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Supp. Information S1: Sequencing error reduction by use of molecular 

barcodes does not improve sample classification  

Molecular barcodes can be used to reduce PCR and sequencing error. In brief, reads that 

share the same molecular barcode are assumed to originate from one template DNA 

molecule, and, within each molecular barcode group, any PCR and sequencing errors are 

assumed to occur in the minority of reads. Based on these assumptions, a single molecule 

sequence (smSequence), which represents the true sequence of the position or feature of 

interest in the template DNA molecule, can be defined from the sequence represented in 

the majority of reads of each molecular barcode group containing a minimum of 2 reads. 

Groups with single reads are discarded. We have shown that smSequences have much lower 

error rates for microsatellite variant detection than sequencing reads not processed by 

molecular barcodes. smSequences of microsatellites can, therefore, be used to detect low 

frequency microsatellite variants in normal tissues to diagnose constitutional mismatch 

repair deficiency, a rare childhood cancer syndrome (Gallon et al, 2019; doi: 

10.1002/humu.23721). 

We assessed if the use of molecular barcodes could improve the performance of the 

MSI classifier for CRC diagnostics. As described above, the method requires redundant 

sequencing of the template DNA molecules. Within the training cohort (n = 98), a mean 

1139 reads were sequenced per marker per sample, with a mean 380 molecular barcodes 

detected per marker per sample (Supplementary Table S1). Therefore, on average, each 

molecular barcode group contained 3.00 reads, allowing smSequences to be used to train 

the classifier by the method of Redford et al (2018; doi:10.1371/journal.pone.0203052). We 

used three measures to analyse classifier performance: diagnostic accuracy, difference 
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between the median scores of MSI-H versus MSS CRCs, and the difference between the 

minimum MSI-H sample score and maximum MSS sample score. The smSequence-trained 

classifier classified the training cohort with 100% accuracy (Figure S1.1A), equal to the read-

trained classifier. However, it gave slightly poorer separation of MSI-H from MSS samples 

when compared to the read-trained classifier, with a reduction in the difference between 

median scores of MSI-H and MSS samples, and a reduction in the difference between the 

minimum MSI-H score versus maximum MSS score (Table S1.1). The validation cohort (n = 

99) had a mean 8.40 reads per molecular barcode, and could, therefore, be classified by the 

smSequence-trained classifier. Again, the smSequence-trained classifier had 100% 

diagnostic accuracy (Figure S1.1B), as for the read-trained classifier, but gave poorer 

separation of MSI-H from MSS CRCs (Table S1.1). 

 

 

Figure S1.1: Classification of the training (A) and validation (B) cohorts by the smSequence-
trained MSI classifier. 
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Cohort Score comparator Classifier method  Score difference 
Training Median By Reads 65.3 
Training Median By smSequences 53 
Training Minimum MSI-H vs. maximum MSS By Reads 10.2 
Training Minimum MSI-H vs. maximum MSS By smSequences 6.5 
Validation Median By Reads 62.7 
Validation Median By smSequences 50.3 
Validation Minimum MSI-H vs. maximum MSS By Reads 18.5 
Validation Minimum MSI-H vs. maximum MSS By smSequences 2.7 

Table S1.1: Comparison of the difference in classifier scores of MSI-H and MSS CRC samples 
by the read- or smSequence-trained MSI classifier, in the training and validation cohorts. 

 

 

 In conclusion, it was decided that molecular barcodes should not be used to reduce 

sequencing error prior to sample classification due to the equal diagnostic accuracy, but 

worse sample separation, achieved by an smSequence-trained classifier versus a read-

trained classifier. That we did not observe improved classification by use of molecular 

barcodes is likely due to the naïve Bayesian approach used to train the classifier. In 

particular, the effect of sequencing error is incorporated into the probabilities used within 

the classifier parameters, and this will reduce the impact of error reduction by use of 

molecular barcodes. The worse separation of MSI-H from MSS samples could result from the 

reduced quantity of data per marker per sample used for classifier training because the 

generation of smSequences discards data, such as molecular barcode groups containing only 

1 read. It is possible that an smSequence-trained classifier could have equivalent, or 

superior, separation of MSI-H from MSS samples if higher read depths and more samples 

were used. However, optimising classifier training was not deemed necessary for this study 

given its 100% diagnostic accuracy using the read-trained classifier, and a requirement for 

higher read depths would obstruct our aim of a cheap and scalable assay. 
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Supp. Information S2: DNA and read mixing series 

Assessing the effect of DNA mixing 

Assuming there is no selective amplification of microsatellite alleles from MSI-H or MSS 

cells, a comparison of the observed relative frequency of microsatellite length mutations in 

DNA mixtures of HCT116 (MSI-H cell line) and PBLs (MSS cells) can be compared to the 

expected frequency (fmix) to assess the accuracy of mixing. fmix was calculated from the 

mean frequencies of microsatellite length mutations observed from HCT116 DNA (fMSI) and 

PBLs (fMSS), and the proportion of MSI-H cell DNA in the mixture (pmix), using the equation: 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚.𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 + �1 − 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚�.𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 

The observed frequencies were strongly correlated with expected frequencies (β = 1.03, R2 = 

0.99, Figure S2.1). 

 

Figure S2.1: Observed versus expected relative frequency of microsatellite length mutations 
in the three replicate sample mixture series, ranging from 0.78-50.00% MSI-H cell DNA. 
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Simulating additional samples of varying MSI-H cell content 

Additional samples of varying MSI-H content were simulated by mixing reads from one MSI-

H sample and one MSS sample. For each marker in a simulated sample, reads were 

randomly mixed in the desired proportion, with the total number of reads per marker equal 

to the reads per marker of the MSI-H sample used. Classifier scores of simulated and 

empirical sample mixtures were strongly correlated using data from HCT116 and PBLs (β = 

0.97, R2 = 0.98; Figure S2.2), supporting the validity of the method. 

 

Figure S2.2: Classifier scores of simulated and empirical sample mixture series, ranging from 
0.00-100.00% MSI-H cell DNA. 
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Supp. Information S3: DNA and read dilution series 

Visualisation of amplicons from the template DNA dilution series (Figure S3.1) 

 

 
Figure S3.1: Agarose gel electrophoresis of amplicons generated from 9 samples by the MSI 

assay. Amplicons are visible at 240-270bp. Primer dimers are visible at 80bp. Marker (M): 
GeneRuler 1kb Plus (ThermoFisher). Top panel: cell line controls. Middle panel: FFPE MSI-

high CRCs. Bottom panel: FFPE MSS CRCs. 
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Assessing the effect of sample dilutions on the number of molecular barcodes detected 

Assuming that each molecular barcode originates from a distinct template DNA molecule, 

the number of molecular barcodes detected can be used to assess the accuracy of the 

sample dilution series. The number of molecular barcodes detected was correlated with the 

quantity of template DNA for each of the 9 samples (β = 0.84-0.96, R2 = 0.99-1.00, Figure 

S3.2), suggesting dilutions were accurate. One sample, N073, shows a lower than expected 

number of molecular barcodes from 6.25ng of template DNA, which is also visible from a 

reduced intensity of amplicon in the gel image (Figure S3.1), suggesting there was an error 

in reaction preparation. 

 

Figure S3.2: Correlation of the number of molecular barcodes detected, and the input 
quantity of template DNA. 
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Simulating sample dilutions to decrease molecular barcodes detected 

Additional sample dilution series were simulated by resampling of reads. For each marker in 

a sample, reads were grouped by molecular barcode, and the microsatellite length and SNP 

genotype associated with that molecular barcode was summarised from that found in the 

majority of reads in the group. Predetermined numbers of molecular barcodes were 

selected to simulate sample dilution. Subsequently, reads for the simulated sample were 

generated to a depth equal to that of the original sample, with each read having a defined 

microsatellite length and SNP genotype by random sampling of the selected molecular 

barcodes. 

For each of the 9 samples that were empirically analysed, 20 simulated dilution 

series were generated, using 7, 11, 17, 25, 38, 57, 86, 129, 194, 291, 437, 656 and 985 

molecular barcodes per marker, and classifier scores were modelled by non-linear 

regression using cubic splines, such that a simulated score could be predicted for any given 

number of molecular barcodes per marker. Classifier scores of simulated and empirical 

sample dilutions, of the same mean number of molecular barcodes per marker, were 

strongly correlated using data from the 9 samples (β = 0.92, R2 = 0.96; Figure S3.3), 

supporting the validity of the method. 
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Figure S3.3: Comparison of empirically observed and simulated sample dilution series, and 
the association between molecular barcodes/marker and classifier score. 

 

 


