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SUMMARY

The medial frontal cortex has been linked to volun-
tary action, but an explanation of why decisions to
act emerge at particular points in time has been lack-
ing. We show that, in macaques, decisions about
whether and when to act are predicted by a set of
features defining the animal’s current and past
context; for example, respectively, cues indicating
the current average rate of reward and recent previ-
ous voluntary action decisions. We show that activity
in two brain areas—the anterior cingulate cortex and
basal forebrain—tracks these contextual factors and
mediates their effects on behavior in distinct ways.
We use focused transcranial ultrasound to selec-
tively and effectively stimulate deep in the brain,
even as deep as the basal forebrain, and demon-
strate that alteration of activity in the two areas
changes decisions about when to act.

INTRODUCTION

Leopards are expert stalkers. When they are in close proximity of

prey, they ambush and wait for the right moment. If they charge

too early, then the element of surprise is lost, and the prey will run

away. If they charge too late, then they risk being detected.

Deciding when to lunge is crucial for their survival. This decision

not only comprises when to act but entails a decision regarding

whether it is worth acting at all; there may be situations in which

the prey is simply not worth pursuing or times when it is neces-

sary to repress the urge to act on immediate desires. Deciding

requires integrating information from the surrounding environ-

ment with past hunting experiences and internal state. In the cur-

rent experiment, we examine precisely this question: how the

current environmental context and recently experienced past

contexts combine to influence ‘‘voluntary’’ decisions about

when to act. We identify and record neural activity mediating de-

cisions about when to act and examine the effect of manipulating

the activity using ultrasound stimulation.
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We introduced a new paradigm to investigate, in themacaque,

how contextual factors and internal state, shaped by the present

and past environment, are integrated to influence whether and

when to act. Four macaques were trained to track the number

of dots on a screen while in the MRI scanner. Dots appeared

one at a time on a screen, and animals could decide to make a

response, at a time of their choice, by tapping on a response

pad in front of them (Figures 1A and 1B). The number of dots

on the screen at the time of response determined the probability

of reward. Reward probability was drawn from a sigmoid func-

tion; the longer the animals waited before responding, the

more dots appeared on the screen, and the higher was the prob-

ability of reward (Figure 1D). Impulsive responses were unlikely

to yield a reward. The probability distribution remained constant

across the trials and sessions. Three features determined the

present context: reward magnitude, the speed of the sequential

appearance of the dots, and the inter-trial interval (ITI). Different

levels of rewardmagnitude and ITI were associatedwith different

dot colors and patterns, respectively (Figure 1C). These ‘‘present

contextual factors’’ were varied independently of one another

and in a pseudo-randomized order (Figure 1E). The reward

magnitude and dot speed varied from trial to trial, and the ITI var-

ied in blocks of 30 trials. In addition to the present context, the

past context also varied. The past context was defined by the an-

imal’s own recent behavior and recent reward experience—the

outcomes and action times of recent past trials (Figure 1C).

First, behavioral analyses demonstrated that both types of

contextual information influenced decisions about whether and

when to act. A large proportion of variance in decisions about

when to act could be explained by a quantitative model that

deduced a deterministic component of time to act by identifying

features of the environment relating to both the current context

and the recent past context. Second, we used fMRI to look for

brain activity that is parametrically related to the factors that

change the likelihood of action rather than action initiation per

se. We identified two areas—the anterior cingulate cortex

(ACC) and basal forebrain (BF)—that tracked these contextual

factors and mediated their effect on behavior in distinct ways.

Third, we used focused transcranial ultrasound stimulation

(TUS) to modulate activity in these brain areas. We simulated

the acoustic wave propagation and obtained offline resting-state
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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fMRI (rs-fMRI) to show that it is possible to manipulate activity in

an area deep in the brain, such as the BF, using TUS. Fourth, we

showed that alteration of activity in the ACC and BF by TUS

changed decisions about when to act.

RESULTS

Animals Used Contextual Factors to Decide Whether
and When to Act
We used a hierarchical linear model to test whether animals use

contextual factors to decide when to act. Time to act (actTime)

was indexed by the number of dots on the screen at the time of

response. Note that therewas a correspondence (a sigmoid rela-

tionship; Figure 1D) between dot number and reward probability

and that experimental manipulation of ‘‘dot speed’’ ensured that

actTime as indexed by the number of dotswas decorrelated from

time measured in seconds. This facilitated interpretation of the

results; changes in actTime, as measured by number of dots,

therefore signified a deliberate decision process rather than

merely passage of time. On average, animals waited for 14 ± 4

dots before responding (Figure S1A), which was associated

with a 73% chance of reward. Given the sigmoid distribution of

reward function, there is little to gain by employing an actTime

of longer than 17 dots (92% chance of reward; Figure 1D). The

task finished after 40 min regardless of the number of trials per-

formed. That means that animals might collect fewer rewards

overall across the whole session when they waited longer before

responding on any given trial. A multilevel ANOVA (STAR

Methods) showed that all aspects of present context (reward

magnitude, c2(2) = 284, p < 0.001; dot speed, c2(2) = 1,465, p <

0.001; and ITI, c2(2) = 44, p < 0.001) and past context (reward

outcome on past trial, c2(3) = 144, p < 0.001; and actTime on

past trial, c2(1) = 25, p < 0.001) influenced animals’ actTime. act-

Time was longer during long compared with short ITI blocks

(Tukey’s honestly significant difference [HSD]; b = 0.16 ± 0.02,

Z = 6, p < 0.001) (Figure 2A), under fast compared with slow dot

speed conditions (b = 1.06 ± 0.02, Z = 42, p < 0.001) (Figure 2B),

when offered a large comparedwith amedium reward (b = 0.22 ±

0.03, Z = 9, p < 0.001), andwhen offered a small comparedwith a

medium reward (b= 0.44 ± 0.03,Z= 17, p < 0.001), giving rise to a

U-shaped effect of rewardmagnitude on actTime (Figure 2C; see

Figure S1 for further discussion). actTime was shorter when they
Figure 1. Experimental Task

(A) On each trial, animals tracked the number of dots on the screen (maximum num

touching a response pad in front of them. If they responded, then they received dr

time of response. There was a 4-s delay between the response and the outcome (A

and downward-pointing triangle, respectively. The triangle remained on the scre

animal’s mouth. The outcome phase was followed by an inter-trial interval (ITI; 3

disappeared, and they had to wait for an AO-delay + ITI before the next trial (trial t

magnitude on that trial. The patterns on each side of the screen represent the du

(B) Timeline of one trial. At the beginning of each trial, an empty frame appeared

emerging from top to bottom. The dots appeared every 100, 200, or 300 ms, dep

(C)Contextual factors fromcurrent andpast trialswere used to predict animals’ actT

speed (three levels), and ITI (three levels). They were varied independently of one an

trial to trial. The ITI changed in blocks of 30 trials. Past contextual factors consisted o

(D) The probability of getting a reward increased asmore dots appeared on the scr

the trials and sessions.

(E) Correlation matrix of regressors from fMRI design.
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had receiveda large reward comparedwith no reward on thepast

trial (b = �0.36 ± 0.03, Z = �11, p < 0.001; Figure 2D), and it was

longer when they had already delayed actTime on the past trial

(b = 0.07 ± 0.01; Figure 2E).

Having found an effect of contextual factors on decisions about

when toact,weaskedwhether the same factors influencewhether

it is worth acting as well as how quickly to do so. We used hierar-

chical logistic regression to predict the odds of responding from

present and past contextual factors and showed that this was

indeed the case, confirming the importance of these factors in

influencing self-initiated action (Figure 2F). Across all testing ses-

sions, animals refrained from responding in 16.38% ± 11.42% of

the trials. They were more likely to respond in large and medium

compared with small reward trials (large versus small, odds

ratio [OR] = 12.82, Z = 17.92, p < 0.001; medium versus small,

OR=6.94,Z=16.58, p<0.001) andwhen theyhadbeen rewarded

on the past trial (large versus no reward, OR = 3.27, Z = 7.58,

p < 0.001; medium versus no reward, OR = 2.10, Z = 4.93,

p < 0.001; small versus no reward, OR = 2.57, Z = 5.66, p <

0.001). On the other hand, they were more likely to refrain from

responding in long ITI blocks (long versus short, OR = 0.48,

Z = �6.23, p < 0.001) and when they had waited for a long time

on thepast trial (OR=0.86,Z=�2.55, p= 0.01). These results sug-

gest that animals were less likely to respond when the average

reward rate of the environment was low.

It is not clear why animals sometimes refrain from responding

in an experimental task when any task-related response is usu-

ally likely to increase the likelihood of reward. Nevertheless, it

is well known that they often do so (San-Galli et al., 2018; Stoll

et al., 2016a). One way to interpret the results is that the animals

doing so are avoiding paying a cost that is entailed by performing

the trial. Performing a trial requires more than just the motor act

of responding and also entails cognitive demands related to

stimulus attention and response withholding (Manohar et al.,

2015). This might mean that animals may judge the effort of

engaging with a trial as not worth the reward that could be ob-

tained for doing so when the reward rate is low.

Contextual Factors Explained a Large Proportion of
Variance in Time to Act
To determine the fraction of actTime that was explainable by pre-

sent and past contextual factors, we used a Cox proportional
ber of dots = 25). They couldmake a response, at a time of their own choice, by

ops of juice or no juice as a function of the reward probability distribution at the

O-delay). Successful and unsuccessful outcomes are indicated by an upward-

en for 2 s. If rewarded, then drops of juice were delivered by a spout near the

–7 s). If animals did not respond by 300 ms after the last dot, then the frame

+1) started. The color of the frame and the dots represent the potential reward

ration of the ITI.

on the left or right side of the screen. The frame was gradually filled with dots

ending on trial type (in the example shown, a new dot emerges every 200 ms).

ime. Present contextual factors consisted of rewardmagnitude (three levels), dot

other and in a pseudo-randomized order. Reward and dot speed changed from

f reward outcome (four levels) and actTimeon the past trial (continuous variable).

een, following a sigmoid curve. The probability distributionwas constant across
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Figure 2. Animals Used Contextual Factors

to Decide Whether and When to Act

(A–E) The effect of present and past contextual

factors on actTime (left y axis). The corresponding

reward probability at response is displayed on the

right y axis. actTime was longer in long (7 s) and

medium (5 s) compared with short (3 s) ITI blocks

(A); in fast compared with slow trials (B); when they

were offered a large compared with a medium

reward and when offered a small compared with a

medium reward, giving rise to a U-shaped effect of

reward magnitude on actTime (C); when a previous

trial was not rewarded (D); and when they had

already delayed actTime on the past trial (E). For

illustrative purposes, actTime in the immediate past

trial is binned into three groups. Each color repre-

sents one animal, and each ring is one testing

session. The gray columns illustrate the group

mean across all observations. Multilevel ANOVA

followed by Tukey’s HSD.

(F) The log of the odds of responding during the trial

for different levels of present and past contextual

factors.

*p < 0.05, **p < 0.01, ***p < 0.001.

See also Figure S1.
hazards model. Cox regressions are a class of survival models

suitable for relating the time that passes before a specific event

to one or more covariates. This model has been used previously

to estimate action time in rats (Murakami et al., 2017), although

here we expand the approach to consider the influence of a

wider range of factors that reflect both past and present context

on actTime (STAR Methods).

First we asked whether present and past contextual factors

significantly contribute to the model (all subsequent tests are

corrected for multiple comparisons; Figure 3A). The Cox regres-

sion coefficients were significantly negative for dot speed

(one-sample t test; t(44) = �15.5, p < 0.001), ITI (t(44) = �5.5,

p < 0.001), and actTime on past trials (significant in 4 of 10

past trials; t(44) < �3.72, p < 0.02), suggesting that slower dot

speed and longer ITI on the current trial and longer actTime on

past trials lengthen actTime on the current trial. Cox regression

coefficients were significantly positive for expected reward
N

magnitude on the current trial (t(44) = 8,

p < 0.001) and reward outcome on the

past trials (significant for the trial immedi-

ately preceding the current trial; t(44) =

12.38, p < 0.001); a larger potential reward

on the current trial and a larger reward

outcome on the past trial shorten actTime

on the current trial. We then used the Cox

regression coefficients from the current

and immediately preceding trial (only co-

efficients from the immediately preceding

trial were used because only these had

been significant for both past reward

outcome and past actTime) to estimate

the expected actTime at each trial (STAR

Methods; Figure 3B). We termed this esti-
mate deterministic actTimepresent + past context, which is defined as

the number of dots, given present and past context, at which an

animal is expected to respond on any given trial. Deterministic

actTime was also later used for model-based fMRI analysis.

Subsequently, we estimated the Cox regression coefficients

separately from their present and past components. We then

used the Cox coefficients relating to either the present or the

immediately preceding trial to derive two separate actTime esti-

mates. These new estimates were termed deterministic actTi-

mepresent context (Figure 3C) and deterministic actTimepast context
(Figure 3D), respectively. Finally, we asked what percentage of

variability in observed actTime could be explained by present,

past, or a combination of both contexts (STAR Methods).

On average, present and past contextual factors together ex-

plained 36% ± 9% of actTime variance. Of these, 25% ± 10%

and 12% ± 5% were explained by present and past contextual

factors, respectively (Figure 3E).
euron 105, 370–384, January 22, 2020 373



-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Past reward outcomes (trials back) Past actTimes (trials back)

A

B

E

-2

-1.5

-1

-0.5

0

0.5

1

Reward Speed ITI

*** *** ***
C

ox
 c

oe
ffi

ci
en

ts

*** **********

-5 0 5 10
actTime (normalised)

0

0.2

0.4

0.6

Fr
eq

ue
nc

y 
(n

or
m

al
is

ed
)

observed actTime
deterministic actTimepresent+past

-5 0 5 100

0.2

0.4

0.6

0

0.2

0.4

0.6

Present+past Present PastPr
op

or
tio

n 
of

 e
xp

la
in

ed
 v

ar
ia

nc
e

C Dobserved actTime
deterministic actTimepresent

observed actTime
deterministic actTimepast

actTime (normalised) actTime (normalised)
-5 0 5 10

0

0.2

0.4

0.6

Figure 3. Contextual Factors Explained a Large Proportion of Variance in Time to Act

(A) Cox regression coefficients for present (left panel) and past (middle and right panels) contextual factors. A negative Cox coefficient means a negative effect of

predictor on the probability of responding.

(B–D) Cox regression coefficients were used to estimate deterministic actTime on each trial. Deterministic actTime is superimposed on observed actTime for

comparison. Deterministic actTime was estimated from both present and past contextual factors (B), from present contextual factors alone (C), and from past

contextual factors alone (D).

(E) Proportion of variance (PEV) in actTime explained by the Cox regression model. PEV is estimated separately from present and past, present, and past

contextual factors. Each color represents one animal, and each ring is one testing session. The gray columns illustrate the group mean.

One-sample t tests; *p < 0.05, **p < 0.01, ***p < 0.001, corrected for multiple comparisons.
ACC and BF Activity Is Correlated with Time to Act
Having shown that animals use contextual factors to decidewhen

to act, we used fMRI to identify potential brain mechanismsmedi-

ating this behavior.Wefirst used a generalized linearmodel (GLM;

STARMethods, GLM.1) to look for brain areas inwhich activity re-

flected parametric variation in the empirically observed actTime,

as indexed by dot number at the time of response, and then asked

whether the same areas integrated contextual factors to compute

deterministic actTime derived from the Cox model. The first anal-
374 Neuron 105, 370–384, January 22, 2020
ysis revealed two main bilateral/midline regions in which a

blood-oxygen-level-dependent (BOLD) signal was modulated

by observed actTime (whole-brain cluster-based correction, Z >

2.3, p < 0.01; Table S1): (1) ACC (peak Z = 3.88, Caret-F99 Atlas

[F99]: x = 0.5, y = 20.5, z = 12.5), (2) BF. The activity in the BF ex-

tends from the anterior-medial BF (amBF) containing the medial

septum/diagonal band of Broca (peak Z = 4.34, F99: x = �0.5,

y = 4.0, z = 1.0) to the posterior-lateral BF (plBF) containing the

nucleus basalis of Meynert (peak Z = 4.49, F99: x = 4.5, y = 2.0,
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Figure 4. The ACC and BF Encode Time to Act

(A) Whole-brain analysis showing voxels where activity reflected parametric variation in the empirically observed actTime. Here we focused on areas with

bilateral/midline activity: the ACC (top panel) and BF (middle [amBF] and bottom [plBF] panels). Whole-brain cluster-based correction, Z > 2.3.

(B) ROI time course analysis of the ACC (top panel), amBF (middle panel), and plBF (bottom panel), showing the relationship between BOLD and actTime. The

lines and shadings show the mean and standard error (SE) of the bweights across the sessions, respectively. Time zero is the response time. Note that, because

of delay in the BOLD hemodynamic response function, the BOLD signal time course peaks 3 s after neural activity.When the delay in BOLD response is taken into

account, it is clear that BOLD activity reflects neural events occurring before the response onset.

(C) No significant difference in actTime encoding was observed between the ACC, amBF, and plBF. Each color represents one animal, and each ring is the peak

beta-weight of one testing session. The gray columns illustrate the group mean.

See also Figures S2 and S3 and Table S1.
z = �2.0) (Figure 4A; see Figure S2A for an alternative analysis).

Corresponding BF sub-regions have been described in the hu-

man BF (Fritz et al., 2019; Markello et al., 2018).
To illustrate the timing of encoding of observed actTime in the

ACC, amBF, and plBF, we extracted and averaged the BOLD

time course of each voxel within each region of interest (ROI)
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Figure 5. The BF Encodes the Deterministic

Component of Time to Act

(A) ROI time course analysis of the ACC, amBF, and

plBF, showing the relationship between BOLD ac-

tivity and deterministic actTime estimated from

present and past context. Format is as in Figure 4B.

(B) The relationship between deterministic actTime

and BOLD signal was significantly stronger in the

plBF and amBF compared with the ACC. Format is

as in Figure 4C.

(C) ROI time course analysis of the amBF and plBF,

showing the relationship between BOLD activity

and deterministic actTime as estimated from pre-

sent and past, present, and past contextual factors.

(D) The relationship between deterministic actTime,

as estimated from past contextual factors, and

BOLD signal was significantly stronger in the amBF

comparedwith the plBF. In boxplots, the central line

indicates the median, and the bottom and top

edges of the box indicate the 25th and 75th per-

centiles, respectively. Whiskers extend to the most

extreme data points not considered outliers.

(E) PPI analysis between the BOLD signal in the

plBF and amBF, with deterministic actTime as

the psychological factor. Trial-by-trial variation in

the activity in the plBF was significantly related to

trial-by-trial variation in the activity in the amBF as a

function of deterministic actTime.

One-sample t tests and multilevel ANOVA followed

by pairwise t test. *p < 0.05, **p < 0.01, ***p < 0.001.

See also Figure S4.
with respect to response onset. ROIs were defined as spheres

centered on the peak of the activations (Figure 4B; Figure S3

illustrates the time course of each contextual factor). We found

no significant difference in activity between these three areas

(multilevel ANOVA, c2(2) = 0.77, p = 0.68) (Figure 4C). Given

the delay in the hemodynamic response (BOLD signals take

approximately 3 s to peak in the monkey; Chau et al., 2015), it

is clear that the activity in all three areas begins in advance of

the response.

Trial-by-trial variation in dot speed decorrelates actTime,

measured in number of dots, from passage of time, measured

in seconds (r = 0.36 ± 0.28, across all sessions, where r is the cor-

relation coefficient). However, to make sure that the relationship

between BOLD and observed actTime is not simply explained by
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passage of time, we ran a newGLM (STAR

Methods, GLM2.2) but this time also

added time to act in seconds to the model

as a covariate. The result of the newmodel

was similar to that obtained previously

(compare Figures 4B and 4C and Figures

S2B and S2C).

BF Integrates Contextual Factors to
Construct the Deterministic
Component of Time to Act
Whole-brain analyses suggested that

ACC, amBF, and plBF activity is correlated

with observed actTime. We next asked
whether the same areas integrated contextual factors to

compute the deterministic component of actTime, as estimated

by theCox regressionmodel.We added deterministic actTime to

the previous time series GLM as the variable of interest and the

observed actTime (measured in both number of dots and sec-

onds) as covariates (trial-by-trial correlation between determin-

istic and observed actTime as measured in number of dots

and seconds are r = 0.24 ± 0.23 and r = 0.11 ± 0.27 across ses-

sions, respectively) (STAR Methods, GLM2.3; Figure 5A). We

found that deterministic actTime explained BOLD activity in the

amBF (one-sample t test; t(44) = 2.78, p = 0.008, d = 0.41, where

d is the effect size) and plBF (t(44) = 3.59, p < 0.001, d = 0.54). We

found no significant relationship between deterministic actTime

and BOLD in the ACC (t(44) = �1.15, p = 0.26) (Figure 5B;



leave-one-out procedure for peak selection). Multilevel ANOVA

showed a significant main effect of ROI (c2(2) = 14.65, p =

0.0006); deterministic actTime was a better predictor of BOLD

signal in the plBF compared with the ACC (Tukey’s HSD; b =

0.07 ± 0.02, Z = 3.82, p = 0.0004) and in the amBF compared

with the ACC (b = 0.05 ± 0.02, Z = 2.93, p = 0.0095). We found

no significant difference between plBF and amBF (b = 0.02 ±

0.02, Z = 0.88, p = 0.65). This suggests that the BF is more

strongly involved in integrating present and past contextual in-

formation to construct the deterministic component of actTime,

compared with the ACC. A model-based whole-brain analysis

confirmed the importance of the BF (Figure S4).

Next we asked whether present and past contextual factors

contribute equally to encoding of deterministic actTime in the

BF. Deterministic actTimepresent context and deterministic

actTimepast context were used in a time-series GLM (STAR

Methods, GLM2.4), with the observed actTime (measured in

both number of dots and seconds) as covariate (Figure 5C).

BOLD activity in the plBF was related with trial-by-trial variation

in deterministic actTimepresent context (one-sample t test; t(44) =

3.16, p = 0.003, d = 0.47) and deterministic actTimepast context

(t(44) = 2.47, p = 0.017, d = 0.37). However, BOLD activity in

the amBF was only related with deterministic actTimepast context
(t(44) = 4.04, p = 0.0002, d = 0.60), but its relationship with

actTimepresent context was not significant (t(44) = 0.85, p = 0.40;

Figure 5D). Importantly, we found a significant interaction be-

tween deterministic actTime (present and past versus present

versus past) and BF (amBF versus plBF) (multilevel ANOVA;

c2(2) = 7.78, p = 0.02); the relationship between deterministic

actTime, when estimated from past as opposed to present

context, and BOLD was significantly stronger in the amBF

compared with the plBF (b = 0.1 ± 0.04, t(220) = 2.64, p =

0.009) (Figure 5D), suggesting that the amBF mostly employs

past contextual factors to construct actTime. Its estimate of act-

Timepast context may then be passed to the plBF and integrated

with actTimepresent context to estimate time to act. Thus, we should

predict that functional connectivity between the plBF and amBF

is moderated by deterministic actTime. A psychophysiological

interaction (PPI) analysis (O’Reilly et al., 2012; STAR Methods,

GLM2.5) confirmed that this was the case (t(44) = 3.53, p =

0.001, d = 0.52) (Figure 5E). Although PPI cannot reveal the direc-

tion of influence, it is clear that the deterministic component of

actTime is constructed within a circuit comprising both BF sub-

divisions. Finally, although timing differences in BOLD signals

must be interpreted with care, it is noteworthy that, despite the

proximity and similar nature of the two structures, amBF activity

precedes plBF activity, and when the BOLD hemodynamic lag is

considered, it is clear that amBF signaled actTimepast context even

during the previous ITI prior to trial onset (Figure 5C). In contrast,

actTimepresent context is only encoded after trial onset, when the

factors determining it are observable.

The Effect of Expected Reward on Time to Act Is
Mediated by the ACC
Our findings so far suggest that the BF integrates present and

past contextual factors to construct the deterministic compo-

nent of actTime. However, although ACC’s activity is correlated

with actTime observed on any trial (Figure 4), its activity does not
reflect what the actTime ought to be on any trial—the determin-

istic actTime—in a simple manner (Figure 5). We hypothesized

that the ACC might mediate the effect of a specific element

among contextual factors on actTime rather than a compound

effect, as is the case with the BF. More specifically, given its

known role in reward-guided decision-making (Kolling et al.,

2016; Wittmann et al., 2016), we predicted that the observed

relationship between reward magnitude and actTime (Figure 2C)

might be mediated by the ACC. One method to test this hypoth-

esis is mediation analysis (STARMethods, Figure 6A). Mediation

occurs when the direct effect of contextual factors on actTime

(path c) can be explained by an indirect pathway through a brain

area (path a 3 b). Note demonstrating mediation requires only

that there be a significant indirect effect (path a 3 b) (Hayes,

2018; Zhao et al., 2010). This was indeed the case; the quadratic

relationship between expected reward magnitude and actTime

was mediated by an indirect effect through the ACC (bootstrap-

ped p = 0.01). However, we did not find amediation effect for the

amBF (bootstrapped p = 0.91) or plBF (bootstrapped p = 0.24)

(Figure 6B) or between other elements among contextual factors

(dot speed, ITI, past reward; however, see the legend of Figure 6,

past actTime) and actTime (all bootstrapped p > 0.2). This sug-

gests that the ACC mediates the observed relationship between

reward magnitude and actTime (Figure 2C). This reward-guided

actTime could then be passed to the plBF to be used in construc-

tion of actTimepresent context along with actTimepast context from the

amBF. This would be consistent with the earlier timing of the

ACC effect in relation to the plBF effect (Figure 4B), but it can

be difficult to interpret timing differences in the BOLD signal,

especially when they occur in spatially distant brain areas such

as the ACC and plBF. A PPI analysis, however, was also consis-

tent with this hypothesis; functional connectivity between the

ACC and plBF (t(44) =�2.07, p = 0.044, d = 0.31) wasmoderated

by quadratic reward magnitude (STAR Methods, GLM2.6). We

did not find amoderation effect of rewardmagnitude on the func-

tional connectivity between the ACC and amBF (t(44) = 0.81, p =

0.42). This suggests that, by encoding the relationship between

expected reward and actTime, the ACC contributes to construc-

tion of actTime mainly through connectivity with the plBF rather

than the amBF (Wilcoxon signed-rank test; Z = 2.11, p = 0.035,

r = 0.22) (Figure 6C). In summary, the ACC is modulated by

reward magnitude (Figure S3A) and by the relationship between

reward magnitude and action time (Figure 6), but unlike the BF

(Figure 5), it does not integrate contextual factors from the pre-

sent and past to determine how long animals should wait before

responding at each trial.

Ultrasound Stimulation Selectively and Effectively
Modulates Activity in Deep Brain Areas
It has been shown that 40 s sonification at 250 kHz reaches deep

cortical areas such as the ACC and subcortical brain areas such

as the amygdala and does so in a relatively focal manner, having

less effect on adjacent, overlying brain areas (Folloni et al., 2019).

We therefore first examined whether TUS could also be used to

manipulate activity in an even deeper structure, the BF. To verify

whether TUS effectively modulates BF activity, we first simulated

the acoustic wave propagation and its thermal effect in a whole-

head, finite-element model based on a high-resolution monkey
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Figure 6. Mediation Analysis Can Explain

the Relationship between Reward Magni-

tude and actTime

(A) Mediation occurs when the direct effect of

contextual factors on actTime (path c) can be ex-

plained by an indirect pathway through a brain area

(path a 3 b).

(B) The ACC mediated the quadratic relationship

between reward magnitude and actTime. This was

not the case for plBF or amBF or between other

elements among contextual factors. However, af-

ter controlling for the effect of reward magnitude

on the current trial, we found a small mediation

effect of the ACC for the influence of past reward

on actTime (bootstrapped p = 0.06). The numbers

are the coefficients of each path. Significant paths

are displayed with thick arrows.

(C) PPI analysis between the BOLD signal in the

ACC and plBF (top panel) and amBF (bottom

panel), with quadratic reward magnitude as the

psychological factor. Trial-by-trial variation in the

activity in the ACC was more strongly related with

trial-by-trial variation in the activity in the plBF as a

function of reward magnitude compared with the

amBF (Wilcoxon signed-rank test; Z = 2.11, p =

0.035, r = 0.22).
computed tomography (CT) scan (Figure S5). The resulting

‘‘impact probability map’’ showed that the peak of the expected

neuromodulatory effect was at the BF target (Figure 7A). We then

performed offline rs-fMRI under anesthesia immediately after BF

TUS in three animals (STAR Methods) and compared the data

with rs-fMRI from three anesthetized control animals without

TUS (Verhagen et al., 2019). Previous investigations of the neural

effects of TUS have found that activity coupling between the tar-

geted area and anatomically interconnected areas is altered

(Folloni et al., 2019; Verhagen et al., 2019). The activity coupling

of other brain areas, however, is unaffected. We might therefore

expect altered coupling after BF TUS that is restricted to BF, but

possibly extending to strongly connected regions such as the

ACC. However, the BF projects broadly across many brain

areas, and it has recently been reported that global rs-fMRI fluc-

tuations across the whole brain are suppressed after BF pertur-

bation (Turchi et al., 2018). Therefore, it is also possible that there

will be widespread suppression of coupling elsewhere in the

brain after BF TUS. We can test these predictions by quantifying

the effect of TUS on brain activation by regressing the whole-

brain connectivity profile of a seed area under the control condi-

tion against that observed after BF TUS. Importantly, we can

repeat this regression analysis seeded for every point in the brain

and report a map with scaling factors indicative of the TUS effect

across the whole brain (Figure 7B). Indeed, we observed
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enhanced coupling in the BF target site

and selectively connected regions, such

as the ACC, but not elsewhere. Although

the BF projects to many cortical areas,

its connections with the ACC are notable

because the ACC also projects to the BF

(Ghashghaei and Barbas, 2001). This is,
of course, also consistent with the evidence that we have already

presented that the BF and ACC act in concert to influence act-

Time. In contrast, there waswidespread suppression of coupling

elsewhere in the brain after BF TUS compared with the control

(Figure 7B). These effects of TUS were specific to stimulation

of the BF and not observed after TUS of another region, as evi-

denced by seed-based correlation analyses following TUS

over the supplementary motor area (SMA) (Verhagen et al.,

2019; Figure S6).

Ultrasound Stimulation of the ACC and BF Modulates
Time to Act
If the effect of contextual factors on actTime is mediated by the

BF and ACC, then causal manipulation of these areas should

modulate the relationship between contextual factors and act-

Time. We collected a new dataset outside of the scanner, but

this time we used TUS to modulate ACC and BF activity imme-

diately before animals performed the task (STAR Methods).

Each animal underwent four stimulation conditions, including

two conditions of interest and two control conditions (Fig-

ure 7C). Our two primary conditions were bilateral ACC TUS

and bilateral BF TUS. We also chose two control conditions:

passive bilateral sham control with the transducer positioned

on the skull but without sonication and one active control with

TUS targeted at the bilateral parietal operculum (POp), a region
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Figure 7. Ultrasound Stimulation of the ACC

and BF Modulates Time to Act

(A) Probability map of the combined neural

impact of sonications targeted at the BF. This is

calculated as the average stimulation intensity

(Isppa) map across the two consecutive stimula-

tions delivered over the left and right hemisphere,

respectively (Figure S5). The combined impact

probability map is overlaid on a standard F99

brain. The low impact probability level corre-

sponds to 10 W/cm2, in correspondence with

previous work (Verhagen et al., 2019) and Fig-

ure S5. As the color changes from red to bright

yellow, the probability of neuromodulation from

bilateral BF TUS increases.

(B) The result of a regression analysis comparing,

for each point in the brain, its whole-brain

coupling map (‘‘connectome’’) in the no-stimula-

tion state against its coupling map observed after

TUS targeted at the BF. The hot colors indicate

points in the brain with enhanced whole-brain

coupling strength after BF TUS compared with no

TUS, whereas the cool colors indicate reduced

whole-brain coupling strength after BF TUS

compared with no TUS. Compared with no TUS,

BF TUS showed a clear enhancement in activity

coupling within the BF and between the BF and

ACC and superior temporal area (Ts2).

(C) Sites where TUS was applied for each animal

(S1, S2, S3, and S4) to assess its effect on act-

Time. The TUS transducer was set at a resonance

frequency of 250 kHz and concentrated ultra-

sound in a cigar-shaped focal spot in the ACC,

BF, and POp. For the sham control, the trans-

ducer was positioned on the skull but without

sonication.

(D) Animals acted more quickly after ACC than

after BF, POp, or sham TUS when offered me-

dium or large compared with small rewards.

actTime is indexed as the number of dots at

response (Di) and the corresponding reward

probability (Dii).

(E) BF TUS reduced the bias between observed and deterministic actTime compared with POp and sham TUS.

Error bars show SEM across observations. Multilevel ANOVA followed by pairwise t test. *p < 0.05, **p < 0.01, ***p < 0.001.

See also Figures S5–S7.
distinct from and anterior to intraparietal areas linked to senso-

rimotor decision-making (Shadlen and Kiani, 2013), in which

activity was unmodulated by our contrast of interest or any

other task event. Each condition was repeated five times on

separate days in a pseudo-randomized order for each animal

(20 sessions per animal).

Based on the findings from the mediation analysis, we first

predicted that ACC TUS should modulate the relationship be-

tween reward magnitude and actTime compared with control

conditions. Multilevel ANOVA (GLM3.1) showed a significant

interaction between TUS and reward magnitude (c2(6) = 26.89,

p = 0.0002). Planned contrasts (STAR Methods) revealed that

animals acted quicker after ACC TUS than after BF, control

POp, or sham TUS but only when offered a medium reward

(compared with a small one) (ACC versus BF, b = �1.35 ±

0.31, t(13,068) = �4.34, p < 0.001; ACC versus POp, b =

�1.13 ± 0.31, t(13,068) = �3.62, p < 0.001; ACC versus sham,

b = �0.66 ± 0.31, t(13,068) = �2.11, p = 0.035) or a large reward
(compared with a small one) (ACC versus BF, b = �1.16 ± 0.30,

t(13,068) =�3.78, p < 0.001; ACC versus POp, b =�0.65 ± 0.30,

t(13068) =�2.13, p = 0.033; ACC versus sham did not reach sig-

nificance) (Figure 7Di; see Figure S7 for individual animal data).

This pattern of results confirms the interpretation of the fMRI re-

sults and suggests that the ACC causally mediates the relation-

ship between reward magnitude and actTime. Interestingly, the

effect was observed for large and medium levels of reward.

Although the higher reward prospects on such trials make

them enticing, it is important to wait before responding to in-

crease the likelihood of success. Because ACC TUS compro-

mised the ability to delay responding on just such trials, it led

to a reduced likelihood of receipt of large rewards (Tukey’s

HSD; ACC versus sham, b = �0.05 ± 0.01, Z = �4.04, p <

0.001; ACC versus POp, b = �0.04 ± 0.01, Z = �2.87, p =

0.022; ACC versus BF, b = �0.04 ± 0.01, Z = �3.21, p = 0.007;

BF versus sham, Z = �0.80, p = 0.85; BF versus POp,

Z = 0.004, p = 0.99) (Figure 7Dii).
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Previous studies showed that the TUS effect starts to diminish

after approximately 1 h but is still evident up to 2 h after the end of

stimulation (Folloni et al., 2019; Verhagen et al., 2019). In our

experiment, the task was performed within 40 min of stimulation,

well within the 1-h peak effect of TUS. Therefore, we do not

expect to see a diminishing effect of stimulation on the behavior

recorded during the task period. Nevertheless, we repeated the

same analyses as before, but this time added ‘‘time passed since

beginning of the session’’ as a covariate. This did not influence

the results. Finally, we ran a control analysis by including all pre-

sent and past contextual factors to check whether modulation of

ACC activity could influence the relationship between other

contextual factors (dot speed, ITI, past reward outcome, and

past actTime) and actTime. We found no interaction between

contextual factors and stimulation conditions (all p > 0.16) other

than with reward magnitude (c2(6) = 37.30, p < 0.001).

Having shown that TUS could be used to target the BF, we

next investigated its behavioral effect. We hypothesized, based

on our previous findings, that causal manipulation of the BF

might have a stronger effect on the relationship between deter-

ministic and observed actTime on a trial-by-trial basis compared

with ACC, control POp, or sham stimulation. To quantify this rela-

tionship, we derived a measure of trial-by-trial actTime bias by

subtracting each trial’s deterministic actTime from the observed

actTime and took the absolute value under each stimulation con-

dition (STAR Methods, GLM3.2). Multilevel ANOVA showed a

significant main effect of stimulation condition on actTime bias

(c2(3) = 12.32, p = 0.006); however, this effect was not observed

across all animals (Figure S7). Planned contrasts (STAR

Methods) showed that BF TUS reduced the bias between

observed and deterministic actTime compared with both control

POp (b = 0.28 ± 0.11, t(12,430) = 2.45, p = 0.014) and sham

(b = 0.36 ± 0.11, t(12,430) = 3.18, p = 0.001) TUS (Figure 7E; Fig-

ure S7). The differences between the effects of BF and ACC TUS

on this measure, when compared directly, were not significant

(although, notably, post hoc tests showed no significant differ-

ence between ACC and POp or sham TUS, either). This overall

pattern of behavior change after TUS is consistent with the

recording data that suggested that, although the BF had the

key role in the encoding of actTime, the BF and ACC are strongly

connected and interact (Figures 6 and 7B; Figure S6).

DISCUSSION

Although a number of studies have considered the important

question of how an action is initiated, here we identified factors

that influencewhen (Figures 2A–2E) and evenwhether (Figure 2F)

an action should be initiated. These factors relate to both the cur-

rent context, signaled to the animal by cues in the environment,

and the recent past context, such as recent rewards and the

timing of recent previous decisions (Figure 3). Even though a

large fraction of variance in animals’ behavior remains unex-

plained, by careful and controlled manipulation of identifiable

features of the environment, we managed to explain a consider-

able proportion of variance in their decision time to act

(Figure 3E).

Few theoretical accounts exist to explain why actionsmight be

made at one time rather than another, and none is quite
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adequate to explain all of the observations made in the current

study. Potentially marginal value theorem (MVT), which predicts

many aspects of decision-making (Pearson et al., 2014), might

be used to predict when actions will be made. In the fMRI exper-

iment, macaques responded more deliberately and slowly when

there was a possibility of large reward as opposed to a medium

reward (Figure S1). Careful long actTimes ensure that opportu-

nities to obtain a large reward are not wasted before transitioning

to the next trial when the possibility of another large reward is

lower and equal to the possibility of a small or medium reward.

However, many aspects of the current findings are not explained

easily by MVT because it predicts that animals should respond

faster when their intake rate diminishes to the average intake

rate of the environment (Charnov, 1976; Krebs, 1987). In

contrast, we found that on small reward trials actions were

made more slowly rather than more quickly. These aspects of

deciding when to act were consistent with an alternative notion

that vigor and speed of responding increase as the average

reward rate increases; actions are made quickly so that reward

opportunities are not lost, whereas slow actions entail an oppor-

tunity cost (Niv et al., 2007). Finally, in line with observations

made in rodents (Murakami et al., 2014, 2017), we observed

that an additional important predictor of the timing of the next

action is the timing of recent past actions.

We used fMRI to look for brain activity that is parametrically

related to the factors that change the likelihood of action.

Note that we are not looking for brain areas that initiate the ac-

tion but, rather, those that encode the current and recent past

factors that influence the right time to make the action. We

identified two areas (Figure 4): the ACC and BF. However, the

influence of present and past context on when an action will

emerge was more strongly encoded by the BF compared with

the ACC; BOLD activity in the BF could be explained by trial-

by-trial variation in deterministic actTime, which is the pre-

dicted actTime given present and past contextual factors.

Moreover, compared with control POp TUS and sham TUS,

manipulation of the BF with TUS significantly altered the close-

ness of the relationship between deterministic actTime and the

actually observed actTime (Figure 7E). In contrast, ACC TUS

did not change this relationship in comparison with control

POp TUS and sham TUS.

BF activity extended across both the amBF (approximately the

medial septum/diagonal band of Broca) and plBF (approximately

the nucleus basalis of Meynert) (Figure 4). Although plBF activity

was significantly correlated with deterministic actTime predicted

from both present and past contextual factors, amBF activity

was only correlated with deterministic actTime predicted from

past contextual factors. The animal’s internal state (shaped by

past trials) may be passed from the amBF to the plBF and inte-

grated with present contextual factors to inform time to act in

the plBF. Some aspects of the influence of present contextual

factors on construction of deterministic actTime involve the

ACC; the ACC mediated the effect of reward magnitude on act-

Time. PPI analyses were consistent with a circuit comprising

both the BF and ACC in which the component parts of the BF,

the amBF and plBF, were connected as a function of determin-

istic actTime, whereas current reward magnitude influenced

the functional connectivity between the ACC and plBF (Figure 8).
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Medial frontal cortical areas tracked
actTime-informing present contextual
factors (e.g., ACC tracked current 
reward magnitude)

amBF tracked actTime-informing 
past contextual factors
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action time
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Figure 8. A Schematic View of the Main

Findings

A BF-cingulate circuit in macaques decides it is

time to act by integrating identifiable features of

both the current context and the recent past

context.
Within the cortex, voluntary action has been especially linked

to medial frontal areas such as the ACC (Heilbronner and Hay-

den, 2016; Thaler et al., 1995) or closely adjacent areas such

as the SMA and pre-SMA (Lara et al., 2018). Although investiga-

tions of such areas havemade clear that themedial frontal cortex

is important when action is initiated voluntarily, the precise role

has been less clear. The present results demonstrate that it is

the influence of the prospect of reward on the decision about

when to act that is mediated by the ACC. This is consistent

with the fact that the ACC carries multiple value signals (Kolling

et al., 2016; Meder et al., 2017) but, at the same time, has also

been associated with determining the balance between persis-

tence with a given manner of responding or changing to an alter-

nativemode (Ebitz et al., 2018; Karlsson et al., 2012; Parvizi et al.,

2013; Stoll et al., 2016b; Wittmann et al., 2016), when to leave a

depleting patch in a foraging task (Hayden et al., 2011), and

signaling initiation of an action plan by integrating evidence to-

ward a decision bound (Hunt et al., 2018). We did not find a clear

mediation effect for the influence of past reward on action time

(Figure 6). This was unexpected, given previous studies showing

the role of the ACC in encoding of reward history (Kennerley

et al., 2006; Seo and Lee, 2007). It may reflect the limited influ-

ence of this one factor on actTime, given the many other factors
N

that also affected actTime. Nevertheless,

we found a direct effect of past trial

reward outcome on the ACC, irrespective

of its effect on actTime (Figure S3D), and

there was a suggestion, from a marginally

significant result, of a degree of mediation

of the influence of the past reward on act-

Time (see the legend of Figure 6).

The prospect of reward may have a

complex effect on the determination of

when to act. On one hand, when a reward

is available, it may be adaptive to increase

the response rate (Niv et al., 2007). On the

other hand, if there is a particularly large

reward available right now on the current

trial (e.g., high-reward trials in the current

task) and there is only a small chance

that the same level of reward will be avail-

able on the next trial (there is only a 0.33

probability that the next trial will be a

high-reward trial), then care should be

taken in how the response is made so

that the current high-reward opportunity

is not wasted. It was notable that ACC

disruption by TUS particularly led to faster

responses on medium- and high-reward

trials (Figure 7Di), which meant that ani-
mals were less likely to actually receive the medium and high re-

wards (Figure 7Dii). In some cases (e.g., Figure S1), animals

produced carefully controlled, slow responses on high-reward

trials. Danielmeier et al., 2015 have also inferred, from recordings

of ACC activity and cholinergic pharmacological investigation,

that the ACC might mediate controlled response strategies via

the BF. This is consistent with the negative direction of the PPI

effect (Figure 6C), consistent with an inhibitory influence be-

tween the ACC and plBF when carefully controlled responding

was needed on higher reward expectation trials.

Although many aspects of TUS, such as its ability to stimulate

deep in the brain while leaving overlying areas unaffected,

compare favorably with other minimally invasive stimulation tech-

niques, there are still limits to its precision (in the present study, BF

TUS spreads to both active sub-regions). However, although the

precision of TUS is likely to improve to allowmore specific target-

ing in the future, it will also be important to relate the findings to

activity patterns recorded in specific neuron populations. BF is

amajor neuromodulatory hub. It is themajor source of cholinergic

projection neurons to the cortex (Mesulam et al., 1983). Although

BF and acetylcholine has been linked to affect, attention, motiva-

tion, and memory (Danielmeier et al., 2015; Marshall et al., 2016;

Záborszky et al., 2018), our demonstration that BF mediates the
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influence of past and present context on the emergence of a de-

cision of when to act might seem surprising, especially given that

the nigrostriatal dopaminergic pathway has been linked to self-

paced action initiation (Howe and Dombeck, 2016; da Silva

et al., 2018). We cannot completely rule out the influence of BF

TUS on adjacent basal ganglion regions. However, a recent study

shows that dopamine and acetylcholine may play independent

and complementary roles in initiation of self-paced actions

(Howe et al., 2019), and other studies indicate that BF activity is

linked to response initiation and suppression (Avila and Lin,

2014; Mayse et al., 2015). Moreover, neurons in the medial BF

of monkeys combine various contextual factors, such as reward

size and uncertainty (Monosov et al., 2015). Some of these neu-

rons have ramping activity that anticipates the timing of external

events (Zhang et al., 2019). Here we suggest a new function for

a BF-cingulate circuit in combining contextual factorswith internal

state to guide decisions aboutwhen to act or, equally, when not to

act. This finding could be of potential clinical importance, given

the involvement of the BF cholinergic system in Parkinson’s dis-

ease (Ballinger et al., 2016). Future studies should assess the

possible distinctive role of cholinergic and noncholinergic BF neu-

rons in decisions about when to act.

Consideration of previous investigations of nigrostriatal activ-

ity in tandem with the current results suggests the hypothesis

that the BF integrates past and present contextual information

that will influence the decision about when an action should be

made and communicates this information to nigrostriatal circuits

via direct or indirect pathways known to exist between them

(Hikosaka, 2010). It is in the nigrostriatal circuit, or in one of the

interconnecting linking regions such as the habenula (Matsu-

moto and Hikosaka, 2007), that action initiation per se begins.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Isoflurane – ISOFLO 250ml Centaur 30135687

Ketamine – Narketan 10% 10ml INJ CD(SCH4)1 1-MCD Centaur 03120257

Midazolam – Hypnoval amps 10mg/2ml Centaur 23191407

Atropine – Atrocare INJ 25ml Centaur 02500456

Meloxicam – Metacam INJ 10ml 5mg/ml DOGS/CATS Centaur 02500456

Ranitidine 50mg/2ml x5 INJ Centaur 30294115

Saline DPAG, University of Oxford N/A

Formalin DPAG, University of Oxford N/A

SignaGel Electrode Gel Parker Laboratories #15-25

Experimental Models: Organisms/Strains

Macaca mulatta, 4 males, between 4-6 years old,

between 11.6-14.2 kg, socially housed

MRC, Centre for Macaques NCBITaxon:9544

Software and Algorithms

MATLAB 2017a Mathworks N/A

Presentation Neurobehavioral systems N/A

FMRIB Software Library v5.0 FMRIB, WIN, Oxford, UK N/A

Advanced Normalization Tools Tustison and Avants, 2013 N/A

Connectome Workbench The Human Connectome

Project and Connectome

Coordination Facility

N/A

Magnetic Resonance Comparative Anatomy Toolbox Neuroecology Lab https://github.com/neuroecology/MrCat

Offline_SENSE Windmiller Kolster Scientific N/A

R The R Foundation N/A

Mediation Toolbox Cognitive Affective

Neuroscience Laboratory

https://wagerlab.colorado.edu/tools

Other

Transducer H-115MR 250kHz SN:018 Sonic Concepts http://sonicconcepts.com

Transducer H-115MR 250kHz SN:017 Sonic Concepts http://sonicconcepts.com

Amplifier Model 75A250A – 75Watts – 10khz 250MHz Amplifier Research https://www.arworld.us/

Tie Pie Handyscope HS5 SN: 32239 Tie Pie https://www.tiepie.com/en

Brainsight frameless stereotaxic neuronavigation system Rogue Research N/A

MRI compatible frame Crist Instruments http://www.cristinstrument.com/products/

stereotax/stereotax-primate

Four-channel phased-array coil Windmiller Kolster Scientific https://www.wkscientific.com/#mri-coils
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Nima Khalighinejad

(nima.khalighinejad@psy.ox.ac.uk)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Four male rhesusmonkeys (Macacamulatta) were involved in the experiment. They weighed 11.6–14.2 kg and were 4-6 years of age.

They were group housed and kept on a 12 hr light dark cycle, with access to water 12–16 hr on testing days and with free water ac-

cess on non-testing days. All procedures were conducted under licenses from the United Kingdom (UK) Home Office in accordance

with the UK The Animals (Scientific Procedures) Act 1986 and with the European Union guidelines (EU Directive 2010/63/EU).
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METHOD DETAILS

Behavioral Training
Prior to the data acquisition, all animals were trained to work in an MRI compatible chair in a sphinx position that was placed inside a

custom mock scanner simulating the MRI scanning environment. In the first stage of training, animals were trained to use custom-

made infra-red touch sensors to respond to an image of a frame filled with dots that was presented either on the left or right side of the

screen, with their left or right hand, respectively. They got a reward for touching the sensor on the side corresponding to the image

within 4 s. The color of the image changed from trial-to-trial and animals learnt that different colors were associated with different

levels of reward (drops of juice). In the second stage of training dots were presented gradually, one at a time. Animals learned to with-

hold their response for a few seconds before responding to increase their chance of getting a reward, given the probabilistic nature of

the task. In the last stage of training animals learned to tolerate long action-outcome delays; given the hemodynamic lag inmacaques

(Chau et al., 2015) this delay allowed disambiguation of neural activity occurring at the time of decision making and at the time of

decision outcome. The delay gradually increased from 0.5 s over several sessions to 4 s. The animals underwent aseptic surgery

to implant an MRI compatible head post (Rogue Research, Mtl, CA). After a recovery period of at least 4 weeks, the animals were

trained to perform the task inside the actual MRI scanner under head fixation. The imaging data acquisition started once they

were receiving a reward on more than 50% of the trials (i.e., passing the midpoint of the probability distribution in more than half

of the trials), for at least three consecutive sessions in the scanner.

Experimental task
At the beginning of each trial an empty frame (83 26 cm) appeared on the left or right side of the screen. The frame gradually filledwith

dots (round circles, r = 0.3 cm,max number of dots = 25) emerging from top to bottom (Figure 1B). Animals could terminate the trial, at

a time of their own choice, by touching a custom-made infra-red touch sensor, on the side corresponding to the image. The trial

continued if they touched the opposite side. The probability of getting reward increased as more dots appeared on the screen,

following a sigmoid curve (Figure 1D). The probability distribution was drawn from a sigmoid function. The input to the function

was a vector corresponding to the number of dots from 1 to 25. The midpoint of the curve was at dot #12 (50% chance of getting

reward) with the steepness of 0.5. The probability distribution was constant across the trials and the sessions. The color of the frame

and dots varied from trial to trial but remained constant within a trial. The color indicated potential reward magnitude and could be

red, green or blue, indicating one, two or three drops of juice, respectively. In addition to the color, the speed of the dots appearance

also varied from trial to trial. A new dot appeared every 100, 200 or 300 ms. Animals had the option to respond, any time from the

beginning of the trial (appearance of the empty frame) to 300 ms after the frame was filled (appearance of the last dot). If they re-

sponded, they were offered drops of juice or no juice, based on the probability distribution at the time of response. There was a delay

of 4 s between response and outcome (action-outcome delay). Successful and unsuccessful outcomes were indicated by an upward

and downward pointing triangle, respectively. The triangle remained on the screen for 2 s. If rewarded, drops of blackcurrant juice

were delivered by a spout placed near the animal’s mouth during scanning. Each drop was composed of 1 mL blackcurrant juice. No

juice was delivered when the trial was not rewarded. After the outcome phase, they proceeded to the next trial after a 3, 5 or 7 s inter-

trial interval (ITI). ITI varied in blocks of 30 trials in a pseudo-randomized order. Specific patterns on the left and right side of the screen

indicated the ITI block (Figure 1C). If animals did not respond by 300ms after the emergence of the last dot, the frame disappeared,

and they had to wait for 4 s (equivalent to action-outcome delay) + 3, 5 or 7 s (ITI) for the next trial to start. Animals were given 40min to

perform the task at each session. The task finished after 40min, regardless of the number of trials done. Each animal performed ten to

twelve sessions in the MRI scanner. The experiment was controlled by Presentation software (Neurobehavioral Systems Inc.,

Albany, CA).

Cox regression model
To estimate the deterministic component of actTime we used a specific class of survival models called the Cox proportional hazard

model (Murakami et al., 2017). The model predicts time-to-event (actTime) on the current trial from present and past contextual fac-

tors. Specifically, the predictors (covariates) included reward magnitude, dot speed and ITI of the current trial, and the actual reward

and actTime on the past 10 trials. Importantly, actTime in trials that monkeys decided not to respond are labeled as ‘censored’ data

because in those trials monkeys might have responded if the trials were to continue for longer. The model is described as:

lðtÞ = l0ðtÞ:expðbxÞ;
where lðtÞrepresents a hazard function (hazard rate of responding), l0ðtÞ represents a baseline hazard function, that is a hazard

function when all the covariates are 0, b is a row vector with 23 elements (3 present contextual factors + 10 past rewards + 10

past actTimes) representing Cox coefficients for each covariate and x is a 23 element column vector representing covariates, present

contextual factors and contextual factors of the past 10 trials. The coefficients were estimated for each testing session by using the

‘coxphfit’ function in MATLAB. We also investigated an alternative model where we introduced ‘trial number’ as a covariate to ac-

count for a potential effect of satiety on actTime; however, the Cox coefficient for trial number was not significantly different from

zero. Moreover, its inclusion had a negligible impact on the proportion of variance in actTime explained by the other factors. This

may partly reflect the relatively short duration of each testing session.
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A detailed method for obtaining Cox coefficients has been previously described (Murakami et al., 2017). The estimated Cox co-

efficients ðbbÞ from present and past contextual factors (only coefficients from the immediately preceding trial were used, as only

these had been significant for both past reward outcome and past actTime) were used to obtain the expected actTime from the given

predictors by the following method:

First, the cumulative hazard function, bLxðtÞ, of each trial was estimated given the baseline cumulative hazard function, bL0ðtÞ, and
the covariates:

bLxðtÞ = bL0ðtÞ:exp
�bbx�;

The cumulative hazard function of each trial was then used to estimate the survival function of each trial, S(t):

bSxðtÞ = exp
�� bLxðtÞ

�
;

The deterministic actTime is estimated by:

½actTime� =
ZN
0

bSxðtÞ;

We also separately assessed the contribution of past and present context to deterministic actTime. The original model was split into

two, estimating the Cox regression coefficients separately from its present and past components. We then used the Cox coefficients

relating to either the present or the immediately preceding trial (similar to the original model) to derive two separate actTime esti-

mates. These new estimates were termed deterministic actTimepresent context and deterministic actTimepast context.

Finally, tomeasure the proportion of variance explained by the Cox regression model, we used Schemper’s V (Schemper and Hen-

derson, 2000), which is defined as:

V =

� bD � bDx

�
bD ;

Where bD is the distance between survival functions of individual trials Si(t) and a survival function estimated from all the trials without

taking into account covariates bSðtÞ, by using Kaplan–Meier estimator. bDx is calculated in the same way as bD, but is the distance be-

tween survival functions of individual trials Si(t), and an estimated conditional survival function given covariates x, bSxðtÞ. The equa-

tions to calculate bD are previously described in detail (Murakami et al., 2017).

Imaging data acquisition
Awake-animals were head-fixed in a sphinx position in an MRI-compatible chair (Rogue Research, MTL, CA). MRI was collected us-

ing a 3T horizontal boreMRI clinical scanner and a four-channel phased array receive coil in conjunctionwith a radial transmission coil

(Windmiller Kolster Scientific Fresno, CA). Each loop of the coil had an 8cm diameter which ensures a good coverage of the animal’s

head. Similar coils have been previously used for awake fMRI studies in primates (Chau et al., 2015; Kolster et al., 2014; Papageor-

giou et al., 2017). The chair was positioned on the sliding bed of the scanner. The receiver coils were placed on the side of the animal’s

head with the transmitter placed on top. The touch sensors and the juice delivery system were the same as the one used in the mock

scanner. An MRI-compatible screen (MRC, Cambridge) was placed 30cm in front of the animal and the image was projected on the

screen by a LX400 projector (Christie Digital Systems). Functional data were acquired using a gradient-echo T2* echo planar imaging

(EPI) sequence with a 1.53 1.53 1.5 mm resolution, repetition time (TR) 2.28 s, echo time (TE) 30 ms and flip angle 90�. At the end of

each session, proton-density-weighted images were acquired using a gradient-refocused echo (GRE) sequence with a 1.5 3 1.5 3

1.5 mm resolution, TR 10 ms, TE 2.52 ms, and flip angle 25�. These images were later used for offline MRI reconstruction.

T1-weighted MP-RAGE images with a resolution of 0.5 3 0.5 3 0.5 mm, TR 2.5 s, TE 4.04 ms, inversion pulse time (TI) 1.1 s, and

flip angle 8�, were acquired in separate sessions under general anesthesia. Anaesthesia was induced by intramuscular injection

of 10 mg/kg ketamine, 0.125-0.25 mg/kg xylazine, and 0.1 mg/kg midazolam and maintained with isoflurane (for details see Sallet

et al., 2013). Anaesthesia was only used for collecting T1-weighted structural images.

fMRI data preprocessing
Preprocessing was performed using tools from FMRIB Software Library (FSL) (Jenkinson et al., 2012), Advanced Normalization Tools

(ANTs; http://stnava.github.io/ANTs) (Tustison and Avants, 2013), Human Connectome Project Workbench (Glasser et al., 2013)

(https://www.humanconnectome.org/software/connectome-workbench), and the Magnetic Resonance Comparative Anatomy

Toolbox (MrCat; https://github.com/neuroecology/MrCat). First, T2* EPI images acquired during task performance were recon-

structed by an offline-SENSE method that achieved higher signal-to-noise and lower ghost levels than conventional online recon-

struction (Kolster et al., 2009) (Offline_SENSE GUI, Windmiller Kolster Scientific, Fresno, CA). A low-noise EPI reference image

was created for each session, to which all volumes were non-linearly registered on a slice-by-slice basis along the phase-encoding
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direction to correct for time-varying distortions in the main magnetic field due to body and limb motion. The aligned and distortion-

corrected functional images were then non-linearly registered to each animal’s high-resolution structural images. A group specific

template was constructed by registering each animal’s structural image to the CARET macaque F99 space (Kolster et al., 2009).

Finally, the functional images were temporally filtered (high-pass temporal filtering, 3-dB cutoff of 100 s) and spatially smoothed

(Gaussian spatial smoothing, full-width half maximum of 3mm).

Transcranial Ultrasound Stimulation (TUS)
Ultrasound stimulation was performed using a single element ultrasound transducer with 63.2 mm radius of curvature (H115-MR,

diameter 64 mm, Sonic Concept, Bothell, WA, USA). The transducer was coupled with a coupling cone and was filled with degassed

water and sealed with a latex membrane (Durex). The ultrasound wave frequency was set to 250 kHz resonance frequency. 30 ms

bursts of ultrasound were generated every 100mswith a digital function generator (Handyscope HS5, TiePie engineering, Sneek, the

Netherlands) for a total duration of 40 s. A 75-Watt amplifier (75A250A, Amplifier Research, Souderton, PA) was used to deliver the

required power to the transducer. A TiePie probe connected to an oscilloscope was used tomonitor the output voltage. The recorded

peak-to-peak voltage was constant throughout the stimulation session and ranged from 128 to 136 V. This corresponds to a peak

negative pressure of 1.152 to 1.292 MP, respectively, measured in water with an in-house heterodyne interferometer (see reference

Constans et al., 2017 for more details about the calibration protocol).

At the beginning of each stimulation session the animal’s skull was shaved and a conductive gel (SignaGel Electrode; Parker Lab-

oratories Inc.) was applied to the skin. The water-filled coupling cone and the gel was used to ensure ultrasonic coupling between the

transducer and the animal’s head. Next, the ultrasound transducer / coupling conemontage was placed on the skull and a Brainsight

Neuronavigation System (Rogue Research, Montreal, CA) was used to position themontage so that the focal spot would be centered

on the targeted brain region. Ad hoc coupling cone were used for each target of interest. All targets were sonicated bilaterally for 80 s

in total, with 40 s of stimulation applied to a target in each hemisphere. Sonication of the target in one hemisphere was immediately

followed by sonication of a homologous target in the contralateral hemisphere. Hemispheres were sonicated in a pseudo-random

order. After stimulation, monkeys were immediately moved to a testing room for behavioral data collection. There were four stimu-

lation conditions (Figure 7C): ACC, BF, parietal cortex and sham. Left and right ACC and BF targets were defined based on thewhole-

brain peak activity for actTime contrast, projected on each individual monkey’s structural image. We targeted amBF where we had

strong bilateral activity; however, as explained in the Results, the stimulation was also associated with activity change in adjacent

plBF. Left and right posterior parietal operculum (POp) targets were used as active control stimulation sites. A sham condition

was also implemented as a non-stimulation passive control. The sham condition completely matched a typical stimulation session

(setting, stimulation procedure, neuro-navigation, targeting, transducer preparation and timing of its bilateral application to the

shaved skin on the head of the animal) except that sonication was not triggered. During the sham session the montage was

pseudo-randomly positioned to target ACC, BF or POp. Each stimulation condition was repeated five times, on separate days,

and the order of the stimulation sessionswas pseudo-randomized for each animal. For example, the stimulation schedule for monkey

W was POp TUS – sham TUS – ACC TUS – BF TUS, repeated five times, over 40 days. The stimulation was always performed at the

same time of the day and there was always a 48 hours gap between each session, regardless of it being a real or sham stimulation

session.

The TUS procedure used here, in which a short train of TUS was delivered, has a short-term impact on neural activity and behavior

that lastsmanyminutes to a few hours (Folloni et al., 2019; Fouragnan et al., 2019; Verhagen et al., 2019). This ensures that neither the

neural nor the behavioral effects of TUS found here can be attributed to the auditory stimulation that accompanies TUS delivery (Airan

and Butts Pauly, 2018; Mohammadjavadi et al., 2019).

Acoustic and thermal modeling
The acoustic wave propagation of our focused ultrasound protocol was simulated using a k-space pseudospectral method-based

solver, k-Wave (Cox et al., 2007) to obtain estimates for the pressure amplitude, peak intensity, spatial distribution, and thermal

impact at steady state. 3Dmaps of the skull were extracted from amonkey CT scan (monkey L (Constans et al., 2017), 0.14 mm slice

resolution, 0.33 mm slice distance). Soft tissues were assumed to be homogeneous, with acoustic values of water ðrtissue =

1000 kg:m�3 and ctissue = 1500 m:s�1Þ. In the bone, a linear relationship between the Hounsfield Units (HU) from the CT scan

and the sound speed, as well as the density, was used. The power law model for attenuation is aatt =amin +amax �Vb where the

porosity V is defined by V = ðrmax � r =rmax � rtissueÞin the skull (Aubry et al., 2003). The attenuation coefficients for the acoustic

propagation amin and amaxdepend on the frequency: amin = amin0f
bwith amin0 = 0:2 dB:cm�1:MHz�b and amax = amax0f

bwith

amax0 = 8 dB:cm�1:MHz�b (Aubry et al., 2003). We set the parameters to rmax = 2200 kg:m�3, cmax = 3100 m:s�1(Constans et al.,

2017), b= 0:5 (Aubry et al., 2003), b= 1:1 (Constans et al., 2018). The attenuation coefficient in bone accounts for both absorption

and scattering (Pinton et al., 2012).

The propagation simulation was performed at 250 kHz with a 150 ms-long pulse signal (enough to reach a steady state). The trans-

ducer was modeled as a spherical section (63.2 mm radius of curvature and 64 mm active diameter). The simulated pulses were

spatially apodized (r = 0.35) on the spherical section. Ultrasound propagates first through water before entering the skull cavity
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with the geometrical focal point located below the surface, inside the brain. Simulations were performed in free water, and the

maximum amplitude obtained was used to rescale the results in skull. The thermal modeling is based on the bio-heat equation

(Pennes, 1948):

rC
vT

vt
= kV2T+q+wrbCbðT�TaÞ

where T, r, C, k and q are the temperature, density, specific heat, thermal conductivity and rate of heat production respectively. Heat

production is defined as q = aabsðP2 =2rCÞ, aabs being the absorption coefficient and P the peak negative pressure. k is set to 0.528

W.m-1.K-1 in soft tissue and 0.4 W.m-1.K-1 in the skull; C is set to 3600 J.kg-1.K-1 in soft tissue and 1300 J.kg-1.K-1 in the skull (Duck,

2012). In the tissue, the absorption coefficient was set to aabs tissue = 0:21 dB:MHz�b (Goss et al., 1979). In the skull the

longitudinal absorption coefficient is proportional to the density with aabs max = ða0 =3Þ= 2:7 dB:cm:MHz�b (Pinton et al., 2012).

The last term corresponds to the perfusion process: w; rb;Cb and Ta correspond to the blood perfusion rate, blood density,

blood specific heat and blood ambient temperature respectively. These parameters are assumed homogeneous over the

brain, although amore detailed description of the brain cooling processes can be found in the literature (Wang et al., 2016). The perfu-

sion parameters are based on previous reports (Pulkkinen et al., 2011): w = 0.008 s-1; rb = 1030 kg.m-3; Cb = 3620 J.kg-1.K-1 and

Ta = 37�C.
The bioheat equation is solved by using a 3D finite-difference scheme in MATLAB (Mathworks, Natick, USA) with Dirichlet bound-

ary conditions. Initial temperature conditions were 37�C in the brain, skull and tissue, and 24�C in the water coupling cone. Simula-

tions were run over 1 minute pre-sonication, followed by 40 s of sonication, and 5 minutes post-sonication, closely following the

experimental procedure.

Resting-state imaging data acquisition, pre-processing, and analysis
The detailed procedure for rs-fMRI acquisition, pre-processing, and analysis has been reported elsewhere (Folloni et al., 2019; Ver-

hagen et al., 2019). In summary, rs-fMRI was collected under inhalational isoflurane gas anesthesia for three monkeys after BF TUS,

SMA TUS (Verhagen et al., 2019), and a control state (Verhagen et al., 2019). During the acquisition of rs-fMRI data the mean expired

isoflurane concentration was around 1%. Isoflurane was chosen to maintain anesthesia as it has been previously demonstrated to

preserve rs-fMRI networks (Mars et al., 2013; Neubert et al., 2015; Sallet et al., 2013; Vincent et al., 2007). Moreover, the impact of the

transcranial ultrasound stimulation (TUS) was established by comparing rs-fMRI sessions collected after TUS with sessions without

prior TUS but in both cases data were collected under identical conditions of isoflurane anesthesia. Because animals were anaes-

thetised in both cases it is therefore possible to compare the impact of TUS stimulation on functional connectivity of the stimulated

areas. After pre-processing, we used a seed-based correlation analysis approach (Neubert et al., 2015; Sallet et al., 2013) to report

the whole-brain functional connectivity of the stimulation site (BF) with and without TUS. Additionally, we reported whole-brain func-

tional connectivity for SMA and POp with BF TUS, SMA TUS and no stimulation (Figure S6). The impact of BF TUS was quantified by

regressing, for each point in the brain, the seed-based correlation map observed after BF TUS against the seed-based correlation

map observed in the control state (Figure 7B).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis
Time to act (actTime) was defined as the number of dots on the screen at the time of response. We used a multilevel generalized

linear model (GLM) to predict actTime from present and past contextual factors, with ‘trial data’ as level one variable, ‘testing

session’ as level two and ‘animal’ as level three. The variables ‘testing session’ and ‘animal’ were assigned as the random part

of the model, with the variable ‘testing session’ nested within the variable ‘animal’. Note that by-subject random slopes were not

included in the multilevel models, because it is suggested that a random variable should have at least 10 levels before one

can include random effects for it (sample size in this study was four) (Raudenbush and Bryk, 2001). Maximum likelihood

method was used for model estimation and pairwise t test and Tukey’s HSD for post hoc comparisons. We examined the

impact of both present and past contextual factors on actTime. Present contextual factors consisted of potential reward magni-

tude, speed of dots and ITI on the current trial. Past contextual factors consisted of actual reward outcome and actTime on the

past trial.

actTimet = b0 + b1rewardt + b2dotSpeedt + b3ITIt + b4ðrewardt �dotSpeedtÞ+ b5ðrewardt � ITItÞ+ b6ðdotSpeedt � ITItÞ
+ b7ðrewardt �dotSpeedt � ITItÞ+ b8rewardOutcomet�1 + b9actTimet�1

Likewise, we used a hierarchical logistic regression to predict the odds of responding at a given trial from contextual factors.

logit ðresponsetÞ = b0 + b1rewardt + b2dotSpeedt + b3ITIt + b4rewardOutcomet�1 + b5actTimet�1

The modeling was performed by ‘nlme’ and ‘lme4’ packages in R (Bates et al., 2018; Pinheiro et al., 2018).
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fMRI data analysis
To perform whole-brain statistical analyses we used a univariate generalized linear model (GLM) framework as implemented in FSL

FEAT (Woolrich et al., 2001). At the first level, we constructed a GLM to compute the parameter estimates (PEs) for each regressor.

The GLM was constructed based on the linear model we previously used for behavioral analyses:

GLM1 : BOLD = b0 + b1 resp+ b2 reward + b3 dotSpeed + b4 ITI+ b5 pastRew+ b6 pastactTime+ b7 actTime+ b8 time

+ b9 rightconv + b10 leftconv + b11 mainOut + b12 levelOut + b13 rightunconv + b14leftunconv + b15 mouth;

where BOLD is a t x 1 (t time samples) column vector containing the times series data for a given voxel. Trials where animals

made no response were left out of the analysis (16.38% ± 11.42% of the trials, across all sessions). Regressors 1 to 7 are task-

related regressors of interest: resp is an unmodulated regressor representing the main effect of stimulus presentation in re-

sponded trials (all event amplitudes set to one). reward, dotSpeed and ITI are parametric regressors with three levels, which

represent reward magnitude, speed of dots, and inter-trial-interval on the current trial, respectively. pastRew is a parametric re-

gressor with four levels representing the reward outcome on the past trial. pastactTime is also parametric and represents

actTime on the past trial. pastRew and pastactTime were both weighted by their influence on actTime on the current trial (multi-

plied by their coefficients from behavioral GLM). actTime represents time-to-act (number of dots at response) on the current trial.

Regressors 1 to 7 were all boxcar regressors with a duration of 500 ms that were convolved with a hemodynamic response func-

tion (HRF) specific for monkey brains (Kagan et al., 2010; Nakahara et al., 2002). Regressors 1-6 were all time-locked to the

onset of the trial. Regressor 7 started 500 ms before animals made a response by cutting the infra-red touch sensor and

continued for 500 ms.

Regressors 8-15 were task-related confound regressors. time is a parametric regressor representing the time passed since the

beginning of the scanning session and is locked to the trial onset. leftconv and rightconv are unmodulated regressors (all event am-

plitudes set to one), locked to 500ms prior to response, representing the response with the left and right hand, respectively.mainOut

is an unmodulated regressor representing the main effect of outcome (all event amplitudes set to one). levelOut is a parametric re-

gressor with four levels representing the reward outcome on the current trial. Regressors 11-12 were locked to the onset of outcome

(juice) delivery. Regressors 13-15 modeled instant signal distortions due to changes in the magnetic field caused by movement.

These regressors were therefore not convolved with HRF. rightunconv and leftunconv represented distortion due to right and left-

hand responses. They started at the beginning of the TR when the response was recorded and had a duration of one TR (2.28 s).

mouth represented distortion due tomouthmovements. It started at the beginning of the TRwhen the juice delivery started and termi-

nated at the end of the TR when the juice delivery ended. To further reduce variance and noise in the BOLD signal, we also added

task-unrelated confounds which included 13 parametric PCA components that describe, for each volume, the warping from that vol-

ume to the mean reference image when correcting motion artifacts.

First level analysis was performed on each scanning session (45 sessions in total). The contrast of parameter estimates (COPEs)

and variance estimates (VARCOPEs) from each scanning session were then combined in a second-level mixed-effects analysis

(FLAME 1+2) treating sessions as random effects. Time series statistical analysis was carried out using FMRIB’s improved linear

model with local autocorrelation correction.

ROI analysis
Regions of interest (ROI) were defined as spheres of 3 mm radius, centered at the peak of the activation of a contrast. For time-series

analyses, the filtered time-series of each voxel within each ROI was averaged, normalized and up-sampled. The up-sampled data

was then epoched in 8 s windows, starting from 2 s before to 6 s after the response time. Time-series GLMs were then fit at each

time step of the epoched data, in responded trials, using ordinary least-squares (OLS). We ran the following GLMs:

GLM2.1

BOLD = b0 + b1 actTimenumDot + b2 time+ b3 nontask;

whereBOLD is a i x t (i trial, t time samples) matrix containing the times series data for a givenROI. actTimenumDot is the number of dots

at response. time is the time passed since the beginning of the testing session. nontask is a task-unrelated unmodulated constant

regressor.

GLM2.2

BOLD = b0 + b1 actTimenumDot + b2 actTimesecond + b3 time+ b4 nontask;

where actTimeseconds is the log time-to-act in seconds.

GLM2.3

BOLD = b0 + b1 deterministic actTimepresent +past + b2 actTimenumDot + b3 actTimesecond + b4 time+ b5 nontask;
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where deterministic_actTimepresent+past is the number of dots at response as predicted by the Cox regressionmodel from present and

past contextual factors.

GLM2.4

BOLD = b0 + b1deterministic actTimepresent + b2 deterministic actTimepast + b3 actTimenumDot + b4 actTimesecond + b5 time+ b6 nontask;

where deterministic_actTimepresent is the number of dots at response as predicted by the Cox regressionmodel from present contex-

tual factors and deterministic_actTimepast is the number of dots at response as predicted by the Cox regression model from past

contextual factors.

GLM2.5

BOLDROI = b0 + b1 BOLDseed + b2 deterministic actTimepresent +past + b3 PPI+ b4 actTimenumDot + b5 actTimesecond + b6 time+ b7 nontask;

where BOLDROI is BOLD activity at amBF, BOLDseed is BOLD activity at plBF, and PPI is the interaction between BOLDseed and

deterministic_actTimepresent+past.

GLM2.6

BOLDROI = b0 + b1 BOLDseed + b2 quadReward + b3 PPI+ b4 time+ b5 nontask;

whereBOLDROI is BOLD activity at ACC,BOLDseed is BOLD activity at plBF, quadReward is the quadratic rewardmagnitude, and PPI

is the interaction between BOLDseed and quadReward.

Leave one out on time-series group peak signal
Significance testing on time-course data was performed by using a leave-one-out procedure on the group peak signal to avoid po-

tential temporal selection biases. For every session, we calculated the time course of the group mean beta weights of the relevant

regressor based on the remaining 44 sessions. We then identified the (positive or negative) group peak of the regressor of interest

within the full width of the epoched time course: from 2 s before to 6 s after the response. Next, we took the beta weight of the re-

maining session at the time of the group peak. We repeated this for all sessions. Therefore, the resulting 45 peak beta weights

were selected independently from the time course of each single session. We assessed significance using multilevel ANOVA and

t tests on the resulting beta weights. The variables ‘testing session’ and ‘animal’ were assigned as the random part of the model,

with the variable ‘testing session’ nested within the variable ‘animal’. Note that to avoid any circularity in analyses, the regressors

that first used to identify the locations of ROIs were always used as covariates in subsequent analyses of other signals extracted

from those ROIs.

Mediation analysis
To investigate themechanisms that underlie the relationship between contextual factors and actTimewe performedmulti-level medi-

ation analysis using the Mediation Toolbox (https://wagerlab.colorado.edu/tools). We asked whether covariance between an initial

variable (contextual factors) and an outcome variable (actTime as measured by number of dots) can be explained by a mediator var-

iable (BOLD activity from ROI). Mediation analysis extends the previous univariate model and would allow us to test four effects

(Figure 6A): the direct effect of initial variable (e.g., reward) on outcome variable (actTime) (path c); impact of initial variable on brain

activity (path a); the impact of brain activity on outcome variable, controlling for initial variable (path b); andmediation of initial variable

on outcome variable by a potential mediator (BOLD signal) (path a x b). The mediator variable was defined as the positive peak of the

BOLD signal within the full width of the epoched time course for each ROI.

Significance estimates for paths a, b, c, and the mediation path were computed by bootstrapping using 10000 samples

with replacement. The only requirement to demonstrate mediation, when using bootstrapping, is a significant indirect effect (path

a x b) (Hayes, 2018; Zhao et al., 2010). A significant mediation suggests that including the brain activity in the path between contextual

factors and actTime, significantly alters the slope of their relationship. P values were calculated for each ROI from the bootstrap con-

fidence intervals. As in previous analyses, the log time-to-act in seconds and the time passed since the beginning of the session were

added to the model as covariates of no interest.

TUS behavioral data analysis
Based on our previous findings, we designed two hypothesis-driven multilevel GLMs to investigate the effect of ACC TUS on the

relationship between rewardmagnitude and observed actTime (GLM3.1), and the effect of BF TUS on the relationship between deter-

ministic and observed actTime (GLM3.2). In both models, the variables ‘stimulation session’ and ‘animal’ were assigned as the

random part of the model, with the variable ‘stimulation session’ nested within the variable ‘animal’.
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GLM3.1

actTimet = b0 + b1ROI TUSt + b2rewardt + b3ðrewardt �ROI TUStÞ;
Where ROI TUS is the stimulation target and reward is the reward magnitude at trial t. To find out how stimulation targets might differ

from each other without inflating type I error rate, ANOVA was followed by planned contrasts where the effect of ACC TUS on the

relationship between reward magnitude and observed actTime was compared with the effects of BF, control POp and sham TUS.

GLM3.2

actTime biast = b0 + b1ROI TUSt;

Where ROI TUS is the stimulation target and actTime biast is the absolute difference between observed and deterministic actTime at

trial t:

jobserved actTimet �deterministic actTimet j :
To estimate deterministic actTime, we first asked whether present and past contextual factors significantly contribute to the model.

The Cox regression coefficients were significant for present (reward magnitude, dot speed, and ITI) and past (reward outcomes and

past actTimes) contextual factors. However, compared to the first Cox model used to analyze the fMRI data, coefficients from the

past trials were significant as far as 8 (past reward outcomes) and 9 (past actTime) trials back. Therefore, to increase the estimation

accuracy, we used the Cox regression coefficients from all past 10 trials to estimate deterministic actTime from present and past

contextual factors. ANOVA was followed by planned contrasts where the effect of BF TUS on actTime bias was compared with

the effects of ACC, control POp and sham TUS.

DATA AND CODE AVAILABILITY

The data that support the findings of this study and the code to generate the results and the figures are available from the Lead

Contact upon request.
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Figure S1. Distribution of actTime. Related to Figure 2. (a) Distribution of actTime across 

all trials. The histogram shows a wide range of actTime in dot number (left panel) and 

seconds (right panel); while on some trials animals were impulsive and responded after 

emergence of the first 2-3 dots, on many trials they waited till the very last dot before 

responding. (b) To get a better understanding of the U-shaped relationship between reward 

magnitude and actTime we looked at the distribution of actTime for different levels of reward. 

The histograms suggest that despite the quadratic effect of reward magnitude on actTime, 

the distribution of actTime has a distinct pattern in small and large reward trials: actTimes 

are distributed more uniformly in the former compared to the latter. (c) To capture the 

extended tail of the time-to-act distribution we fitted an exponentially modified Gaussian 

distribution on each animal’s time-to-act in milliseconds, separately for small, medium and 

large reward magnitude trials. The ex-Gaussian model is derived via convolution of an 

exponential distribution and a normal distribution and captures response time distributions 

well (Lewandowsky and Farrell, 2011). It assumes that response time can be divided into 

two independent components: 1) the time taken to make a decision, assumed to be 

exponentially distributed (Andrews and Heathcote, 2001; Balota et al., 2008), and 2) 

processes supplementary to the decision assumed to be Gaussian (Luce, 1991). (d-f) The 

model has three free parameters: mean and standard deviation (sigma) of the Gaussian 

distribution and tau, the rate of drop-off of the exponential distribution. We found a significant 

main effect of reward magnitude on the mean (X2(2)=7.51, P=0.023) (d), but not on the 

standard deviations of the Gaussian components (X2(2)=3.68, P=0.16) (e). However, tau 

was significantly higher in small reward compared to large reward magnitude trials (main 

effect, X2(2)=12.48, P=0.002; small vs. large, β=711±156, t(6)=4.55, P=0.004; small vs. 

medium, β=543±156, t(6)=3.47, P=0.013) (f). This suggests animals made more deliberate 

decisions when offered large compared to small rewards; decisions about when to act were 

relatively tightly clustered around long actTimes. However, when confronted with small 

rewards, animals appeared relatively indifferent and there was considerable variation in 

actTime, sometimes waiting till the very last moment and responding just before the trial 



 

ended. Error bars represent standard error of the mean, and the grey circles illustrate the 

group mean. The model was separately fitted on pooled data (time-to-act in milliseconds) 

from each animal. Fitting was performed in MATLAB (MathWorks, MA, USA) by using 

maximum likelihood estimation and a bounded Simplex algorithm. Each colour ring 

represents the best fit for each animal. Multilevel ANOVA followed by pairwise t-test. * 

P<0.05, ** P<0.01, *** P<0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

Figure S2. ACC and BF encode time to act. Related to Figure 4. (a) Whole-brain analysis 

showing voxels where activity reflected parametric variation in the empirically observed 

actTime, as indexed by dot number at the time of response. The analysis was performed in 

the same manner as in Fig.4a. but here the GLM only included actTime and not all the 

present and past contextual factors that influenced actTime. Top panel; ACC. Middle panel; 

amBF. Bottom panel; plBF. Whole-brain cluster-based correction, Z>2.3. (b) ROI time-

course analysis of the ACC (top panel), amBF (middle panel), and plBF (bottom panel), 

showing the relationship between BOLD activity and parametric variation in actTime, after 

adding time-to-act in seconds to GLM2.1 (Methods) as a covariate to control for passage of 

time (Methods, GLM2.2). The lines and shadings show the mean and standard error of the β 

weights across the sessions, respectively. Time zero is the response time. Note that due to 

delay in the BOLD hemodynamic response function the BOLD signal time-course peaks 3s 

after neural activity. Once the delay in BOLD response is taken into account it is clear that 

BOLD activity reflects neural events occurring before the response onset. (c) No significant 

difference in actTime encoding was observed between ACC, amBF and plBF after adding 

time-to-act in seconds to the GLM as a covariate to control for passage of time. Each colour 

represents one animal, and each ring is the peak beta-weight of one testing session. The 

grey columns illustrate the group mean. 

 

 

 

 

 

 



 

 

 

 



 

Figure S3. Effect of contextual factors on BOLD signal. Related to Figure 4. ROI time-

course analysis of the ACC (blue), amBF (green), and plBF (red), showing the relationship 

between BOLD activity and parametric variation in reward magnitude (a), dot speed (b), ITI 

(c), past reward (d), and past actTime (e). We found individual effect of contextual factors on 

ACC (reward magnitude and past reward outcome) and plBF (speed and ITI). Given that 

both reward magnitude and actTime are correlated with the ACC BOLD signal, we asked 

whether expected value (EV) (the product of reward magnitude and reward probability at the 

time of response) might be a better predictor of activity in ACC. We performed the same 

analysis as in GLM2.1 (see methods), however, this time we replaced actTime with EV. We 

found no significant relationship between EV and BOLD signal in ACC (t(44)=1.19, P=0.24; 

leave-one-out procedure for peak selection). Importantly, the effect of actTime on ACC 

BOLD signal was stronger than the effect of EV (t(44)=2.38, P=0.02; paired-samples t-test). 

ACC activity reflects both reward probability and magnitude and other factors determining 

EV in choice selection tasks (Cavanagh et al., 2016; Hunt et al., 2015; Kennerley et al., 

2009). However, in the current context, in which expected reward magnitude was explicitly 

cued and action timing was all important and directly under the monkey’s control, ACC 

tracked expected reward magnitude and reflected the actTime observed on each trial. 

actTime in turn, albeit non-linearly (via a sigmoid function), determined likelihood of reward. 

Importantly, a significant effect of individual contextual factors on an ROI signal does not 

imply that that specific ROI influences the relationship between the contextual factor and 

actTime. Instead it simply indicates a direct effect of a contextual factor on ROI BOLD signal, 

regardless of its influence on actTime. We discuss the relationship between contextual 

factors and actTime, and their influence on BOLD signal, later in Figures 5 and 6. The lines 

and shadings show the mean and standard error of the β weights across the sessions, 

respectively. Time zero is the response time. Significance testing on time-course data was 

performed by using a leave-one-out procedure on the group peak signal. One-sample t-

tests, * P<0.05, ** P<0.01, *** P<0.001. 



 

 

 

 

Figure S4. Whole-brain analysis showing voxels where activity reflected parametric 

variation in the deterministic actTime. Related to Figure 5. To verify whether areas 

outside our ROIs could also encode deterministic actTime, we performed a model-based 

whole-brain analysis. This confirmed that voxels that are correlated with trial-by-trial variation 

in deterministic actTime mainly overlap with the BF ROI. Format as in Fig.S2a, but after 

replacing observed actTime with deterministic actTime as predicted by Cox model. Two 

significant clusters were identified: the peak of the largest cluster was at BF (peak Z=5.1, 

number of voxels=9203; F99: x=1.0, y=4.0, z=2.0; whole-brain cluster-based correction, 

Z>2.3, P<0.001). The smaller cluster was at the boundary of the left amygdala and 

entorhinal cortex (peak Z=5.1, number of voxels=2197; F99: x=-9.0, y=4.5, z=-7.0; whole-

brain cluster-based correction, Z>2.3, P=0.003). 
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Figure S5. Simulation of the acoustic wave propagation and its thermal effect. Related 

to Figure 7. (a-c) Peak intensities, spatial distribution and thermal modelling for right BF 

targeting (left column) and left BF targeting (right column). (a) Simulated focused ultrasound 

peak intensities and spatial distribution in the brain when targeting BF, based on a high-

resolution macaque whole-head CT scan. The maximum spatial-peak pulse-averaged 

intensity (Isppa) at the acoustic focus point was 21.2 W/cm2 for the left BF target and 18.9 

W/cm2 for the right BF target (spatial peak temporal average intensities, Ispta: 6.4 W/cm2 and 

5.6 W/cm2 for left and right, respectively). (b) Whole-head modelling of the maximum thermal 

rise during 40 s TUS. BF stimulation target position is shown as a cross for both sides on 

sagittal views ((a) and (b)). (c) Temperature dynamics for the hottest point in the skull (blue), 

the hottest point in the brain (red) and the geometrical focal point in the brain (yellow). Given 

that the skull is more acoustically absorbing than soft tissue, the highest thermal increase is 

located in the skull itself, estimated by the simulation to be 2.6°C and 2.1°C for left and right, 

respectively. For an approximate 0.5 mm thickness of the dura the maximum temperature in 

the brain below the dura was 38.1°C and 37.8°C for left and right, respectively. The maximal 

thermal increase at the geometrical focus of the sonic transducer was less than 0.3 °C for 

both sides. (d) Representation of pressure amplitude overlap from successive left and right 

BF TUS. Pressure fields were obtained from whole-head simulations of the focused 

ultrasound pressure amplitude when targeting left and right BF, based on a high-resolution 

macaque whole-head CT scan. The pressure fields are superimposed and are represented 

in relative pressure levels where 0 dB is the maximum pressure amplitude estimated in the 

brain. Dark red and orange highlight areas where the pressure is higher than -3dB and -6dB, 

respectively, for both sonications due to an overlap of the two beams. Red and yellow 

highlight areas where the pressure is higher than -3dB and -6dB, respectively, for one of the 

sonications. 



 

 



 

Figure S6. Effects of TUS were specific to stimulation of BF. Related to Figure 7. 

Whole-brain functional connectivity of the BF (a), a control region in the SMA (b), and a 

control region in POp (c). In each panel the upper row shows functional connectivity from the 

seed area to the rest of the brain without applying TUS. The middle and bottom rows show 

seed-based connectivity after SMA and BF TUS, respectively. Positive correlations are 

represented in warm colours from red to yellow, negative correlations are represented in 

cool colours from blue to green. After TUS over BF, BF positive coupling (a) is enhanced 

within BF and between BF and frontal and cingulate gyri. Importantly, this pattern is not 

observed when looking at the connectivity between SMA (b) or POp (c) and the rest of the 

brain. In fact, panels b and c show a widespread suppression of coupling elsewhere in the 

brain after BF TUS, compared to no TUS and SMA TUS. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

Figure S7. Behavioural effects of TUS. Related to Figure 7. (a) Animals acted quicker 

after ACC than after BF, POp or sham TUS, when offered medium or large, compared to 

small rewards. Format as in Fig.7di but with data from each animal (S1, S2, S3, S4) reported 

separately. Error bars show standard error of the mean. (b-c) The effect of BF TUS on 

actTime bias (b) and deterministic actTime (c). actTime bias was defined as the trial-by-trial 

absolute difference between observed and deterministic actTime. We found a statistically 

significant effect of TUS on actTime bias, however, careful inspection of the data shows that 

the effect is not consistent across all four animals. We could not include by-subject random 

slope in the model as it failed to converge due to our small sample size (n=4). Further 

analyses of each individual animal’s data revealed that in two animals there was a significant 

main effect of TUS location on actTime bias (S1, X2(3)=15.94, P=0.001; S4, X2(3)=14.86, 

P=0.002) and in one animal there was a significant interaction between the effect of TUS 

location and time (the effect of BF TUS became more marked as the session progressed) 

(S2, X2(3)=10.54, P=0.015). The effect was not significant in the fourth animal (S3). Format 

as in Fig.7e but with data from each animal and each stimulation session reported 

separately. Each colour represents one animal, and each ring is one stimulation session. 

The black grey columns illustrate the group mean across all observations. Multilevel ANOVA 

followed by pairwise t-test. * P<0.05, ** P<0.01, *** P<0.001. 

 

 

 

 

 

 



 

 

Table S1. List of all clusters. Related to Figure 4. We found four significant clusters at 

threshold Z > 2.3. In this study we focused on BF and ACC with bilateral/midline activity. 

 

Cluster  P Z-max Z-max 
 X (mm) 

Z-max 
 Y (mm) 

Z-max 
 Z (mm) 

COPE-
mean 

BF 0.008 4.5 4.5 2.0 -2.0 54.1 

ACC 0.004 3.9 0.5 20.5 12.5 54.8 

Right 
anterior 

insula 

<0.001 3.9 
 

19.6 3.0 -5.0 49.7 

Left 
putamen 

< 0.001 3.9 -10.5 -1.5 5.0 45.1 
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