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SUPPLEMENTARY METHODS

Electronic polarizability from linear response theory

The Kohn-Sham equations of density functional theory read [1]:

HKS |ϕv〉 = εv |ϕv〉 , (1)

where HKS is the Kohn-Sham one-electron Hamiltonian and ϕv is the vth occupied Kohn-

Sham orbital with eigenvalue εv. Within linear response and density functional perturbation

theory [2], the response to an external perturbation may be written using the Sternheimer

equation [3, 4]:

(HKS − εv)P̂c |∆ϕv〉 = −P̂c∆VKS |ϕv〉 , (2)

where P̂c is the projector onto the unoccupied Kohn-Sham orbitals: P̂c =
∑+∞

c=1 |ϕc〉 〈ϕc| =

1−
∑Norb

v=1 |ϕv〉 〈ϕv|, Norb is the number of the occupied Kohn-Sham orbitals, and ∆Vks is the

perturbation to the Kohn-Sham potential. If the perturbation is caused by a macroscopic

electric field EEE, the perturbation potential ∆Vks is written as

∆VKS = eEEE · rrr + ∆VH + ∆Vxc, (3)

where e is the elementary charge, rrr is the position operator, and ∆VH and ∆Vxc are the

perturbations to the Hartree and exchange-correlation potentials, respectively. After solving

Supplementary Equation (2), we can compute the change in electronic density:

∆ρ = 2

Norb∑
v=1

ϕ∗v(rrr)∆ϕv(rrr) + c.c. (4)

Note that ∆Vks also depends on ∆ρ, so Supplementary Equation (2) has to be solved self-

consistently.

The induced dipole moment of the system under the action of a perturbing field is given

by:

MMM = −e

∫
Ω

rrr∆ρdrrr, (5)
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where Ω is the volume of the system. The polarizability tensor α is defined as:

MMM = αEEE (6)

Within periodic boundary conditions, the position operator rrr is ill defined, and we use

the momentum operator ppp instead, to compute matrix elements:

〈ϕi| rrr |ϕj〉 =
〈ϕi| − i~

me
ppp + [VKS, rrr] |ϕj〉
εi − εj

, i 6= j (7)

where ~ is the reduced Planck constant and me is the electron mass. The commutator in

Supplementary Equation (7) is needed when using nonlocal pseudopotentials to obtain the

effective Kohn-Sham potential [5].

We project the polarizability tensor of the whole system onto maximally localized Wannier

functions (MLWFs)[6]:

α =

Norb∑
i=1

αeff
i , (8)

where αeff
i is the effective polarizability of the ith Wannier function. The MLWFs, {|wi〉},

are obtained by a unitary transformation U of the occupied Kohn-Sham orbitals:

|wi〉 =

Norb∑
v=1

Uiv |ϕv〉 (9)

Using the same unitary matrix, we can also obtain the variation of the MLWFs [7, 8]:

|∆wi〉 =

Norb∑
v=1

Uiv |∆ϕv〉 (10)

The polarization electron density of the ith MLWF is

∆ρi = 2w∗i (rrr)∆wi(rrr) + c.c. (11)

If we substitute ρi into ρ in Supplementary Equation (5) and (6), we obtain αeff
i . The

effective polarizability of a molecule or ion is given by:

αeff
mol =

M∑
k=1

αeff
k (12)
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where we sum over the M effective polarizabilities of the MLWFs belonging to a given

molecule or ion. Note that the effective polarizability of a molecule or ion is not the true

molecular or ionic polarizability, because we only consider the macroscopic field MMM, not the

local electric field [9]. The total polarizability of the system can be written as the sum of

the effective polarizabilities of molecules and ions in the system:

α =

Nmol∑
m=1

αeff
mol,m, (13)

Inter- and intra-molecular Raman spectra

Using the effective molecular polarizability defined in Supplementary Equation ( 12), we

can decompose calculated isotropic Raman spectra as [7],

Riso(ω) ∝ ~ω
kBT

∫
dte−iωt〈ᾱ(0)ᾱ(t)〉

=
~ω
kBT

∫
dte−iωt〈

Nmol∑
m=1
m 6=n

Nmol∑
n=1

ᾱeff
mol,m(0)ᾱeff

mol,n(t) +

Nmol∑
m=1

ᾱeff
mol,m(0)ᾱeff

mol,m(t)〉 (14)

where the first and second terms give the inter- and intra-molecular Raman spectra, respec-

tively. We can also decompose calculated anisotropic Raman spectra in a similar way.

Convergence of the MD simulations

The convergence of our simulations is shown in Fig. 1. When the simulation length is

more than 0.6 times the total trajectory time, the peak intensities change by less than 10%

and such variation does not affect any of our conclusions.
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FIG. 1. Convergence of calculated Raman peak intensities. The (bi)carbonate peak intensity in

Raman spectra at ambient density and 380 K is shown as a function of the simulation length. The

peak intensities are normalized to the water stretching band.
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