13
th
 January, (b) 20

th
 January, (c) 27

th
 January and (d) 3

rd
 

February.  Bright red markers are locations concurrent to the day, and dark red lines, previous trajectories since leaving Kerguelen Islands.  Black 

arrows are surface current directions with strength indicated by the size of the arrow (bolder, larger arrows are stronger currents).  These were taken 

from the delayed time all-sat-merged Global Ocean Gridded Absolute Geostrophic Velocities Anomalies L4 product, obtained via the Archiving 

Validation and Interpretation of Satellite and Oceanographic data portal on a daily basis at a spatial resolution of 0.25
o
 (AVISO; 

www.aviso.altimetry.fr).  Background colours are sea surface temperatures (SST).  These were extracted on a daily basis at a spatial resolution of 1/12
o
 

from the Global Ocean Physics Analysis and Forecast of the EU Copernicus Marine Service Information (PHY_001_024; 

http://marine.copernicus.eu/services-portfolio/access-to-products). 

http://www.aviso.altimetry.fr/
http://marine.copernicus.eu/services-portfolio/access-to-products
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Figure S50.  Trajectories of surviving pups on four days of the austral summer of 2015: (a) 13
th
 January, (b) 20

th
 January, (c) 27

th
 January and (d) 3

rd
 

February.  Bright red markers are locations concurrent to the day, and dark red lines, previous trajectories since leaving Kerguelen Islands.  Black 

arrows are surface current directions with strength indicated by the size of the arrow (bolder, larger arrows are stronger currents).  These were taken 

from the delayed time all-sat-merged Global Ocean Gridded Absolute Geostrophic Velocities Anomalies L4 product, obtained via the Archiving 

Validation and Interpretation of Satellite and Oceanographic data portal on a daily basis at a spatial resolution of 0.25
o
 (AVISO; 

www.aviso.altimetry.fr).  Background colours are sea surface temperatures (SST).  These were extracted on a daily basis at a spatial resolution of 1/12
o
 

from the Global Ocean Physics Analysis and Forecast of the EU Copernicus Marine Service Information (PHY_001_024; 

http://marine.copernicus.eu/services-portfolio/access-to-products). 

http://www.aviso.altimetry.fr/
http://marine.copernicus.eu/services-portfolio/access-to-products
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