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SUMMARY

Mechanistic models explicitly represent hypothe-
sized biological knowledge. As such, they offer
more generalizability than data-driven models. How-
ever, identifying model curation efforts that improve
performance for mechanistic models is nontrivial.
Here, we develop a solution to this problem for
genome-scale metabolic models. We generate an
ensemble of models, each equally consistent with
experimental data, then perform simulations with
them. We apply machine learning to the simulation
output to identify model structure variation that
maximally influences simulations. These variants
are high-priority candidates for curation through
removal, addition, or reannotation in the model. We
apply this approach, automated metabolic model
ensemble-driven elimination of uncertainty with sta-
tistical learning (AMMEDEUS), to 29 bacterial spe-
cies to improve gene essentiality predictions. We
explore targets for individual species and compile
pan-species targets to improve the database used
during model construction. AMMEDEUS is an auto-
mated and performance-driven recommendation
system that complements intuition during curation
of biochemical knowledgebases.

INTRODUCTION

Genome-scale metabolic network reconstructions (GENREs)

are knowledgebases describing metabolic capabilities and their

biochemical basis for entire organisms. GENREs can be math-

ematically formalized and combined with numerical representa-

tions of biological constraints and objectives to create genome-

scale metabolic models (GEMs). These GEMs can be used to

predict biological outcomes (e.g., gene essentiality and growth

rate) given an environmental context (e.g., metabolite availabil-

ity) (Oberhardt et al., 2009). GEMs are now used widely for well-
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studied organisms such as Escherichia coli and Saccharo-

myces cerevisiae, but GEMs for most other organisms are

much more taxing to create and curate, partially due to the

exhaustive and manually driven steps required (Thiele and

Palsson, 2010).

The methods used to curate GEMs are nearly universally

underreported in the literature. The curation process for a sin-

gle GEM includes but is not limited to: addition of biochemical

activity known experimentally with no identified gene (i.e.,

orphan reactions), removal of false-positive annotations of

gene-protein-reaction units, refinement of species-specific

model components (e.g., compartments and biomass compo-

sition), and removal of database or annotation-induced errors

(e.g., mass-imbalanced reactions and energy-generating cy-

cles). Curation methods for GEMs that take researchers many

months to years to develop are generally summarized qualita-

tively with limited description or justification. This is not surpris-

ing, given the difficulty in prioritizing areas for curation of

network-based, highly connected mechanistic models such

as GEMs. Systematic, reproducible methods for curation are

rare, so GEM curators are left to their own intuition to prioritize

curation efforts. Advances in automated generation of GEMs

are beginning to make the goal of formalizing the curation pro-

cess more approachable, but the resulting GEMs are of suffi-

cient quality for very limited purposes and thus still require

intensive curation (Henry et al., 2010).

In practice, heuristics are typically used to prioritize curation,

such as curating portions of the GEM directly involved in the

manipulation of a metabolite, gene, or pathway of known inter-

est. These heuristics, combined with targeted literature

searches, allow task-based curation and GEM evaluation,

which is increasingly supported in software related to

genome-scale metabolic modeling (Lieven et al., 2018; Wang

et al., 2018). Some emerging tools, such as the Memote test

suite, help identify curation needs related to GEM self-consis-

tency (i.e., uniformity of reaction and metabolite identifiers),

connectedness with external databases (e.g., reaction, metab-

olite, and gene identifiers), compliance with standards (e.g.,

Systems Biology Markup Language [Hucka et al., 2003]), and

objective measures of quality (e.g., mass balance of reactions)

(Lieven et al., 2018). However, identifying the network
uary 22, 2020 ª 2019 The Author(s). Published by Elsevier Inc. 109
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components that influence predictions of interest is not an intu-

itive process because biological networks are generally highly

connected. Gap filling is an algorithmic approach for identifying

reactions to be added to a GEM, or changes to existing reac-

tions, that satisfy imposed constraints on the GEM such as pro-

duction of a metabolite of interest (Reed et al., 2006). Using gap

filling to guide the curation process is thus limited to helping

identify metabolic functions that lead to an experimental

phenotype known a priori. In other words, gap filling is a pro-

cess of fitting a GEM to observed data. This fitting is of tremen-

dous value, but the primary purpose of mechanistic models is

to generate in silico predictions for behavior in a previously un-

observed environment. In order to efficiently curate a GEM to

improve its performance for simulation tasks that have no

observed experimental equivalent, a curator needs to under-

stand which portions of the GEM affect the output of the simu-

lation. Existing approaches and tools fall short of this demand

because they only improve GEM quality and performance by

establishing consistency with modeling standards and previ-

ously observed data.

One way to view this issue is through the lens of a sensitivity

analysis, asking how much variation in the parameters of a

model will impact a simulation of interest. Such an approach

has been developed and applied to dynamic models of biolog-

ical networks (Babtie et al., 2014), which relies on quantified un-

certainty in the structure of a model. Uncertainty quantification

has been applied at the level of individual components within a

GEM, either by considering the probability of a function being

present in a network based on sequence comparisons (Bene-

dict et al., 2014) or by leveraging network structure to more

accurately estimate these probabilities (Plata et al., 2012).

However, an approach that unifies a probabilistic view of

GEM structure with simulations performed with them, which

would enable structural sensitivity analysis for GEMs, has not

been developed to our knowledge. At a minimum, guiding the

curation of a GEM to improve performance on a prospective

simulation requires quantifying the uncertainty in the simulation

output.

Recently, we developed a framework for the generation of

ensembles of GEMs that can be applied to improve predictive

performance over that of an individual GEM (Biggs and Papin,

2017). This approach is analogous to the use of ensembles of

data-driven models (Dietterich, 2000) or hypothesis-driven

models such as signaling networks (Kuepfer et al., 2007) and

has been applied to metabolic networks for dynamic modeling

as well (Tran et al., 2008). Here, we prioritize curation of GEMs

by coupling ensemble modeling with machine learning to

take advantage of the uncertainty quantification inherent to

ensemble modeling. We call this approach automated meta-

bolic model ensemble-driven elimination of uncertainty with

statistical learning. (AMMEDEUS). One of the central tenets

of systems biology is that models represent our hypotheses

about how an organism functions. As such, we can use these

models to simulate the behavior we expect according to our

hypotheses. AMMEDEUS takes advantage of this principle,

generating many hypotheses (i.e., an ensemble) and coupling

them with machine learning to identify experiments that

optimally improve our understanding of a specific behavior

for an organism.
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RESULTS

The AMMEDEUS approach is summarized as follows. First, we

generate many models that are each consistent with experi-

mental data, forming an ensemble of models (Figure 1A). We

then perform a set of simulations using the ensemble that are

related to a task of interest, such as drug target identification

or production of a metabolite of commercial interest (Figure 1B).

Using the output of these simulations, we perform unsupervised

learning to generate phenotypic clusters of models, where clus-

tering is determined by similarity of simulation profiles across the

entire set of simulations (Figure 1C). We then apply supervised

learning to predict simulation cluster membership for each

model using the values of variable parameters (i.e., whether a re-

action is present or absent) in that model as input (Figure 1C).

The relative importance of these model parameters in the super-

vised learning model indicates the impact that uncertainty in that

parameter has on simulation outcomes across the ensemble

(Figure 1D). In other words, resolving the true state of these pa-

rameters (i.e., whether an organism is capable of performing a

reaction) will maximally reduce uncertainty in the simulations

performed with the ensemble. Here, we apply this approach to

the task of reducing uncertainty in predicted gene essentiality

for 29 bacterial species (Figures 1A–1D). We generate an

ensemble for each species using previously published growth

phenotyping data (Plata et al., 2015), predict the effect of

genome-wide single gene knockouts, then apply machine

learning as described above. In addition to the metric of feature

importance derived from the supervised learning step, we also

identify reactions that are less abundant, yet highly enriched in

a single cluster, through a cluster ratio metric. This process is

generalizable to any mechanistic model and simulation task of

interest with the correct substitution of machine learning models

given the changes in the type of simulation output (e.g., contin-

uous versus discrete, steady-state versus dynamic).

Given our objective of identifying the most impactful experi-

ment or curation effort to improve the quality of a given model,

we required ensembles of GEMs that were large enough to satu-

rate the space of unique simulation results (i.e., predicted

behavior) and model structures (i.e., hypotheses). We imple-

mented a previously developed iterative gap-filling procedure

for generating ensembles of GEMs (Biggs and Papin, 2017).

First, each member of an ensemble is generated by iteratively

filling gaps in the network to enable in silico growth in each of

a set of media conditions (Figure 2A; see STAR Methods). Alter-

native solutions are explored by shuffling the order of media con-

ditions used for gap filling and repeating the process until the

ensemble reaches the desired size (Figure 2B; see STAR

Methods). Using this method, we were able to generate ensem-

bles of around 1,000 GEMs for 29 bacterial species (see STAR

Methods for descriptions of exceptions). See STAR Methods

for full details of the reconstruction pipeline and species inclu-

sion criteria.

To validate that the ensembles we generated represent an

adequate sampling of the feasible model space, we first sub-

sampled gap-filled reactions in each ensemble for each species

and determined the unique reaction content within each sub-

sample (Figure 2C). We found that the unique reaction content

(e.g., number of unique reactions gap filled) plateaued or nearly
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Figure 1. The AMMEDEUS Approach Guiding Curation of Genome-Scale Metabolic Models

(A) A draft GEM is generated using ModelSEED. Algorithmic gap filling is applied so that the GEM can recapitulate experimental observations, and the process is

repeated to identify alternative solutions. These alternative solutions are assembled into an ensemble of GEMs, each of which contains the original content of the

draft GEM and a unique set of gap-filled reactions.

(B) Single-gene knockouts are performed using the ensemble, in which production of biomass is evaluated when reactions requiring each gene are inactivated.

(C and D) Machine learning approach for identifying curation targets based on ensemble simulations. Unsupervised machine learning (C) is applied to the

ensemble simulation results, generating two simulation clusters (cluster 1 [red] and cluster 2 [blue]).K-means clustering is used to assign cluster membership, and

PCoA is used to visualize the similarity of simulation profiles for all models within an ensemble (i.e., the input to k-means and PCoA are identical; PCoA is used for

visualization only, and the k-means clustering is overlaid via coloring in PCoA). Simulation clusters are then used as labels in supervised machine learning (D),

which are predicted using model reaction content as input to a random forest classifier. Curation is prioritized based on the features contributing to classifier

performance.
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Figure 2. Ensemble Generation Process and Subsampling of Ensemble Content and Simulations to Demonstrate Adequate Sampling of the

Solution Space

(A) Algorithm for generating a single ensemble member. Given a set of confirmed experimental growth conditions, reactions are added to fill gaps in the GEM

required for in silico growth in the first condition (see STAR Methods, Algorithm 1). The reactions are added, then the process is performed iteratively for the

remaining growth conditions until growth is possible in all conditions.

(B) Process for producing an ensemble of GEMs. The algorithm in (A) is performed to generate a single ensemble member, then the order of the media conditions

is shuffled, and the process is repeated to generate another ensemble member. This process is repeated 1,000 times, generating approximately 1,000 ensemble

members (for some species, duplicate solutions occur and these members are removed. All 29 species had 970–1,000 ensemble members).

(C) The variable reaction content in ensemble members as a function of increasing ensemble size. A variable reaction is any reaction that is variably included

across any member of the subsampled group (e.g., it is absent from some members and present in other members but neither entirely present in nor entirely

absent from the ensemble). For each species, the mean number of variable reactions in subsamples of GEMs is shown by the solid line, with the standard

deviation shown as light fill of the same color above and below the mean. Subsampling was performed with 1,000 draws per subsample size. Ensembles were

sampled at intervals of 20 members, e.g., 20, 40, 60, and so on until reaching the size of the entire ensemble.

(D) Variability in gene essentiality simulations within subsamples of ensemble members. Using the same subsampling procedure as in (C), the number of genes

with at least one GEM in the subsample with a simulation outcome different than the rest (e.g., non-consensus) was determined. The mean for each subsample

size is shown by the solid line, with the standard deviation shown as light fill of the same color above and below the mean.
plateaued with ensembles containing as few as 100,200 models,

suggesting the ensembles we generated sufficiently saturate the

space of unique gap-filled reactions. For gene essentiality simu-

lations, the number of variable predictions (e.g., number of genes

for which at least one ensemble member disagrees with another

member) plateaued in a similar manner (Figure 2B). We also per-

formed subsampling for predictions of growth rate (a common

simulation performed with GEMs), which exhibited similar prop-

erties of convergence (Figures S1A and S2B).

Taken together, these subsampling-based results confirm that

ensembles containing 1,000 models generated using our recon-

struction pipeline sufficiently represent the network structure

space (e.g., unique reactions) and prediction space (e.g., essen-

tiality profiles) possible, given the input data. This behavior is

consistent with previous work examining the performance of en-

sembles of GEMs for Pseudomonas aeruginosa, in which various

aspects of ensemble performance nearly plateaued with only 50

GEMs (Biggs and Papin, 2017). However, in order to ensure that

an adequate number of samples are included for downstream

machine learning analyses, we maintain the full ensemble of

1,000 GEMs for each species in all analyses. In other applica-

tions, we suspect that organisms with lower quality GEMs
112 Cell Systems 10, 109–119, January 22, 2020
(e.g., more gaps in their metabolic network) or less phenotypic

profiling data may require additional sampling to saturate this

space. In contrast, species with GEMs containing fewer gaps

are likely to require less sampling or an alternative ensemble

generation procedure. For example, when attempting to build

an ensemble of GEMs forBacillusmegaterium using our pipeline,

only one unique gap-filling solution could be found. This result is

likely due to its large genome size (5.5 Mb, 5,609 coding se-

quences) and its extensive genomic and physiological charac-

terization from over 100 years of use in biochemistry research

(Eppinger et al., 2011).

Each species’ ensemble contained 19.27 ± 8.66 genes

(mean ± standard deviation) for which at least one GEM’s predic-

tion of essentiality disagreed with another GEM in the ensemble,

representing 3.11% ± 1.39 of total metabolic gene content. For

the unsupervised machine learning portion of AMMEDEUS, we

performed k-means clustering on the gene essentiality simula-

tions from each species’ ensemble separately. We chose k = 2

to generate two clusters for each species, each of which contain

GEMs from the ensemble with similar gene essentiality simula-

tion profiles. The results are visualized for all species in this study

using principal coordinate analysis (PCoA) in Figure 3A. Although
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Figure 3. Application of AMMEDEUS to Bacterial Species

(A) Ensemble gene essentiality simulations and unsupervised learning for all 29 species. Principal coordinate analysis (PCoA) plots show the similarity between

gene essentiality simulation profiles for each ensemble member. Within each PCoA plot, each point represents an ensemble member, colored by cluster

membership as determinedwith k-means clustering (k = 2). PCoA is used solely for visualization; only k-means clustering results are used in AMMEDEUS. Percent

variance in the pairwise distance matrix explained by each principal coordinate is indicated in parentheses.

(B) Evaluation of performance of GEMs in each simulation cluster compared to genome-wide gene essentiality data. Essentiality datasets from in vitro experi-

ments were collected for Haemophilus influenzae and Staphylococcus aureus. Precision (TP/[TP + FP], TP = true positives, FP = false positives), and recall (TP/

[TP+FN], FN = false negatives) were calculated for each ensemble member for each species. Small red and blue circles indicate an individual ensemble member,

colored by simulation cluster membership. Large red and blue circles indicate mean behavior for ensemble members from each cluster, and error bars of same

color extend above and below the mean by one standard deviation.

(C) Extraction of curation metrics (fractional importance and cluster ratio) for each reaction after the unsupervised learning step.

(D) Example curation guidance plot for Enterococcus faecalis.

(E) Example of a network feature driving simulation cluster membership. The metabolic activity, selenocystathionine L-homocysteine-lyase, is known to be

catalyzed promiscuously by the enzyme cysteine-S-conjugate beta-lyase, which acts on a variety of S- and Se-conjugates. We discovered that this activity has

been experimentally verified in vitro for E. faecalis but is not incorporated in biochemical databases. Water is excluded from reactants for visualization.
we chose k = 2 here to illustrate the approach, the separation of

models in PCoA space suggests that for many species, deter-

mining a larger number of clusters might be advantageous. For

example, while k = 2 generates two maximally different simula-
tion clusters, theremay bemore than two distinct in silico pheno-

typic clusters that represent meaningful differences in hypothe-

sized model behavior. Accounting for the presence of these

smaller clusters may identify important network features that
Cell Systems 10, 109–119, January 22, 2020 113



would otherwise only be found through multiple iterations of

clustering with k = 2 and refinement of the ensemble.

Our approach is focused on prioritizing curation efforts to

reduce uncertainty in model simulations. However, whether the

parameters we have used result in clusters with differences in

predictive performance is unclear. To investigate this question,

we evaluated the performance of a subset of ensembles for

which experimental genome-wide gene essentiality datasets

derived from in vitro growth on a rich medium were available.

Suitable datasets were identified for Staphylococcus aureus

(Chaudhuri et al., 2009) and Haemophilus influenzae (Akerley

et al., 2002). Each GEM in the ensemble for each species was

evaluated using precision (the ratio of true positives to the sum

of true and false positives) and recall (the ratio of true positives

to the sum of true positives and false negatives; Figure 3B).

For both species, ensemble members have variable precision

and recall, and simulation cluster membership is associated

with a difference in both precision and recall (p < 0.0001,

Mann-Whitney U-test with false discovery rate control via Benja-

mini Hochberg procedure). We note that the poor precision and

recall for all ensemble members is consistent with the perfor-

mance of other GEMs in predicting gene essentiality, especially

when comparing to in vitro essentiality datasets that suffer from

technical noise and variability (Blazier and Papin, 2019). There

are biologically meaningful differences in the predictions gener-

ated by each cluster. The difference in performance between

two clusters suggests that there are meaningful differences in

network structure and that assigning two clusters (k = 2) is suffi-

cient to capture these differences across an ensemble. Having a

meaningful degree of variation between simulation clusters is

essential moving forward in AMMEDEUS, as we aim to predict

the simulation cluster from the network structure of each

ensemble member.

We next sought to identify the reactions that vary across an

ensemble that are associated with membership in each cluster.

For this objective, we calculated two metrics for each gap-filled

reaction in each ensemble. This process is demonstrated for

Enterococcus faecalis in Figures 3C and 3D. First, we trained a

random forest classifier (Breiman, 2001) to predict cluster mem-

bership for each GEM from its reaction content. Specifically, the

random forest input was a binary vector of presence (1) or

absence (0) for each reaction that was variably present across

the ensemble. The classifier for every species had an out-of-

bag accuracy above 97%, indicating that gene essentiality clus-

ter membership can robustly be predicted from reaction content

within the ensembles. To prioritize candidate reactions for cura-

tion of each species’ ensemble, we examined the features that

contributed the most to classifier performance. We call this first

metric the fractional importance of each reaction (called ‘‘frac-

tional’’ because all importances sum to 1 for each species). Sec-

ond, we developed a metric to represent the enrichment of gap-

filled reactions in a single cluster without consideration of classi-

fier performance, which we call the cluster ratio. The cluster ratio

(Figure 3C) is 1 when a reaction is present in one cluster and not

present in any member of the other cluster and 0 when the reac-

tion is present in an equal number of members in each cluster.

The intent of the cluster ratio is to capture the value of curating

reactions that may be lowly abundant throughout an ensemble

yet highly enriched in one of the two clusters (e.g., present in
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0% of members of one cluster but 20% of members in the sec-

ond cluster). These reactions may make small contributions to

classifier performance due to their low abundance, but curating

their presence or absence will reduce the uncertainty in the

ensemble of GEMs in a straightforward and interpretable way.

This strategy contrasts with reactions with high fractional ratios

(i.e., important in the random forest) because the random forest

allows for interactions between input variables. As such, curation

of individual reactions with high fractional importance may not

result in a substantial change in GEM performance; improve-

ments from curating these reactions may be dependent on

also curating other reactions that interact with the curated reac-

tion in the trained random forest. Together, the cluster ratio and

fractional importance can guide manual curation of a GEM. High

cluster ratio reactions represent interpretable ‘‘low-hanging

fruit’’ with modest overall value for curation, while high fractional

importance reactions represent the highest value curation effort

that could be pursued. Reactions with high values for both met-

rics should be prioritized above all else (Figure 3D).

With a list of prioritized reactions for curation in hand, there are

multiple approaches that can be taken to curate their presence

or absence, including wet lab experiments, targeted bio-

informatic analyses, and literature searches. The optimal

approach depends on the scientific history of the organism

and data availability. A targeted literature search might reveal in-

formation that has not been incorporated into genomic or meta-

bolic databases, especially for well-characterized organisms

with a large body of literature. For example, in the ensemble

for E. faecalis, the reaction with the second highest fractional

importance and a cluster ratio of 1 (perfectly enriched in one

cluster) was selenocystathionine L-homocysteine-lyase, which

generates selenohomocysteine, pyruvate, and ammonia from

selenocystathionine (Figure 3E); reaction IDs: SEED rxn03379

and KEGG R04941). This reaction is catalyzed by cysteine-S-

conjugate beta-lyase (Enzyme Commision [EC] number

4.4.1.13), which normally catalyzes beta elimination reactions

with cysteine sulfur conjugates but is known to act promiscu-

ously on cysteine-Se-conjugates (Cooper and Pinto, 2006;

Cooper et al., 2011). Cysteine-S-conjugate beta-lyase activity

is prevalent in the human gut microbiota, and a study that

screened 29 isolates from the gut for cysteine-S-conjugate

beta-lyase and cysteine-Se-conjugate beta-lyase activity on a

variety of conjugates found that E. faecalis consistently demon-

strated both activities (Schwiertz et al., 2008). Thus, the reaction

identified by AMMEDEUS is highly likely to occur in E. faecalis,

and it should be added to all members of the ensemble to

improve the representation of biochemical knowledge as well

as reduce uncertainty in the predictions generated by the

ensemble. This reaction may be missing appropriate links be-

tween genomic and biochemical annotation for a number of rea-

sons: the primary activity is promiscuous (S-conjugates can be

one of many compounds), the secondary activity is a less appre-

ciated promiscuous activity (Se-conjugate metabolism by an

enzyme primarily known for S-conjugate metabolism), and the

primary activity is sparsely annotated in the database used to

construct GEMs in this study (PATRIC; contains 45 CDS anno-

tated as ‘‘putative cysteine-S-conjugate beta- lyase,’’ only 7 of

which occur outside the Mycobacteroides genus). Further com-

pounding the issue, the E. faecalis genome within PATRIC



contains three annotated cystathionine beta-lyase genes, an

enzymatic activity that was recently merged with cysteine-S-

conjugate beta-lyase (i.e., the former, EC 4.4.1.8, was deleted

and merged into the latter [EC 4.4.1.13] in the year 2018). Given

that only the cystathionine beta-lyase activity was annotated in

PATRIC, the lack of annotation for cysteine-S-conjugate beta-

lyase might be resolved when PATRIC and ModelSEED are up-

dated to take the EC merge into account. This curation vignette

highlights the need for improved handling of enzyme promiscuity

in biochemical databases and presents an opportunity for tar-

geted curation ofE. faecalis annotation in genomic and biochem-

ical databases. Further examples of high-priority curation targets

can be found in Table S4, which includes the top 10 curation tar-

gets ranked by fractional importance for all 29 species.

In addition to the single-species curation guidance enabled by

AMMEDEUS, the automated nature of the approach allows

meta-analyses that span metabolic models for multiple organ-

isms or entire databases. We performed the AMMEDEUS

approach for all 29 species in our study. Figure 4A shows cura-

tion guidance plots for all species, which demonstrate the vari-

ability in the distribution of curation target metrics across spe-

cies. Some species display behavior similar to E. faecalis, with

many reactions with high fractional importance at intermediate

cluster ratio values, indicating complex interactions between re-

actions of interest (e.g., Listeria monocytogenes, Listeria seeli-

geri, and Neisseria mucosa). For these species, reduction of un-

certainty in gene essentiality predictions will likely require

curation of multiple reactions. Other species have simpler

behavior, with a high degree of concordance between cluster ra-

tio and fractional importance for the most important reactions

(e.g., Bacillus pumilis, Haemophilus influenzae, and Pseudo-

monas putida). For these species, each individual reaction of

high importance that is curated will result in a substantial and

easily predictable decrease in uncertainty for gene essentiality

predictions.

By compiling these curation target metrics across all 29 spe-

cies, we are able to identify pan-species or database-wide cura-

tion targets. For these reactions, improving the accuracy or

coverage of gene-protein-reaction associations could greatly

improve the performance of GEMs generated with this database

for any species. In Figure 4B, we show the distribution of mean

fractional importance for each reaction used to fill a gap in any

ensemble (calculated using the fractional importance only for

species for which the reaction was gap filled). The high-impor-

tance tail of this distribution suggests that a small number of re-

actions have a substantial impact on gene essentiality prediction

uncertainty for many species. The same is true for the cluster ra-

tio, for which a large set of reactions have a mean cluster ratio of

1 (e.g., only present in one cluster) across species (Figure 4C).

The cluster ratio distribution is approximately normal, centered

around 0.5, meaning the average behavior for reactions with a

cluster ratio not equal to 1 is to be twice as abundant in one clus-

ter than the other (e.g., 1 � ½ = 0.5). These distributional obser-

vations are also true when reactions occurring in fewer than 5

species are filtered (Figures S2A and S2B) andwhen considering

the distribution of fractional importances without taking the

mean across all species (Figure S2C). The distribution of raw

cluster ratios (i.e., no mean across species, Figure S2D) still

has a large set of reactions with a cluster ratio of 1 but has a
much larger set of reactions with near 0 cluster ratio (e.g., uni-

formly distributed across two clusters, 1 � 1/1 = 0). This result

suggests that many reactions are evenly distributed between

the two clusters for some species but are enriched in one cluster

for at least one other species (resulting in the distribution of

means shifting away from 0, as in Figure 4C). Taken together,

these results suggest that some reactions are of high value

across many species (reactions with high mean cluster ratio

and/or high mean fractional importance), but these reactions

may have minimal or no value for a smaller subset of species.

Individual reactions can be prioritized at the pan-species or

database level by taking both cluster ratio, fractional importance,

and their frequency across species into account. Figure 4D

shows the value of each metric for each reaction, as well as

the number of species that the reaction was gap filled for in

our analysis. Reactions toward the upper right corner that have

large points (i.e., gap filled for many species) are of highest value

from a database curation standpoint. To illustrate a specific

example, the reaction with the second highest mean fractional

importance is L-threonine acetaldehyde-lyase, which converts

L-threonine to glycine and acetaldehyde (Figure 4E; reaction

IDs: SEED rxn00541 and KEGG R00751; EC 4.1.2.5 and

4.1.2.48). It was gap filled in 5 out of 29 ensembles and has a

mean cluster ratio of 0.99. This reaction is known to be catalyzed

by threonine aldolase (TA) as well as promiscuously by serine hy-

droxymethyltransferase (SHMT; generally encoded by glyA) in

bacteria (Chaves et al., 2002). For two species in this study,

Corynebacterium efficiens and Haemophilus parasuis, this reac-

tion is among the 10 reactions with the highest fractional impor-

tance. TA activity is known to occur inCorynebacterium glutami-

cum, a close relative of C. efficiens, but it is not known whether

the activity is due to TA or SHMT (Simic et al., 2002). Notably, the

genomes for C. efficiens YS314 and H. parasius SH0165 (both

used in this study as representative genomes) contain a putative

SHMT encoded by glyA but no putative TA. For these species, a

simple experiment with crude extracts to verify TA activity, as

performed previously for C. glutamicum, could verify that the

metabolic activity occurs either through promiscuous SHMT ac-

tivity or an orphan enzyme (Simic et al., 2002). Amore systematic

set of experiments utilizing glyA mutants for these species and a

handful of others could identify the degree of promiscuous TA

activity by SHMT to properly propagate annotations to other

species within databases. In addition to the inherent value in

improving the quality of biochemical databases through this tar-

geted investigation, AMMEDEUS shows that this specific inves-

tigation would substantially decrease the uncertainty in gene es-

sentiality predictions for a broad selection of bacterial species.

Based on this pan-species analysis, we next asked whether

reactions within specific subsystems were contributing more to

prediction uncertainty than other pathways. Reactions assigned

to ‘‘respiration’’ had a lower mean fractional importance than re-

actions assigned to any other pathway except for ‘‘phosphorus

metabolism’’ (Figure 4F, Kruskall-Wallis test with post-hoc pair-

wise Dunn’s test and Bonferroni multiple testing correction).

Given the key role of respiration in energy generation and its

well-characterized structure, it is unsurprising that reactions

directly involved in respiration do not contribute to prediction un-

certainty for GEMs. Few other differences in mean fractional im-

portances across pathways exist (see Table S2). The same
Cell Systems 10, 109–119, January 22, 2020 115
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Figure 4. Analysis of AMMEDEUS Curation Targets for 29 Bacterial Species
(A) Curation target plots for all 29 species generated with AMMEDEUS.

(B) Distribution of mean fractional importances across all species. For each gap-filled reaction, fractional importances were averaged across all ensembles in

which the reaction was gap filled; the histogram of these means is shown.

(C) Distribution of mean cluster ratios across all species. Data handled the same as in (B).

(D) Compiled curation target plot for all species. Size of each point represents the number of species for which the reaction was gap filled.

(E) L-threonine acetaldehyde-lyase, which had the second highest pan-species mean fractional importance. Species for which the reaction was gap filled lack an

annotated L-threonine aldolase, the primary enzyme known to catalyze this reaction. However, the two species for which this reaction was in the top 10 most

important reactions have an annotation for serine hydroxymethyltransferase, which promiscuously catalyzes this reaction.

(F and G) Mean fractional importance (F) and cluster ratio (G) across all species by subsystem. Subsystem colors are the same in (F) and (G). Subsystems are

ordered by decreasing median from left to right in both panels. Only subsystems with at least 10 gap-filled reactions are shown. Boxplots show median (center

line) and extend to the 25th and 75th percentile.
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analysis, instead performed on the mean cluster ratio of reac-

tions assigned to each subsystem, yielded more differences

between subsystems (Figure 4G; Table S3). ‘‘Metabolism of aro-

matic compounds’’ and ‘‘nucleosides and nucleotides’’ had

particularly high mean cluster ratios, suggesting that curating

individual reactions within those subsystems should reduce pre-

diction uncertainty without dependence on curating larger path-

ways. ‘‘Respiration’’ also had a high cluster ratio, in contrast to its

low mean fractional importance. One potential explanation for

this is that the small number of reactions involved in respiration

tend to be essential, but they also have overlapping roles for

generating key metabolites for other processes such as pyru-

vate, L-lactate, and acetyl-CoA and thus may be redundant for

some GEMs. Reactions involved in respiration also have redun-

dant electron carriers, such as ubiquinone and menaquinone, so

preferential addition of each of the two reactions to different

clusters could result in a high cluster ratio for each reaction

without any impact on gene essentiality simulations. Other sub-

systems hadmean cluster ratios centered closer to 0.5, similar to

the mean value in the normal portion of the distribution in Fig-

ure 4C. Together, the subsystem-specific fractional importance

and cluster ratio behavior suggests that focusing on individual

reactions in database-wide curation will have greater value

than focusing on subsystems. Thus, in practice, modelers that

aim to improve their GEM with respect to a broad set of simula-

tions (e.g., genome-wide gene essentiality) should focus cura-

tion on key reactions that are distributed across the network

rather than curation of specific predefined subsystems. AMME-

DEUS provides a systematic way to identify these reactions for

individual organisms and entire biochemistry databases.

DISCUSSION

Mechanistic computational models, such as metabolic and

signaling networks, are becoming common in biology. These

models contain a comprehensive representation of components

and interactions for a given system, making them generalizable

and often more predictive than simpler models. However, their

size and connectivity make it difficult to identify which parts of

a model need to be changed to improve performance further.

We developed AMMEDEUS to guide this process for metabolic

models. AMMEDEUS systematically aides the curation of meta-

bolicmodels, and the databases used to construct them,without

relying on the intuition of the curator.

The analysis we performed demonstrates just one possible

path toward the goal of reducing uncertainty in our understand-

ing of biochemical networks within the AMMEDEUS framework.

Changes to the process can be rationalized for new goals; for

example, we previously demonstrated that introducing random

weights on inclusion of each reaction during algorithmic gap

filling can generate more diverse ensembles (Biggs and Papin,

2017). If none of the ensemble members generated by our pipe-

line adequately represented metabolism for an organism (e.g.,

their gene essentiality simulation results were vastly different

than experimental observations), we could introduce such

random variance to increase the likelihood of generating some

ensemble members that reflect biological reality. Such an

approachmay be necessary for organismswith metabolic reper-

toires differing substantially from those represented in popular
biochemical databases (e.g., gut microbes and intracellular par-

asites). Inclusion of methods for proposing novel hypothetical

enzymatic function could complement our approach for such or-

ganisms (Hatzimanikatis et al., 2005; Jeffryes et al., 2015).

AMMEDEUS can be immediately extended to other simula-

tions performed using GEMs with small adjustments to the

machine learning models applied. For example, rather than

gene essentiality, we may be interested in improving growth

rate predictions across many media conditions. In this case,

we would perform ensemble flux balance analysis in each condi-

tion to predict growth rates (Biggs and Papin, 2017), then apply

an unsupervised machine learning algorithm suited to contin-

uous data, such as principal component analysis (PCA). In this

setting, each sample would be a vector of growth rates gener-

ated by a single ensemble member, the loadings in PCA would

describe variance in predicted growth rates, and each sample

(ensemble member) would have a score for each principal

component. In the supervised learning step, we would apply

regression to predict the scores (e.g., predict the value of the first

principal component [PC1] for each sample) using the presence

or absence of gap-filled reactions as the regressor input. The

feature importances in this regressor would be equivalent to

the fractional importances in the random forest classifier we

use in the implementation of AMMEDEUS in this study. To calcu-

late an equivalent to the cluster ratio, the same equation could be

used with f1 and f2 replaced with the absolute value of the

average of PC1 for ensemble members with and without the re-

action, respectively. This hypothetical shift in curation goals, and

the simple swapping of machine learning models required, dem-

onstrates the modular nature of AMMEDEUS.

Similarly, choice of supervised machine learning model within

AMMEDEUS influences the interpretation of feature importance.

Here, our choice ofmodel, random forest, allows interactions be-

tween covariates (reaction presence or absence) that lead to

conditional relationships (AND/OR) being captured in the fitted

model. While this choice of method can lead to improvements

in accuracy, it also results in curation targets that may be condi-

tionally dependent on other targets. Here, we used the cluster ra-

tio to inform the curator of the degree of conditionality between

curation targets (or lack thereof). In future implementations of

AMMEDEUS, a simpler linear model without covariate interac-

tion may be more suitable for curators only interested in curating

individual reactions that will reduce simulation uncertainty.

Our approach builds on work in other disciplines in which

uncertainty quantification and reduction are applied to under-

stand or improve the behavior of domain-specific models.

For example, in petroleum engineering, an ensemble-based

approach is used to derive value of information (VOI) estimates

for resolving parameter values in models of oil reservoir manage-

ment (He et al., 2018). In this setting, a company may be inter-

ested in performing the experiment or analysis needed to

improve their certainty in a model of profit gain or risk. With AM-

MEDEUS, we effectively derive VOI estimates for resolving reac-

tion presence or absence, where value is determined by the de-

gree of uncertainty reduction for predictions of interest. Taking a

VOI approach for biological discovery and to improve themodels

used in various facets of biotechnology could help automate

workflows and substantially reduce costs by prioritizing experi-

ments. Machine learning methods have great utility toward this
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goal, since they can be applied to any variety of mechanistic

model structures and simulation outputs, removing the need to

derive analytical solutions for VOI estimates for every new sce-

nario. As the diversity and depth of organisms that mechanistic

models such as GEMs are being constructed for increases,

such approaches will be vital to continue to improve their quality

and predictiveness (Magnúsdóttir et al., 2017; Monk et al., 2014).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

All genomes used for metabolic network

reconstruction (species identifiers provided

in GitHub repository)

PATRIC https://www.patricbrc.org

Software and Algorithms

AMMEDEUS and all associated code, data,

results, and visualization for this manuscript

This paper, github (via Zenodo) Zenodo: https://doi.org/10.5281/zenodo.

3538303
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to andwill be fulfilled by the Lead Contact, Jason A. Papin (papin@

virginia.edu). This study did not generate new unique reagents.

METHOD DETAILS

Organism Selection
Organism selectionwas further refined by only including those fromPlata et al. (Plata et al., 2015) which grew in at least 10 of the single-

carbon sourceBiolog conditions. The experimental growth threshold originally used in the paper fromwhich datawere drawnwas used

(>10 colorimetric units of tetrazolium dye reduction; originally scaled between 0 and 100 based on positive [100 units] and negative [0

units] controls). This choice was made with the recognition that the tetrazolium dye measures redox activity and not actual biomass

production; for the purpose of our study, we assume that detectable redox activity above 10 relative units would require biomass pro-

duction. After this initial selection step, Brachybacterium faecium and Gordonia bronchialis were also removed from the analysis

because no solutions existed to enable biomass production using the universal reaction bag for either species. Bacillus megaterium

was excluded because only one gap-fill solution was found across all gap-filling cycles. Similarly, Stenotrophomonas maltophilia

was excluded because only two unique gap-fill solutions were found. In total, the full analysis pipeline was applied to 29 species.

Draft Genome-Scale Metabolic Model Generation
Draft-quality genome-scale metabolic models (GEMs) were generated using the ModelSEED reconstruction pipeline (Henry et al.,

2010) accessed through PATRIC in August 2018 (Wattam et al., 2017). PATRIC servers were queried to generate GEMs formatted

for use in cobrapy (Ebrahim et al., 2013) using the Mackinac package (Mundy et al., 2017).

Representative Media
The base medium for biolog conditions was derived from the ModelSEEDmedia compositions for biolog plates. Flux variability anal-

ysis was used to identify metabolites which had essential uptake reactions in all complete media-gap-filled reconstructions from

PATRIC. Based on this analysis, we added Heme and H2SO3 to the base biolog composition used in silico (i.e., uptake of heme

and H2SO3 was allowed in all conditions). For each single carbon source, appropriate identifiers were found in the ModelSEED data-

base. For metabolites with ambiguous chemical identities (e.g., metabolites that Biolog does not provide isomer composition for,

such as D-galactose), only one isomer was selected from ModelSEED to represent the condition. Carbon sources that are complex

mixtures of metabolites (gelatin) or polymers (pectin) were excluded from analyses.

Algorithmic Gap Filling
Algorithm 1: pFBA-based gap-filling

Min
PðabsðyjÞÞ for j˛½0;1; ::: # universal reactions�, subject to:

S , v + U,y = 0

Medusa Medlock and Papin, 2019 https://github.com/gregmedlock/Medusa
vbiomass> 0:05 hr�1
vlb; i< vi <vub; i
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ylb; j< yj <yub; j

Where S is the stoichiometric matrix representing the model to be gap-filled, v is the vector of fluxes through reactions in S, U is the

stoichiometric matrix representing the reaction database from which reactions are activated to fill gaps, y is the vector of fluxes

through reactions in U, vbiomass is flux through the biomass reaction, vlb and vub are lower and upper bounds of flux through reactions

in the original model, respectively, and ylb and yub are lower and upper bounds of flux through reactions in the reaction database U.

the formulation is identical to the original formulation of pFBA (Lewis et al., 2010), except for four key differences. First, we only require

anarbitrarily lowamount of flux throughbiomass, rather than themaximumamount of biomassobtainedwith FBA,meant to represent a

binary growth condition. Second, we introduce a universal reaction bag (U) and associated flux variables for each reaction in U (y).

Third, only fluxes through reactions in U are penalized; fluxes through reactions in the model being gap-filled (S) are not penalized.

Fourth, rather than explicitly splitting all reactions into irreversible reactions, we take advantage of solver-level interfaces implemented

in cobrapy through the optlang package (Jensen et al., 2016) that allow introduction of absolute values into the objective (this is done

out of convenience in our implementation; this aspect of the problem formulation is identical to the same aspect in pFBA at the solver

level) (Jensen et al., 2016). As in Biggs et al. (Biggs and Papin, 2017), the solution to this optimization problem activates reactions in the

universal reaction databasewith theminimum sumof fluxes necessary to enable flux through the biomass reaction in a given condition.

Generating Ensembles from Gap-Fill Solutions
For each organism, the approach for generating an ensemble is as follows (also summarized graphically in Figures 2A and 2B): for

each ofN ensemble members to be generated for a species, randomly order allMmedia conditions in which the species grew exper-

imentally. For each single condition m in the shuffled list of conditions M, set the model bounds to represent the media condition m

and optimize using pFBA-based gap-filling (Algorithm 1). For all flux-penalized reactions that carry flux in this solution (with >1E�11

units of positive or negative flux chosen as the cutoff), remove the fluxminimization penalty. For allmmedia conditions inM, iteratively

repeat the process using the modified flux penalties from all previous conditions when gap-filling in the next condition. After gap-

filling to enable growth in all conditions in M, add all gap-filled reactions from all media conditions to the original model to generate

an ensemble member. Repeat this process N times with a new ordering ofM in each iteration and the original flux penalties set at the

beginning of each iteration to generate N ensemble members.

Organisms with available growth phenotype data were extracted from Plata et al. (Plata et al., 2015). In this study, strain designa-

tions were not provided, thus we used the highest quality publicly available genome for each species. While this selection is sufficient

to demonstrate the utility of AMMEDEUS, future users should use strain-specific information when possible. To identify a represen-

tative genome for each species, we queried the PATRIC database (Wattam et al., 2017) with the genus and species name for all or-

ganisms in the study, then selected a single genome from PATRIC based on decision criteria described as follows. When a reference

genomewas assigned for the species, the genome identifier for the reference genomewas chosen. If no reference genomewas avail-

able, a genome listed as ‘‘representative’’ was chosen. When multiple genomes with the ‘‘representative’’ status were available, we

chose the first genome listed. If a selected representative genome contained more than 10 contigs, a representative genome with

fewer contigs was chosen. These selection criteria were developed to select the highest-quality genome available for the species

in the study. Selected genome identifiers are available in Table S1.

Each individual gap-filling step, corresponding to enabling biomass production on a single media source, was performed using

Algorithm 1, adapted from our previous work (Biggs and Papin, 2017). We performed the entire procedure for 1,000 cycles for

each species (i.e.,N, numberof ensemblemembers = 1,000). All species included in the study grew in at least 10 in vitro single carbon

source media conditions (i.e.,M contained at least 10 conditions); for each species, all positive growth conditions were used to gap-

fill during each cycle. After removing duplicate gap-fill solutions, all species included for further analyses had 970–1,000 members in

their ensemble (species not considered after this point are detailed in Organism Selection).

Ensemble Simulations
Ensemble flux balance analysis and ensemble gene essentiality screens were performed using Medusa v0.1.2 (Medlock and Papin,

2019) and cobrapy v0.13 (Ebrahim et al., 2013). TheGNU linear programming kit (GLPK) was used as the numerical solver in all cases.

For all simulations, rich medium was used (1,000-mmol/gram dry weight*hr uptake allowed for all metabolites with a transport reac-

tion; commonly referred to as ‘‘complete medium’’). An arbitrarily low cutoff for flux through biomass in gene essentiality screens was

used (1E-6 units of biomass/hr), but varying this quantity between 1E-10 and 1E-3 did not substantially affect essentiality results.

Ensemble Feature and Prediction Subsampling
For all subsampling performed, 1,000 random draws were made with replacement at each subsample ensemble size. Ensemble

sizes for each subsampled population ranged from 20 to 1,000, with subsampling performed in intervals of 20 members (i.e., 20,

40 , 60 . 1,000 members). When the subsample size exceeded the actual ensemble size (e.g., some species had slightly less

than 1,000 members), all ensemble members were subsampled.
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Essentiality, Clustering, and Classification
Prior to clustering of gene essentiality predictions, genes with perfectly correlated predictions across an ensemble were collapsed to a

single variable (i.e., if gene 1 always has the same essential/nonessential prediction as gene 2, they are lumped as a single variable).

Without this aggregation, these perfectly correlated features heavily biased k-means clustering resulting in unbalanced clusters with

~90%of ensemblemembers in a single cluster. After aggregation of perfectly correlated genes, ensemble gene essentiality predictions

were clustered into two clusters using k-means clustering as implemented in the KMeans class of scikit-learn v0.19.2 (Pedregosa et al.,

2011) (max iterations=300, convergence tolerance=1E-4, Elkan’s algorithm (Elkan, 2003)).Geneessentiality predictionswereconverted

tobinarydata (essential or nonessential) using acutoff of flux throughbiomassof 1E-6mmol/(gDW*hr). Randomforest classificationwas

performed to predict cluster membership using active features in each ensemblemember (e.g., presence or absence of a reaction was

assigned as True or False in the input, respectively) (Breiman, 2001). The RandomForestClassifier class from scikit-learn v0.19.2 was

used (500 trees, quality of splits determinedwith theGini criterion, nomax depth,minimumof 2 samples per split, minimumof 1 sample

per leaf, sqrt(number of features) searched at each split, training samples determined for each tree via bootstrap selectionwith replace-

ment). Thedefaultmetric in scikit-learn’sRandomForestClassifier for determining feature importance, themeandecrease innodepurity,

was used to calculate feature importance in this study (Gordon et al., 1984). To determinewhether the out-of-bag accuracywas inflated

due to over-fitting,weperformed apost-hocanalysis using a 70%/30%training/test split and found that accuracywhile predicting clus-

ter membership for the 30% testing set was not meaningfully different than the original out-of-bag accuracies for all species when

training the random forest with all samples (see training_test_split.ipynb within the GitHub repository for code and results).

Visualization of Gene Essentiality Clusters
PCoA (Gower, 1966) was used to visualize ensemble gene essentiality results. PCoA as implemented in scikit-bio v0.5.4 (https://github.

com/biocore/scikit-bio) was performed using the Hamming distance (Hamming, 1950) to compute the pairwise distance matrix.

Gene Essentiality Datasets
Gene essentiality datasets were identified for species in this study from the Online Database of Gene Essentiality (OGEE (Chen et al.,

2017)). In cases where multiple datasets were available for a given species, the dataset generated using the same strain of the spe-

cies selected for GENRE reconstruction was selected. If multiple datasets still existed for a species, a single dataset was chosen

based on media richness (e.g., more complex media were selected over simpler media). We excluded the essentiality dataset for

Streptococcus pneumoniae because the total set of screened genes was not included (Song et al., 2005). In brief, the authors devel-

oped a kanamycin insertion cassette targeted for 693 genes that were selected based on having >40% amino acid sequence identity

with a set of well-studied organisms. The authors reported the identity of only the essential genes, so non-essential genes that would

be in the dataset could not be included in our set of predictions. Based on these selection criteria and limitations, we selected data-

sets from OGEE for Staphylococcus aureus (Chaudhuri et al., 2009) and Haemophilus influenzae (Akerley et al., 2002).

Subsystem Analysis
Subsystem assignment for reactions in ModelSEED were obtained from the ModelSEED biochemistry repository in April 2019 (avail-

able from the GitHub repository associated with this study). The highest level subsystem assignment, ‘‘class’’, was used. For reac-

tions with multiple subsystem assignments at this level, the reaction was considered as a separate observation belonging to both

subsystems with the same mean fractional importance and mean cluster ratio (e.g., a reaction belonging to two subsystems is an

independent observation for each subsystem in Figures 4F and 4G). To test for differences amongst subsystems, we performed a

Kruskal-Wallis test with post-hoc pairwise Dunn’s tests with Bonferroni multiple testing correction using SciPy version 1.1.0 (Krus-

kal-Wallis) and scikit-posthocs version 0.6.1 (Dunn’s test with Bonferroni correction) (Jones et al., 2016; Terpilowski, 2019).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses are described in the Method Details section.

DATA AND CODE AVAILABILITY

All files and code associated with this study are available under the MIT license via GitHub (https://github.com/gregmedlock/

ssl_ensembles). See the included README file within the repository for descriptions of all files and important notes for running

and reproducing the analyses. The version of the repository at the time of publication has been deposited in Zenodo (https://doi.

org/10.5281/zenodo.3538303, also in Key Resources Table).
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Supplemental Figures 
 

 

Figure S1. Subsampled ensemble behavior for predictions of biomass production, related to Figure 2. We simulated 
biomass production in a rich medium across the entire ensemble and subsampled these results at varying ensemble 
sizes. a) Standard deviation of the mean flux through biomass from each subsample and b) standard deviation of the 
standard deviation of flux through biomass in each subsample. For both quantities (variance of the mean of each 
subsample and variance of the variance of each subsample), simulations plateau before inclusion of all 1000 ensemble 
members. Values on the y axis are normalized by dividing by the mean flux through biomass for the entire ensemble. 

 
 

 

Figure S2. Distribution of fractional importances and cluster ratios, related to Figure 4. a) Distribution of mean 
fractional importances for reactions gap-filled in at least 5 ensembles. Identical to Figure 4b other than filtering step. b) 
Distribution of mean cluster ratios for reactions gap-filled in at least 5 ensembles. Identical to Figure 4c other than 
filtering step. c) Distribution of reaction importances across all species. Identical to Figure 4b except the mean is not 
taken across all species; the distribution includes values for individual reactions instead of a mean (e.g., a reaction 
occurring in 7 species has 7 values that are part of the distribution, rather than a single mean as in Figure 4b). d) 
Distribution of cluster ratios across all species. As in c, the mean is not taken and individual values are included. 
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